α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities

This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α‐synuclein, while highly dynamic in the monomeric state, can access a large number o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of neurochemistry Ročník 150; číslo 5; s. 522 - 534
Hlavní autoři: Alam, Parvez, Bousset, Luc, Melki, Ronald, Otzen, Daniel E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.09.2019
Wiley
Témata:
ISSN:0022-3042, 1471-4159, 1471-4159
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α‐synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on‐pathway and others off‐pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson’s disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue “Synuclein”. This review discusses the roles of oligomers and fibrils in the molecular events underlying α‐synuclein (α‐syn) aggregation in an attempt to reconcile conflicting view on their roles in cytotoxicity. We start with a discussion of α‐syn dynamics, polymorphism, and kinetic partitioning between different aggregate species in vitro and in vivo. We provide an overview of different oligomeric species, including the co‐existence of on‐ and off‐pathway types of oligomers and the impact of chemical modifications on their formation and stabilities. Finally, we evaluate the role of oligomers and fibrils in the spread of pathology in Parkinson’s Disease, concluding that the mechanistic relationship between oligomers and fibrils still needs to be clarified and will likely remain a subject of intense investigation for some time. This article is part of the Special Issue “Synuclein”.
AbstractList This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α‐synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on‐pathway and others off‐pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson’s disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue “Synuclein”. This review discusses the roles of oligomers and fibrils in the molecular events underlying α‐synuclein (α‐syn) aggregation in an attempt to reconcile conflicting view on their roles in cytotoxicity. We start with a discussion of α‐syn dynamics, polymorphism, and kinetic partitioning between different aggregate species in vitro and in vivo. We provide an overview of different oligomeric species, including the co‐existence of on‐ and off‐pathway types of oligomers and the impact of chemical modifications on their formation and stabilities. Finally, we evaluate the role of oligomers and fibrils in the spread of pathology in Parkinson’s Disease, concluding that the mechanistic relationship between oligomers and fibrils still needs to be clarified and will likely remain a subject of intense investigation for some time. This article is part of the Special Issue “Synuclein”.
This review article provides an overview of the different species that $\alpha$-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. $\alpha$-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical inter-conversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both $in\ vitro$ and $in\ vivo$, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease
This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue "Synuclein".
This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue "Synuclein".This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue "Synuclein".
Author Bousset, Luc
Melki, Ronald
Alam, Parvez
Otzen, Daniel E.
Author_xml – sequence: 1
  givenname: Parvez
  surname: Alam
  fullname: Alam, Parvez
  organization: Aarhus University
– sequence: 2
  givenname: Luc
  surname: Bousset
  fullname: Bousset, Luc
  organization: Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS
– sequence: 3
  givenname: Ronald
  surname: Melki
  fullname: Melki, Ronald
  email: ronald.melki@cnrs.fr
  organization: Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS
– sequence: 4
  givenname: Daniel E.
  orcidid: 0000-0002-2918-8989
  surname: Otzen
  fullname: Otzen, Daniel E.
  email: dao@inano.au.dk
  organization: Aarhus University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31254394$$D View this record in MEDLINE/PubMed
https://cea.hal.science/cea-02279218$$DView record in HAL
BookMark eNp9kd1OFDEUxxuCgWXhwhcwk3CjiQP9mk6HO7JRkWzkBq6b0jkD3XTapZ1R985H8FV8ER_CJ7GyCyabaG9O0_M7H_3_D9CuDx4QeknwCcnndOHNCeESyx00IbwmJSdVs4smGFNaMszpPjpIaYExEVyQPbTPCK04a_gE3fz88evb97Tyo3FgfRGcvQs9xFRo3xadvY3WpbNCF2kJZohjX4Tu8W4hvd16HsJXa-yQM4foRaddgqNNnKKb9--uZxfl_OrDx9n5vDScUllqgLxIyzQH2TaYSW0EEZ0xRjBWVwyDplzTjkrGwNCagAEQ0jBhqhbzmk3Rm3Xfe-3UMtpex5UK2qqL87kyoFUWoG4okZ9JZl-v2WUMDyOkQfU2GXBOewhjUpRWWNAmj83o8Ra6CGP0-SeZqmtJKylFpl5tqPG2h_Z5_pO4f7czMaQUoXtGCFZ_jFPZOPVoXGZPt9ispB5s8EPU1v2v4ot1sPp3a3X5abau-A16qqjL
CitedBy_id crossref_primary_10_1016_j_jbc_2024_107742
crossref_primary_10_1038_s41419_021_04138_0
crossref_primary_10_1007_s12013_023_01154_z
crossref_primary_10_1016_j_bbagen_2022_130151
crossref_primary_10_3390_biom12050655
crossref_primary_10_1016_j_bpc_2021_106736
crossref_primary_10_3390_ijms25031672
crossref_primary_10_1038_s41598_022_22647_6
crossref_primary_10_3389_fnsyn_2020_584536
crossref_primary_10_3389_fphar_2020_00356
crossref_primary_10_2147_DDDT_S458026
crossref_primary_10_3390_ijms222111702
crossref_primary_10_1038_s41467_022_34555_4
crossref_primary_10_1038_s41467_022_32687_1
crossref_primary_10_1002_tcr_202300282
crossref_primary_10_1002_chem_202003374
crossref_primary_10_1134_S0006297924030118
crossref_primary_10_1038_s41582_023_00905_z
crossref_primary_10_1016_j_csbj_2020_05_026
crossref_primary_10_3233_JPD_201965
crossref_primary_10_1186_s40478_022_01440_6
crossref_primary_10_3389_fnagi_2025_1535310
crossref_primary_10_1016_j_abb_2023_109858
crossref_primary_10_1038_s41531_024_00747_6
crossref_primary_10_1111_bpa_13284
crossref_primary_10_1002_ange_202102408
crossref_primary_10_1021_acsnano_5c04005
crossref_primary_10_1007_s00232_020_00159_6
crossref_primary_10_3389_fneur_2022_787059
crossref_primary_10_1039_D4MD00576G
crossref_primary_10_1038_s41531_022_00330_x
crossref_primary_10_3390_biom11101466
crossref_primary_10_1042_EBC20220062
crossref_primary_10_1016_S0140_6736_23_01478_2
crossref_primary_10_1111_nan_12844
crossref_primary_10_1038_s42003_025_07906_2
crossref_primary_10_3390_cells13090739
crossref_primary_10_1038_s41598_022_10789_6
crossref_primary_10_3390_biology12091169
crossref_primary_10_1134_S1990519X23060093
crossref_primary_10_1007_s00018_023_04915_4
crossref_primary_10_1016_j_jbc_2021_100938
crossref_primary_10_1016_j_jmb_2020_10_023
crossref_primary_10_1016_j_nbd_2021_105527
crossref_primary_10_1007_s00018_022_04240_2
crossref_primary_10_3390_antiox10060893
crossref_primary_10_3390_cells11081261
crossref_primary_10_1016_j_jmb_2022_167775
crossref_primary_10_1038_s41467_024_50692_4
crossref_primary_10_3390_ijms24065914
crossref_primary_10_1080_0035919X_2025_2515392
crossref_primary_10_3389_fneur_2022_869103
crossref_primary_10_1038_s44321_024_00083_5
crossref_primary_10_31083_j_fbl2810266
crossref_primary_10_3389_fnins_2019_01399
crossref_primary_10_1038_s41570_021_00254_9
crossref_primary_10_1016_j_jmb_2025_169048
crossref_primary_10_3389_fcell_2020_562241
crossref_primary_10_1016_j_molliq_2024_125063
crossref_primary_10_1016_j_bbamem_2021_183776
crossref_primary_10_3389_fimmu_2021_611761
crossref_primary_10_1002_chem_202001847
crossref_primary_10_1016_j_bbamem_2020_183536
crossref_primary_10_1002_smtd_202001002
crossref_primary_10_1016_j_jbc_2022_101848
crossref_primary_10_1186_s13024_025_00797_1
crossref_primary_10_1002_ange_202014898
crossref_primary_10_1080_07391102_2020_1856721
crossref_primary_10_1038_s41467_021_26519_x
crossref_primary_10_1002_pro_4686
crossref_primary_10_1016_j_bbamcr_2023_119567
crossref_primary_10_3390_cells9112495
crossref_primary_10_1016_j_ejmech_2025_117452
crossref_primary_10_1002_anie_202102408
crossref_primary_10_1016_j_str_2021_05_002
crossref_primary_10_1038_s41467_024_50825_9
crossref_primary_10_1073_pnas_2105548118
crossref_primary_10_1002_alz_70374
crossref_primary_10_1038_s42004_025_01558_3
crossref_primary_10_3390_molecules29030722
crossref_primary_10_1093_brain_awac261
crossref_primary_10_1111_ene_16206
crossref_primary_10_26599_NR_2025_94907916
crossref_primary_10_1111_jnc_14825
crossref_primary_10_1016_j_jneumeth_2020_108685
crossref_primary_10_3390_ijms25179197
crossref_primary_10_1186_s40035_022_00293_2
crossref_primary_10_3390_cells11101640
crossref_primary_10_1016_j_jmb_2023_167992
crossref_primary_10_1002_mdr2_70007
crossref_primary_10_1016_j_chemosphere_2024_143039
crossref_primary_10_1016_j_ccr_2023_215616
crossref_primary_10_1038_s41467_022_34552_7
crossref_primary_10_1371_journal_pone_0308521
crossref_primary_10_1016_j_mocell_2024_100161
crossref_primary_10_1016_j_bbi_2022_10_023
crossref_primary_10_4103_1673_5374_387987
crossref_primary_10_1080_15548627_2021_1917129
crossref_primary_10_1002_prot_26455
crossref_primary_10_1111_jnc_14955
crossref_primary_10_1002_anie_202014898
crossref_primary_10_1103_PhysRevX_15_011022
crossref_primary_10_1016_j_arr_2024_102538
crossref_primary_10_1016_j_bbagrm_2022_194825
crossref_primary_10_3390_pharmaceutics15082051
crossref_primary_10_3390_ph14090847
crossref_primary_10_1002_cbic_202300320
crossref_primary_10_1186_s12868_025_00926_y
crossref_primary_10_1186_s12987_022_00334_y
crossref_primary_10_3390_biom13101476
crossref_primary_10_1016_j_bbapap_2023_140943
crossref_primary_10_3390_cells11233829
crossref_primary_10_1002_pro_70296
crossref_primary_10_1371_journal_pone_0288138
crossref_primary_10_1073_pnas_2205591119
crossref_primary_10_3390_biomedicines10102649
crossref_primary_10_1016_S1474_4422_20_30136_8
crossref_primary_10_3390_life11050431
crossref_primary_10_1038_s41531_024_00841_9
crossref_primary_10_1038_s41531_024_00849_1
crossref_primary_10_1007_s40263_022_00903_7
crossref_primary_10_3390_cancers13020269
crossref_primary_10_1007_s13311_021_01161_z
crossref_primary_10_1002_adhm_202002119
crossref_primary_10_3233_JPD_212594
crossref_primary_10_1007_s11307_023_01878_7
crossref_primary_10_3390_cells11111732
crossref_primary_10_3390_ijms222111455
crossref_primary_10_1016_j_ijbiomac_2022_12_134
crossref_primary_10_1016_j_ymthe_2021_04_035
crossref_primary_10_1002_brb3_1574
crossref_primary_10_1021_acschemneuro_4c00709
crossref_primary_10_1016_j_intimp_2025_114364
crossref_primary_10_1038_s41531_025_01075_z
crossref_primary_10_1073_pnas_2201910120
crossref_primary_10_1016_j_ejmech_2025_117587
crossref_primary_10_1002_biof_2086
crossref_primary_10_1002_mds_29784
crossref_primary_10_3390_ijms22052240
crossref_primary_10_5607_en25016
crossref_primary_10_1016_j_nbd_2021_105482
crossref_primary_10_1111_neup_12819
crossref_primary_10_3389_fmolb_2021_745313
crossref_primary_10_3390_molecules25204647
crossref_primary_10_1016_j_ijbiomac_2025_145303
crossref_primary_10_1111_neup_12812
crossref_primary_10_1016_j_bbrc_2021_08_049
crossref_primary_10_3390_ijms241713403
crossref_primary_10_4103_1673_5374_371345
crossref_primary_10_1002_adma_202505503
crossref_primary_10_1186_s13024_022_00520_4
crossref_primary_10_3389_fmolb_2021_768004
crossref_primary_10_1038_s41467_021_23682_z
crossref_primary_10_1111_jnc_15174
crossref_primary_10_1007_s12035_023_03481_x
crossref_primary_10_1016_j_bpj_2019_12_019
crossref_primary_10_1016_j_neuint_2022_105422
crossref_primary_10_1042_EBC20220055
crossref_primary_10_1016_j_nbd_2022_105966
crossref_primary_10_3389_fmolb_2024_1455817
crossref_primary_10_1007_s00018_022_04166_9
crossref_primary_10_3389_fmolb_2022_959425
crossref_primary_10_3390_life11111126
crossref_primary_10_1007_s00401_021_02266_7
crossref_primary_10_1186_s13024_024_00787_9
crossref_primary_10_3390_ijms22158338
crossref_primary_10_1002_1873_3468_14263
crossref_primary_10_3390_ijms22158213
crossref_primary_10_1002_adma_202312823
crossref_primary_10_1371_journal_pgen_1009407
crossref_primary_10_1002_cbic_202100228
crossref_primary_10_3390_biom10091305
crossref_primary_10_1016_j_neulet_2019_134703
crossref_primary_10_1039_D0SC04051G
crossref_primary_10_1007_s00203_023_03575_z
crossref_primary_10_3390_life11111239
crossref_primary_10_3390_ijms20215312
crossref_primary_10_1007_s13311_023_01365_5
crossref_primary_10_1016_j_bpc_2024_107379
crossref_primary_10_1021_acschemneuro_5c00356
crossref_primary_10_1016_j_jbc_2021_100737
crossref_primary_10_14348_molcells_2022_0102
crossref_primary_10_1016_j_jbc_2021_100613
crossref_primary_10_1007_s40267_022_00950_6
crossref_primary_10_3389_fnagi_2020_00167
crossref_primary_10_1111_bpa_13196
crossref_primary_10_1016_j_neulet_2021_135623
crossref_primary_10_1021_acschemneuro_5c00106
crossref_primary_10_1016_j_jmb_2022_167855
crossref_primary_10_1016_j_phymed_2025_156652
crossref_primary_10_3233_JAD_200983
crossref_primary_10_3390_cells11010087
crossref_primary_10_1073_pnas_2017452118
crossref_primary_10_3390_biom12020163
crossref_primary_10_1016_j_jmb_2022_167859
crossref_primary_10_1038_s44328_025_00042_1
crossref_primary_10_1007_s11010_024_05190_y
crossref_primary_10_1016_j_xpro_2024_103447
crossref_primary_10_3390_ijms241512134
crossref_primary_10_1038_s42003_020_1085_z
crossref_primary_10_3389_fcell_2022_874596
crossref_primary_10_3389_fams_2022_1060489
Cites_doi 10.1126/science.1227157
10.1016/j.biocel.2009.05.008
10.1038/nsmb.3194
10.1074/jbc.M401076200
10.1021/ja411577t
10.1084/jem.20112457
10.1111/j.1749-6632.2000.tb06903.x
10.1038/s41467-018-05971-2
10.1074/jbc.M306390200
10.1038/nature14547
10.1073/pnas.1218424110
10.1016/j.brainres.2015.06.002
10.1016/j.neurobiolaging.2011.06.022
10.1126/science.aan6160
10.1073/pnas.1514475112
10.1007/s00401-017-1722-x
10.1038/nn.4529
10.1073/pnas.97.2.571
10.1007/978-1-4939-2978-8_9
10.1038/nature16531
10.1371/journal.pone.0213663
10.1103/PhysRevLett.120.208102
10.1021/bi020139h
10.1073/pnas.93.7.2696
10.1089/ars.2015.6343
10.1073/pnas.1013225108
10.1080/07391102.2003.10506918
10.1016/j.celrep.2014.09.042
10.1002/ana.24066
10.1002/ange.201200813
10.1021/bi961799n
10.1021/ja5016958
10.1038/ng0298-106
10.1016/S0022-2836(02)00735-0
10.1073/pnas.0809232106
10.1002/prot.22604
10.1007/s12035-012-8331-4
10.1074/jbc.M505307200
10.1111/j.1471-4159.2009.06324.x
10.1073/pnas.1318268110
10.1074/jbc.M114.554667
10.1074/jbc.M709634200
10.1038/nrn3820
10.1016/j.stemcr.2018.12.007
10.1002/anie.201403815
10.7554/eLife.36402
10.1038/nsmb.1437
10.1016/j.cell.2012.03.037
10.1038/nrn3406
10.1021/bi0121353
10.1039/C4MT00339J
10.3389/fnins.2016.00408
10.1523/JNEUROSCI.5368-11.2012
10.1021/bi5007833
10.1016/j.freeradbiomed.2010.11.027
10.1038/nature02261
10.1073/pnas.0908005106
10.1002/anie.201400491
10.1084/jem.20160368
10.1038/35041687
10.1038/srep24526
10.1038/nature12125
10.1172/JCI35314
10.1016/j.neuron.2011.08.033
10.1371/journal.pbio.0060006
10.1074/jbc.M110.139576
10.1038/ncb748
10.1042/bj3400821
10.1074/jbc.M113.478297
10.1126/science.276.5321.2045
10.1186/s40478-015-0257-4
10.1073/pnas.1100976108
10.1016/j.jmb.2009.10.021
10.1074/jbc.M608126200
10.1042/BJ20111924
10.1021/ja208316h
10.1074/jbc.M114.566695
10.1016/j.nbd.2014.05.009
10.1146/annurev-biochem-061516-045115
10.1101/sqb.2012.76.010637
10.1002/ana.10795
10.1093/brain/awt037
10.1021/tx000101a
10.1523/JNEUROSCI.2617-07.2007
10.1021/ja0356176
10.1007/s00401-013-1160-3
10.1006/jmbi.2001.4538
10.1016/S0304-3940(01)02514-9
10.1212/WNL.0b013e31828727ba
10.1186/s40478-017-0413-0
10.3389/fimmu.2019.00080
10.1126/science.1090278
10.1074/jbc.M600933200
10.1111/j.1440-1789.2007.00803.x
10.1088/1478-3975/9/5/056005
10.1016/j.bbrc.2016.09.109
10.1074/jbc.M110.202937
10.1074/jbc.M105343200
10.1038/s41422-018-0075-x
10.1021/ja3115696
10.1038/ncomms3575
10.1093/jmcb/mjr011
10.1016/j.bpj.2012.04.050
10.1111/j.1471-4159.2010.06638.x
10.1074/jbc.M112.365817
10.1074/jbc.M408906200
10.1002/ana.23894
10.1016/0891-5849(91)90192-6
10.1016/S1474-4422(11)70213-7
10.1083/jcb.201011118
10.1042/BJ20150617
10.1523/JNEUROSCI.5922-09.2010
10.1016/S0014-5793(03)00367-3
ContentType Journal Article
Copyright 2019 International Society for Neurochemistry
2019 International Society for Neurochemistry.
Copyright © 2019 International Society for Neurochemistry
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 International Society for Neurochemistry
– notice: 2019 International Society for Neurochemistry.
– notice: Copyright © 2019 International Society for Neurochemistry
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
1XC
VOOES
DOI 10.1111/jnc.14808
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 534
ExternalDocumentID oai:HAL:cea-02279218v1
31254394
10_1111_jnc_14808
JNC14808
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: European Union's Horizon 2020 Research
  funderid: 116060; 821522
– fundername: EC Joint Program on Neurodegenerative Diseases
  funderid: ANR-17-JPCD-0002-02; ANR-17-JPCD-0005-01
– fundername: Fondation Bettencourt Schueller
– fundername: Novo Nordisk Foundation
  funderid: NNF17OC0028806
– fundername: Fondation pour la Recherche Médicale
  funderid: 20160334896
– fundername: The Fondation Simone et Cino Del Duca of the Institut de France
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c4228-aee125d3a4e8d9038ac616fccc6337530ea24a2f2833ec271ecee68c36c5d0473
IEDL.DBID WIN
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480000700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3042
1471-4159
IngestDate Sun Nov 02 08:50:35 EST 2025
Thu Jul 10 23:29:52 EDT 2025
Fri Jul 25 19:31:45 EDT 2025
Wed Feb 19 02:30:37 EST 2025
Sat Nov 29 06:49:42 EST 2025
Tue Nov 18 22:29:35 EST 2025
Wed Jan 22 16:39:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords conformations
synuclein
propagation
biophysics
oligomers
fibrils
Language English
License 2019 International Society for Neurochemistry.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4228-aee125d3a4e8d9038ac616fccc6337530ea24a2f2833ec271ecee68c36c5d0473
Notes This article is part of the Special Issue “Synuclein”.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2918-8989
0000-0002-0433-4337
OpenAccessLink https://cea.hal.science/cea-02279218
PMID 31254394
PQID 2277825886
PQPubID 31528
PageCount 13
ParticipantIDs hal_primary_oai_HAL_cea_02279218v1
proquest_miscellaneous_2250629753
proquest_journals_2277825886
pubmed_primary_31254394
crossref_primary_10_1111_jnc_14808
crossref_citationtrail_10_1111_jnc_14808
wiley_primary_10_1111_jnc_14808_JNC14808
PublicationCentury 2000
PublicationDate September 2019
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2017; 86
2013; 4
2012; 124
1991; 11
2019; 10
2019; 12
2013; 126
1997; 276
2019; 14
2009; 111
1975
2002; 319
2012b; 209
2010; 183
2009; 119
2000a; 97
2011; 194
2001; 307
2014; 136
2018; 7
2017; 329
2000; 408
1998; 18
2012; 134
2014b; 53
2015; 1628
2000; 13
2011; 72
2010; 113
2014; 15
2013; 110
2006; 281
2010; 30
2012a; 338
2012; 102
2007; 282
2015; 522
1999; 340
2016; 10
1996; 93
2002; 4
2011; 76
2010; 285
2017; 134
2011; 3
2012; 33
2012; 32
2018; 25
1999
2018b; 28
2015; 471
2001; 276
2004; 55
2016; 6
2004; 279
2013; 73
2015; 112
2013; 80
2016; 213
2016; 24
2003; 21
2016; 23
2009; 106
2018; 120
2017; 5
2009; 41
2004; 126
2012; 287
2012; 443
2014a; 136
2013; 288
2014; 69
2011; 10
2008; 6
2014a; 53
2009; 394
1996; 35
2017; 358
2013; 14
2002; 41
2016; 479
2014; 9
2011; 286
2007; 27
2014; 289
2014; 53
2010; 78
2017; 20
2013; 47
2015; 3
2008; 15
2016; 1345
2014b; 289
2012; 149
2015; 7
2008; 283
2003; 426
2011; 108
2002; 322
2011; 50
2016; 530
2018
2013; 136
2013; 498
2013; 135
2000b; 920
2003; 302
2003; 542
2018a; 9
2012; 9
2014; 75
e_1_2_14_114_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_92_1
e_1_2_14_35_1
e_1_2_14_12_1
Cremades N. (e_1_2_14_23_1) 2017
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
Diggelen F. (e_1_2_14_27_1) 2019; 14
e_1_2_14_103_1
e_1_2_14_85_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
Alan F. (e_1_2_14_2_1) 1999
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
Oosawa F. (e_1_2_14_78_1) 1975
e_1_2_14_89_1
e_1_2_14_47_1
e_1_2_14_119_1
e_1_2_14_115_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
e_1_2_14_120_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_65_1
e_1_2_14_88_1
e_1_2_14_69_1
Oueslati A. (e_1_2_14_80_1) 2010
e_1_2_14_116_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_8_1
e_1_2_14_109_1
Ar F. (e_1_2_14_5_1) 1999
e_1_2_14_105_1
e_1_2_14_60_1
e_1_2_14_83_1
Kurnik M. (e_1_2_14_54_1) 2018; 25
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_117_1
Ho P. W.‐L. (e_1_2_14_46_1) 2018
e_1_2_14_113_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_29_1
e_1_2_14_9_1
e_1_2_14_106_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
e_1_2_14_118_1
References_xml – volume: 7
  start-page: 395
  year: 2015
  end-page: 404
  article-title: Insights on the interaction of alpha‐synuclein and metals in the pathophysiology of Parkinson's disease
  publication-title: Metallomics
– volume: 209
  start-page: 975
  year: 2012b
  end-page: 986
  article-title: Intracerebral inoculation of pathological alpha‐ synuclein initiates a rapidly progressive neurodegenerative α‐synucleinopathy in mice
  publication-title: J. Exp. Med.
– volume: 282
  start-page: 5862
  year: 2007
  end-page: 5870
  article-title: Effect of 4‐hydroxy‐2‐nonenal modification on alpha‐synuclein aggregation
  publication-title: J. Biol. Chem.
– volume: 1628
  start-page: 247
  year: 2015
  end-page: 253
  article-title: Post‐translational modification of alpha‐synuclein in Parkinson's disease
  publication-title: Brain Res.
– volume: 136
  start-page: 3859
  year: 2014a
  end-page: 3868
  article-title: The role of stable alpha‐synuclein oligomers in the molecular events underlying amyloid formation
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 4087
  year: 2013
  end-page: 92
  article-title: Large alpha‐synuclein oligomers inhibit neuronal SNARE‐mediated vesicle docking
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 72
  start-page: 57
  year: 2011
  end-page: 71
  article-title: Exogenous alpha‐synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death
  publication-title: Neuron
– year: 1975
– volume: 41
  start-page: 10209
  year: 2002
  end-page: 10217
  article-title: Annular alpha‐synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain‐derived membranes
  publication-title: Biochemistry
– volume: 14
  start-page: 38
  year: 2013
  article-title: The many faces of alpha‐synuclein: from structure and toxicity to therapeutic target
  publication-title: Nat. Rev. Neurosci.
– volume: 14
  start-page: e0213663
  year: 2019
  article-title: Two conformationally distinct in vitro α‐synuclein oligomers share common epitopes and the ability to impair long‐term potentiation
  publication-title: PLoS ONE
– volume: 289
  start-page: 21299
  year: 2014b
  end-page: 21310
  article-title: How epigallogatechin gallate can inhibit α‐synuclein oligomer toxicity
  publication-title: J. Biol. Chem.
– volume: 78
  start-page: 714
  year: 2010
  end-page: 722
  article-title: Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: conformational heterogeneity of α‐synuclein
  publication-title: Proteins
– volume: 498
  start-page: E4
  year: 2013
  article-title: Properties of native brain alpha‐synuclein
  publication-title: Nature
– volume: 1345
  start-page: 133
  year: 2016
  end-page: 150
  article-title: Formation and characterization of α‐synuclein oligomers
  publication-title: Methods Mol. Biol.
– volume: 27
  start-page: 494
  year: 2007
  end-page: 506
  article-title: The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha‐synuclein aggregates
  publication-title: Neuropathology
– volume: 10
  start-page: 1015
  year: 2011
  end-page: 1025
  article-title: Pathological roles of alpha‐synuclein in neurological disorders
  publication-title: Lancet Neurol.
– volume: 55
  start-page: 164
  year: 2004
  end-page: 173
  article-title: The new mutation, E46K, of alpha‐synuclein causes Parkinson and Lewy body dementia
  publication-title: Ann. Neurol.
– volume: 530
  start-page: 45
  year: 2016
  article-title: Structural disorder of monomeric alpha‐synuclein persists in mammalian cells
  publication-title: Nature
– volume: 279
  start-page: 21966
  year: 2004
  end-page: 21975
  article-title: Alpha‐synuclein has a high affinity for packing defects in a bilayer membrane a thermodynamics study
  publication-title: J. Biol. Chem.
– volume: 53
  start-page: 7560
  year: 2014b
  end-page: 7563
  article-title: Co‐existence of two different α‐synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry
  publication-title: Angew. Chem. Int. Ed Engl.
– volume: 69
  start-page: 134
  year: 2014
  end-page: 143
  article-title: Immunotherapy targeting alpha‐synuclein protofibrils reduced pathology in (Thy‐1)‐h[A30P] alpha‐synuclein mice
  publication-title: Neurobiol. Dis.
– volume: 106
  start-page: 5645
  year: 2009
  end-page: 5650
  article-title: Interplay of alpha‐synuclein binding and conformational switching probed by single‐molecule fluorescence
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 108
  start-page: 3246
  year: 2011
  end-page: 3251
  article-title: Low‐resolution structure of a vesicle disrupting alpha‐synuclein oligomer that accumulates during fibrillation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 41
  start-page: 2015
  year: 2009
  end-page: 2024
  article-title: Alpha‐synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 194
  start-page: 89
  year: 2011
  end-page: 103
  article-title: Alpha‐synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding
  publication-title: J. Cell. Biol.
– volume: 319
  start-page: 25
  year: 2002
  end-page: 28
  article-title: Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans
  publication-title: Neurosci. Lett.
– volume: 4
  start-page: 160
  year: 2002
  article-title: Alpha‐Synuclein is phosphorylated in synucleinopathy lesions
  publication-title: Nat. Cell Biol.
– volume: 102
  start-page: 2894
  year: 2012
  end-page: 2905
  article-title: Fibrillar alpha‐synuclein and huntingtin exon 1 assemblies are toxic to the cells
  publication-title: Biophys. J.
– volume: 30
  start-page: 3184
  year: 2010
  end-page: 3198
  article-title: Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α‐synuclein oligomerization, and influences synuclein‐membrane interactions
  publication-title: J. Neurosci.
– volume: 5
  start-page: 12
  year: 2017
  article-title: Propagation of pathological alpha‐synuclein in marmoset brain
  publication-title: Acta Neuropathol. Commun.
– volume: 322
  start-page: 1089
  year: 2002
  end-page: 1102
  article-title: Alpha‐synuclein, especially the Parkinson's disease‐associated mutants, forms pore‐like annular and tubular protofibrils
  publication-title: J. Mol. Biol.
– volume: 135
  start-page: 7503
  year: 2013
  end-page: 7510
  article-title: Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils
  publication-title: J. Am. Chem. Soc.
– volume: 286
  start-page: 22262
  year: 2011
  end-page: 22274
  article-title: Structural and morphological characterization of aggregated species of alpha‐synuclein induced by docosahexaenoic acid
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 376
  year: 2016
  end-page: 391
  article-title: Alpha‐synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease
  publication-title: Antioxid. Redox Signal.
– volume: 76
  start-page: 91
  year: 2011
  end-page: 99
– volume: 283
  start-page: 10992
  year: 2008
  end-page: 1003
  article-title: Single‐particle characterization of iron‐induced pore‐forming alpha‐synuclein oligomers
  publication-title: J. Biol. Chem.
– volume: 136
  start-page: 1128
  year: 2013
  end-page: 1138
  article-title: Prion‐like spreading of pathological alpha‐synuclein in brain
  publication-title: Brain
– volume: 124
  start-page: 8951
  year: 2012
  end-page: 8954
  article-title: Molecular composition of sub‐ stoichiometrically labeled alpha‐synuclein oligomers determined by single‐molecule photobleaching
  publication-title: Angew. Chem.
– volume: 10
  start-page: 408
  year: 2016
  article-title: Alpha‐synuclein oligomers‐neurotoxic molecules in Parkinson's disease and other Lewy body disorders
  publication-title: Front. Neurosci.
– volume: 426
  start-page: 884
  year: 2003
  article-title: Protein folding and misfolding
  publication-title: Nature
– volume: 522
  start-page: 340
  year: 2015
  article-title: Alpha‐synuclein strains cause distinct synucleinopathies after local and systemic administration
  publication-title: Nature
– volume: 20
  start-page: 681
  year: 2017
  article-title: Alpha‐synuclein promotes dilation of the exocytotic fusion pore
  publication-title: Nat. Neurosci.
– volume: 113
  start-page: 704
  year: 2010
  end-page: 714
  article-title: Copper binding regulates intracellular alpha‐synuclein localisation, aggregation and toxicity
  publication-title: J. Neurochem.
– volume: 27
  start-page: 9220
  year: 2007
  end-page: 9232
  article-title: Different species of alpha‐synuclein oligomers induce calcium influx and seeding
  publication-title: J. Neurosci.
– volume: 443
  start-page: 719
  year: 2012
  end-page: 726
  article-title: Toxic prefibrillar alpha‐synuclein amyloid oligomers adopt a distinctive antiparallel beta‐sheet structure
  publication-title: Biochem. J.
– volume: 408
  start-page: 239
  year: 2000
  article-title: Oxidants, oxidative stress and the biology of ageing
  publication-title: Nature
– volume: 134
  start-page: 629
  year: 2017
  end-page: 653
  article-title: Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins
  publication-title: Acta Neuropathol.
– volume: 281
  start-page: 3463
  year: 2006
  end-page: 3472
  article-title: Dequalinium‐induced protofibril formation of alpha‐synuclein
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 20051
  year: 2009
  end-page: 20056
  article-title: Exogenous alpha‐synuclein fibrils seed the formation of Lewy body‐like intracellular inclusions in cultured cells
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 112
  start-page: E5308
  year: 2015
  end-page: E5317
  article-title: Evidence for alpha‐synuclein prions causing multiple system atrophy in humans with parkinsonism
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 288
  start-page: 20883
  year: 2013
  end-page: 20895
  article-title: Alpha‐synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling
  publication-title: J. Biol. Chem.
– volume: 471
  start-page: 323
  year: 2015
  end-page: 333
  article-title: Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease
  publication-title: Biochem. J.
– volume: 394
  start-page: 826
  year: 2009
  end-page: 833
  article-title: Tryptophan fluorescence reveals structural features of alpha‐synuclein oligomers
  publication-title: J. Mol. Biol.
– volume: 281
  start-page: 29739
  year: 2006
  end-page: 29752
  article-title: Phosphorylation of Ser‐129 is the dominant pathological modification of alpha‐synuclein in familial and sporadic Lewy body disease
  publication-title: J. Biol. Chem.
– volume: 338
  start-page: 949
  year: 2012a
  end-page: 953
  article-title: Pathological alpha‐synuclein transmission initiates Parkinson‐like neurodegeneration in nontransgenic mice
  publication-title: Science
– volume: 97
  start-page: 571
  year: 2000a
  end-page: 576
  article-title: Acceleration of oligomerization, not fibrillization, is a shared property of both alpha‐ synuclein mutations linked to early‐onset Parkinson's disease: implications for pathogenesis and therapy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 120
  start-page: 208102
  year: 2018
  article-title: Hydrophobic‐Interaction‐Induced Stiffening of alpha‐Synuclein Fibril Networks
  publication-title: Phys. Rev. Lett.
– volume: 542
  start-page: 147
  year: 2003
  end-page: 152
  article-title: Nitration inhibits fibrillation of human alpha‐synuclein in vitro by formation of soluble oligomers
  publication-title: FEBS Lett.
– volume: 32
  start-page: 3301
  year: 2012
  end-page: 3305
  article-title: Accumulation of toxic alpha‐synuclein oligomer within endoplasmic reticulum occurs in alpha‐synucleinopathy in vivo
  publication-title: J. Neurosci.
– volume: 110
  start-page: 19555
  year: 2013
  end-page: 19560
  article-title: Transmission of multiple system atrophy prions to transgenic mice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 126
  start-page: 555
  year: 2013
  end-page: 573
  article-title: Transfer of human alpha‐synuclein from the olfactory bulb to interconnected brain regions in mice
  publication-title: Acta Neuropathol.
– volume: 15
  start-page: 771
  year: 2014
  article-title: Polyunsaturated fatty acids and their metabolites in brain function and disease
  publication-title: Nat. Rev. Neurosci.
– volume: 276
  start-page: 2045
  year: 1997
  end-page: 2047
  article-title: Mutation in the alpha‐synuclein gene identified in families with Parkinson's disease
  publication-title: Science
– volume: 86
  start-page: 27
  year: 2017
  end-page: 68
  article-title: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade
  publication-title: Annu. Rev. Biochem.
– volume: 279
  start-page: 47746
  year: 2004
  end-page: 47753
  article-title: Functional consequences of alpha‐synuclein tyrosine nitration diminished binding to lipid vesicles and increased fibril formation
  publication-title: J. Biol. Chem.
– volume: 289
  start-page: 26733
  year: 2014
  end-page: 26742
  article-title: Structural insights into amyloid oligomers of the Parkinson disease‐related protein alpha‐synuclein
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e36402
  year: 2018
  article-title: Cryo‐EM structure of alpha‐synuclein fibrils
  publication-title: Elife
– volume: 358
  start-page: 1440
  year: 2017
  end-page: 1443
  article-title: Structural basis of membrane disruption and cellular toxicity by alpha‐synuclein oligomers
  publication-title: Science
– volume: 53
  start-page: 6252
  year: 2014a
  end-page: 6263
  article-title: High stability and cooperative unfolding of cytotoxic α‐synuclein oligomers
  publication-title: Biochemistry
– volume: 287
  start-page: 29301
  year: 2012
  end-page: 29311
  article-title: Remodeling of lipid vesicles into cylindrical micelles by alpha‐ synuclein in an extended alpha helical conformation
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: e6
  year: 2008
  article-title: Conformational equilibria in monomeric α‐synuclein at the single‐molecule level
  publication-title: PLoS Biol.
– volume: 149
  start-page: 1048
  year: 2012
  end-page: 1059
  article-title: Direct observation of the interconversion of normal and toxic forms of α‐synuclein
  publication-title: Cell
– volume: 302
  start-page: 841
  year: 2003
  article-title: alpha‐Synuclein locus triplication causes Parkinson's disease
  publication-title: Science
– volume: 80
  start-page: 1062
  year: 2013
  end-page: 1064
  article-title: A novel alpha‐synuclein missense mutation in Parkinson disease
  publication-title: Neurology
– volume: 111
  start-page: 192
  year: 2009
  end-page: 203
  article-title: Seeding induced by alpha‐synuclein oligomers provides evidence for spreading of alpha‐synuclein pathology
  publication-title: J. Neurochem.
– volume: 213
  start-page: 1759
  year: 2016
  end-page: 1778
  article-title: Widespread transneuronal propagation of alpha‐synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease
  publication-title: J. Exp. Med.
– volume: 285
  start-page: 32486
  year: 2010
  end-page: 32493
  article-title: Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 1135
  year: 2014
  end-page: 1150
  article-title: A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease
  publication-title: Cell Rep.
– volume: 119
  start-page: 3257
  year: 2009
  end-page: 3265
  article-title: Tyrosine and serine phosphorylation of alpha‐synuclein have opposing effects on neurotoxicity and soluble oligomer formation
  publication-title: J. Clin. Investig.
– volume: 18
  start-page: 106
  year: 1998
  article-title: AlaSOPro mutation in the gene encoding alpha‐synuclein in Parkinson's disease
  publication-title: Nat. Genet.
– volume: 10
  start-page: 80
  year: 2019
  article-title: Peripheral inflammation regulates CNS immune surveillance through the recruitment of inflammatory monocytes upon systemic alpha‐synuclein administration
  publication-title: Front. Immunol.
– start-page: 1
  year: 2018
  end-page: 24
  article-title: Age‐dependent accumulation of oligomeric SNCA/alpha‐synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone‐mediated autophagy (CMA)
  publication-title: Autophagy
– volume: 12
  start-page: 230
  year: 2019
  end-page: 244
  article-title: Propagation of alpha‐synuclein strains within human reconstructed neuronal network
  publication-title: Stem Cell Rep.
– volume: 9
  start-page: 3609
  year: 2018a
  article-title: Cryo‐EM of full‐length alpha‐synuclein reveals fibril polymorphs with a common structural kernel
  publication-title: Nat. Commun.
– volume: 73
  start-page: 459
  year: 2013
  end-page: 471
  article-title: G51D alpha‐ synuclein mutation causes a novel Parkinsonian‐pyramidal syndrome
  publication-title: Ann. Neurol.
– volume: 75
  start-page: 351
  year: 2014
  end-page: 362
  article-title: Lewy body extracts from Parkinson disease brains trigger alpha‐synuclein pathology and neurodegeneration in mice and monkeys
  publication-title: Ann. Neurol.
– volume: 23
  start-page: 409
  year: 2016
  end-page: 415
  article-title: Solid‐state NMR structure of a pathogenic fibril of full‐length human alpha‐synuclein
  publication-title: Nat. Struct. Mol. Biol.
– volume: 50
  start-page: 428
  year: 2011
  end-page: 437
  article-title: The lipid peroxidation products 4‐oxo‐2‐nonenal and 4‐hydroxy‐2‐nonenal promote the formation of alpha‐synuclein oligomers with distinct biochemical, morphological, and functional properties
  publication-title: Free Radic. Biol. Med.
– volume: 108
  start-page: 4194
  year: 2011
  end-page: 4199
  article-title: In vivo demonstration that alpha‐synuclein oligomers are toxic
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 25
  start-page: 1389
  year: 2018
  end-page: 1140
  article-title: Novel α‐synuclein aggregation inhibitors, identified by HTS, mainly target the monomeric state
  publication-title: Chem. Biol.
– volume: 6
  start-page: 24526
  year: 2016
  article-title: Structural and functional properties of prefibrillar alpha‐synuclein oligomers
  publication-title: Sci. Rep.
– volume: 15
  start-page: 558
  year: 2008
  article-title: EGCG redirects amyloidogenic polypeptides into unstructured, off‐pathway oligomers
  publication-title: Nat. Struct. Mol. Biol.
– volume: 53
  start-page: 7799
  year: 2014
  end-page: 7804
  article-title: Cold denaturation of alpha‐synuclein amyloid fibrils
  publication-title: Angew. Chem. Int. Ed Engl.
– volume: 276
  start-page: 44284
  year: 2001
  end-page: 44296
  article-title: Metal‐triggered structural transformations, aggregation, and fibrillation of human alpha‐synuclein a possible molecular link between Parkinson's disease and heavy metal exposure
  publication-title: J. Biol. Chem.
– volume: 136
  start-page: 9962
  year: 2014
  end-page: 9972
  article-title: Alpha‐synuclein‐induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 698
  year: 2000
  end-page: 702
  article-title: Characterization of 4‐oxo‐2‐nonenal as a novel product of lipid peroxidation
  publication-title: Chem. Res. Toxicol.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 13
  article-title: Structural and functional characterization of two alpha‐synuclein strains
  publication-title: Nat. Commun.
– volume: 279
  start-page: 12924
  year: 2004
  end-page: 34
  article-title: Proteasomal inhibition by alpha‐synuclein filaments and oligomers
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 239
  year: 2011
  end-page: 249
  article-title: A novel molecular mechanism for nitrated alpha‐synuclein‐induced cell death
  publication-title: J. Mol. Cell Biol.
– volume: 47
  start-page: 613
  year: 2013
  end-page: 621
  article-title: Alpha‐synuclein oligomers: an amyloid pore?
  publication-title: Mol. Neurobiol.
– volume: 340
  start-page: 821
  year: 1999
  end-page: 828
  article-title: Copper (II)‐induced self‐oligomerization of α‐synuclein
  publication-title: Biochem. J.
– volume: 28
  start-page: 897
  year: 2018b
  end-page: 903
  article-title: Amyloid fibril structure of alpha‐synuclein determined by cryo‐electron microscopy
  publication-title: Cell Res.
– volume: 307
  start-page: 1061
  year: 2001
  end-page: 1073
  article-title: Conformational properties of alpha‐synuclein in its free and lipid‐associated states
  publication-title: J. Mol. Biol.
– volume: 479
  start-page: 881
  year: 2016
  end-page: 886
  article-title: Alpha‐synuclein activates BV2 microglia dependent on its aggregation state
  publication-title: Biochem. Biophys. Res. Comm.
– volume: 35
  start-page: 13709
  year: 1996
  end-page: 13715
  article-title: NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded
  publication-title: Biochemistry
– volume: 9
  start-page: 056005
  year: 2012
  article-title: Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha‐synuclein aggregation
  publication-title: Phys. Biol.
– volume: 21
  start-page: 211
  year: 2003
  end-page: 234
  article-title: A protein‐chameleon: conformational plasticity of alpha‐ synuclein, a disordered protein involved in neurodegenerative disorders
  publication-title: J. Biomol. Struct. Dyn.
– volume: 41
  start-page: 4595
  year: 2002
  end-page: 4602
  article-title: Vesicle permeabilization by protofibrillar alpha‐synuclein is sensitive to Parkinson's disease‐linked mutations and occurs by a pore‐like mechanism
  publication-title: Biochemistry
– volume: 126
  start-page: 2399
  year: 2004
  end-page: 2408
  article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha‐synuclein
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 2696
  year: 1996
  end-page: 2701
  article-title: Immunohistochemical detection of 4‐hydroxynonenal protein adducts in Parkinson disease
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 920
  start-page: 42
  year: 2000b
  end-page: 45
  article-title: Accelerated oligomerization by Parkinson's disease linked alpha‐synuclein mutants
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 33
  start-page: 2225
  year: 2012
  end-page: 2228
  article-title: Prion‐like acceleration of a synucleinopathy in a transgenic mouse model
  publication-title: Neurobiol. Aging
– volume: 183
  start-page: 115
  year: 2010
  end-page: 145
– volume: 134
  start-page: 2613
  year: 2012
  end-page: 2620
  article-title: Alpha‐synuclein induces both positive mean curvature and negative Gaussian curvature in membranes
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 81
  year: 1991
  end-page: 128
  article-title: Chemistry and biochemistry of 4‐hydroxynonenal, malonaldehyde and related aldehydes
  publication-title: Free Radic. Biol. Med.
– volume: 329
  start-page: 79
  year: 2017
  end-page: 143
– volume: 3
  start-page: 76
  year: 2015
  article-title: Altered machinery of protein synthesis is region‐and stage‐dependent and is associated with alpha‐synuclein oligomers in Parkinson's disease
  publication-title: Acta Neuropathol. Commun.
– year: 1999
– ident: e_1_2_14_69_1
  doi: 10.1126/science.1227157
– ident: e_1_2_14_83_1
  doi: 10.1016/j.biocel.2009.05.008
– ident: e_1_2_14_106_1
  doi: 10.1038/nsmb.3194
– ident: e_1_2_14_77_1
  doi: 10.1074/jbc.M401076200
– ident: e_1_2_14_66_1
  doi: 10.1021/ja411577t
– ident: e_1_2_14_70_1
  doi: 10.1084/jem.20112457
– ident: e_1_2_14_21_1
  doi: 10.1111/j.1749-6632.2000.tb06903.x
– ident: e_1_2_14_60_1
  doi: 10.1038/s41467-018-05971-2
– ident: e_1_2_14_62_1
  doi: 10.1074/jbc.M306390200
– ident: e_1_2_14_87_1
  doi: 10.1038/nature14547
– ident: e_1_2_14_18_1
  doi: 10.1073/pnas.1218424110
– ident: e_1_2_14_6_1
  doi: 10.1016/j.brainres.2015.06.002
– ident: e_1_2_14_75_1
  doi: 10.1016/j.neurobiolaging.2011.06.022
– ident: e_1_2_14_39_1
  doi: 10.1126/science.aan6160
– ident: e_1_2_14_94_1
  doi: 10.1073/pnas.1514475112
– ident: e_1_2_14_35_1
  doi: 10.1007/s00401-017-1722-x
– ident: e_1_2_14_65_1
  doi: 10.1038/nn.4529
– ident: e_1_2_14_20_1
  doi: 10.1073/pnas.97.2.571
– ident: e_1_2_14_86_1
  doi: 10.1007/978-1-4939-2978-8_9
– ident: e_1_2_14_105_1
  doi: 10.1038/nature16531
– volume: 14
  start-page: e0213663
  year: 2019
  ident: e_1_2_14_27_1
  article-title: Two conformationally distinct in vitro α‐synuclein oligomers share common epitopes and the ability to impair long‐term potentiation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0213663
– ident: e_1_2_14_101_1
  doi: 10.1103/PhysRevLett.120.208102
– ident: e_1_2_14_28_1
  doi: 10.1021/bi020139h
– ident: e_1_2_14_119_1
  doi: 10.1073/pnas.93.7.2696
– ident: e_1_2_14_26_1
  doi: 10.1089/ars.2015.6343
– ident: e_1_2_14_42_1
  doi: 10.1073/pnas.1013225108
– ident: e_1_2_14_107_1
  doi: 10.1080/07391102.2003.10506918
– ident: e_1_2_14_11_1
  doi: 10.1016/j.celrep.2014.09.042
– ident: e_1_2_14_96_1
  doi: 10.1002/ana.24066
– ident: e_1_2_14_121_1
  doi: 10.1002/ange.201200813
– ident: e_1_2_14_116_1
  doi: 10.1021/bi961799n
– ident: e_1_2_14_10_1
  doi: 10.1021/ja5016958
– ident: e_1_2_14_53_1
  doi: 10.1038/ng0298-106
– ident: e_1_2_14_55_1
  doi: 10.1016/S0022-2836(02)00735-0
– ident: e_1_2_14_33_1
  doi: 10.1073/pnas.0809232106
– ident: e_1_2_14_37_1
  doi: 10.1002/prot.22604
– ident: e_1_2_14_104_1
  doi: 10.1007/s12035-012-8331-4
– start-page: 115
  volume-title: Progress in Brain Research
  year: 2010
  ident: e_1_2_14_80_1
– ident: e_1_2_14_58_1
  doi: 10.1074/jbc.M505307200
– ident: e_1_2_14_25_1
  doi: 10.1111/j.1471-4159.2009.06324.x
– volume: 25
  start-page: 1389
  year: 2018
  ident: e_1_2_14_54_1
  article-title: Novel α‐synuclein aggregation inhibitors, identified by HTS, mainly target the monomeric state Cell
  publication-title: Chem. Biol.
– ident: e_1_2_14_115_1
  doi: 10.1073/pnas.1318268110
– ident: e_1_2_14_67_1
  doi: 10.1074/jbc.M114.554667
– ident: e_1_2_14_52_1
  doi: 10.1074/jbc.M709634200
– start-page: 79
  volume-title: International Review of Cell and Molecular Biology
  year: 2017
  ident: e_1_2_14_23_1
– ident: e_1_2_14_7_1
  doi: 10.1038/nrn3820
– start-page: 1
  year: 2018
  ident: e_1_2_14_46_1
  article-title: Age‐dependent accumulation of oligomeric SNCA/alpha‐synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone‐mediated autophagy (CMA)
  publication-title: Autophagy
– ident: e_1_2_14_43_1
  doi: 10.1016/j.stemcr.2018.12.007
– ident: e_1_2_14_50_1
  doi: 10.1002/anie.201403815
– ident: e_1_2_14_44_1
  doi: 10.7554/eLife.36402
– volume-title: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding
  year: 1999
  ident: e_1_2_14_2_1
– ident: e_1_2_14_30_1
  doi: 10.1038/nsmb.1437
– ident: e_1_2_14_22_1
  doi: 10.1016/j.cell.2012.03.037
– ident: e_1_2_14_56_1
  doi: 10.1038/nrn3406
– ident: e_1_2_14_111_1
  doi: 10.1021/bi0121353
– ident: e_1_2_14_13_1
  doi: 10.1039/C4MT00339J
– ident: e_1_2_14_51_1
  doi: 10.3389/fnins.2016.00408
– ident: e_1_2_14_19_1
  doi: 10.1523/JNEUROSCI.5368-11.2012
– ident: e_1_2_14_84_1
  doi: 10.1021/bi5007833
– ident: e_1_2_14_76_1
  doi: 10.1016/j.freeradbiomed.2010.11.027
– volume-title: Thermodynamics of the Polymerization of Protein
  year: 1975
  ident: e_1_2_14_78_1
– ident: e_1_2_14_29_1
  doi: 10.1038/nature02261
– ident: e_1_2_14_68_1
  doi: 10.1073/pnas.0908005106
– ident: e_1_2_14_85_1
  doi: 10.1002/anie.201400491
– ident: e_1_2_14_98_1
  doi: 10.1084/jem.20160368
– ident: e_1_2_14_34_1
  doi: 10.1038/35041687
– ident: e_1_2_14_90_1
  doi: 10.1038/srep24526
– ident: e_1_2_14_12_1
  doi: 10.1038/nature12125
– ident: e_1_2_14_16_1
  doi: 10.1172/JCI35314
– ident: e_1_2_14_112_1
  doi: 10.1016/j.neuron.2011.08.033
– ident: e_1_2_14_100_1
  doi: 10.1371/journal.pbio.0060006
– ident: e_1_2_14_109_1
  doi: 10.1074/jbc.M110.139576
– ident: e_1_2_14_38_1
  doi: 10.1038/ncb748
– ident: e_1_2_14_49_1
  doi: 10.1042/bj3400821
– ident: e_1_2_14_79_1
  doi: 10.1074/jbc.M113.478297
– ident: e_1_2_14_91_1
  doi: 10.1126/science.276.5321.2045
– ident: e_1_2_14_41_1
  doi: 10.1186/s40478-015-0257-4
– ident: e_1_2_14_117_1
  doi: 10.1073/pnas.1100976108
– ident: e_1_2_14_99_1
  doi: 10.1016/j.jmb.2009.10.021
– ident: e_1_2_14_95_1
  doi: 10.1074/jbc.M608126200
– ident: e_1_2_14_15_1
  doi: 10.1042/BJ20111924
– ident: e_1_2_14_9_1
  doi: 10.1021/ja208316h
– ident: e_1_2_14_40_1
  doi: 10.1074/jbc.M114.566695
– ident: e_1_2_14_63_1
  doi: 10.1016/j.nbd.2014.05.009
– ident: e_1_2_14_17_1
  doi: 10.1146/annurev-biochem-061516-045115
– ident: e_1_2_14_74_1
  doi: 10.1101/sqb.2012.76.010637
– ident: e_1_2_14_120_1
  doi: 10.1002/ana.10795
– ident: e_1_2_14_72_1
  doi: 10.1093/brain/awt037
– ident: e_1_2_14_57_1
  doi: 10.1021/tx000101a
– ident: e_1_2_14_24_1
  doi: 10.1523/JNEUROSCI.2617-07.2007
– ident: e_1_2_14_71_1
  doi: 10.1021/ja0356176
– ident: e_1_2_14_97_1
  doi: 10.1007/s00401-013-1160-3
– ident: e_1_2_14_31_1
  doi: 10.1006/jmbi.2001.4538
– ident: e_1_2_14_14_1
  doi: 10.1016/S0304-3940(01)02514-9
– ident: e_1_2_14_93_1
  doi: 10.1212/WNL.0b013e31828727ba
– ident: e_1_2_14_102_1
  doi: 10.1186/s40478-017-0413-0
– ident: e_1_2_14_88_1
  doi: 10.3389/fimmu.2019.00080
– ident: e_1_2_14_103_1
  doi: 10.1126/science.1090278
– ident: e_1_2_14_3_1
  doi: 10.1074/jbc.M600933200
– ident: e_1_2_14_113_1
  doi: 10.1111/j.1440-1789.2007.00803.x
– ident: e_1_2_14_4_1
  doi: 10.1088/1478-3975/9/5/056005
– volume-title: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding
  year: 1999
  ident: e_1_2_14_5_1
– ident: e_1_2_14_48_1
  doi: 10.1016/j.bbrc.2016.09.109
– ident: e_1_2_14_36_1
  doi: 10.1074/jbc.M110.202937
– ident: e_1_2_14_108_1
  doi: 10.1074/jbc.M105343200
– ident: e_1_2_14_61_1
  doi: 10.1038/s41422-018-0075-x
– ident: e_1_2_14_82_1
  doi: 10.1021/ja3115696
– ident: e_1_2_14_8_1
  doi: 10.1038/ncomms3575
– ident: e_1_2_14_64_1
  doi: 10.1093/jmcb/mjr011
– ident: e_1_2_14_89_1
  doi: 10.1016/j.bpj.2012.04.050
– ident: e_1_2_14_114_1
  doi: 10.1111/j.1471-4159.2010.06638.x
– ident: e_1_2_14_73_1
  doi: 10.1074/jbc.M112.365817
– ident: e_1_2_14_47_1
  doi: 10.1074/jbc.M408906200
– ident: e_1_2_14_59_1
  doi: 10.1002/ana.23894
– ident: e_1_2_14_32_1
  doi: 10.1016/0891-5849(91)90192-6
– ident: e_1_2_14_110_1
  doi: 10.1016/S1474-4422(11)70213-7
– ident: e_1_2_14_92_1
  doi: 10.1083/jcb.201011118
– ident: e_1_2_14_45_1
  doi: 10.1042/BJ20150617
– ident: e_1_2_14_81_1
  doi: 10.1523/JNEUROSCI.5922-09.2010
– ident: e_1_2_14_118_1
  doi: 10.1016/S0014-5793(03)00367-3
SSID ssj0016461
Score 2.6666582
SecondaryResourceType review_article
Snippet This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views...
This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views...
This review article provides an overview of the different species that $\alpha$-synuclein aggregates can populate. It also attempts to reconcile conflicting...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 522
SubjectTerms alpha-Synuclein - chemistry
alpha-Synuclein - genetics
Amyloid - chemistry
Assembly
biophysics
Coalescing
Collapse
conformations
Cytotoxicity
Fibrillogenesis
fibrils
Heterogeneity
Homeostasis
Humans
Kinetics
Lewy Bodies - chemistry
Life Sciences
Lipid Peroxidation
Metals - metabolism
Models, Molecular
Movement disorders
Mutation, Missense
Neurobiology
Neurodegenerative diseases
Neurons and Cognition
Oligomers
Organic chemistry
Oxidation
Parkinson's disease
Phosphorylation
Point Mutation
propagation
Protein Aggregation, Pathological
Protein Conformation
Protein Folding
Protein Multimerization
Protein Processing, Post-Translational
Solubility
Species
Structure-Activity Relationship
Synuclein
Synucleinopathies - genetics
Synucleinopathies - metabolism
Thermodynamics
Toxicity
Title α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.14808
https://www.ncbi.nlm.nih.gov/pubmed/31254394
https://www.proquest.com/docview/2277825886
https://www.proquest.com/docview/2250629753
https://cea.hal.science/cea-02279218
Volume 150
WOSCitedRecordID wos000480000700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1471-4159
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016461
  issn: 0022-3042
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1471-4159
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016461
  issn: 0022-3042
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61BYle-Gn5CZSVQQhxIFKcOF4HTquFVUHVCiFW7C1yJg6stHWqpq3ojUfgVXgRHoInYez8iPIjIXGz4knieGbiGXvmG4BHJANxpCsMEVMTikxUYVaUWaiVLh3cXJGWbbGJ8XyulsvszQY873NhWnyIYcPNaYb_XzsF10Xzs5KT_pAt7xN9ufBK-f7VfDhBkELyASmcJLNDFfJRPP2dF9aizY8uEvJ3M_Oi1eqXndm1_xrwdbjaWZts0orHDdgwdgd2J5Y87cNz9pj5-E-_sb4DV6Z97bddWHz7-v3zl-bcOrTjlWX1evWhdjvcTNuSVS5NYN08Y5r5RM3j00NWV75NfvfTXy6f1J9W6HFbb8Ji9vLddD_sCjCE6JDBQm0M2T9looVRZRYlSqPkskJEmSTk50RGx0LHFZkoicF4zA0tuVJhIjEtIzFObsGWra25A6zKuMmkiUry-Vz5dRUbemjMC12IKtIYwJOeFTl26OSuSMY6H7wUi7mfvgAeDqRHLSTHH4mIn0O_A9HenxzkaHTegiZydcYD2OvZnXeq2-TUS1ZTqpQM4MHQTfPvTlK0NfWpo0kj6XOSA7jdisnwqoQ7fIFM0Bd5afj7GPPX86lv3P130nuwTSZbF-W2B1vES3MfLuPZyao5HsHmeKlGcOnF29niYOQV4gfR1wtS
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2VLVJ54dJySVvAIIR4aKRcHK-DeFktrBZYVgh1pb5Z3okDK20d1G2r9o1P4Ff6I3wEX8LYuYhykZB4s-JJ4tgz8cx45gzAE-KBJNIlhoiZCXnOyzCfF3mopS4c3Nw8K-piE_3pVB4c5O_X4EWbC1PjQ3QONycZ_n_tBNw5pH-WchIgUuZdpu86JzbKerD-8sNoNulOEQQXcYcWTtzZIAv5SJ725kv70ZVPLhryd1Xzsubqt57Rjf8b9E243qicbFDzyC1YM3YTtgaWzO3Dc_aU-SBQ713fhI1hWwBuC2bfLr5_-bo6tw7yeGFZtVx8rJybm2lbsNLlCixXz5lmPlvz6OSQVaVvk_G998vl4-psgR689TbMRq_2h-OwqcIQooMHC7UxpAQVqeZGFnmUSo0iFiUiijQlYycyOuE6KUlPSQ0m_djQviskpgKzIuL99A70bGXNPWBlHptcmKggw8_VYJeJoYcm8VzPeRlpDOBZuxYKG4hyVyljqTpTxaLy0xfA4470c43L8UciWtCu3yFpjwcThUarGjkxlqdxALvteqtGfleKekl1yqQUATzqumn-3XGKtqY6cTRZJHxicgB3az7pXpXGDmQg5_RFnh3-Pkb1Zjr0je1_J30IG-P9dxM1eT19uwPXSIdrwt52oUfrau7DVTw9XqyOHjQS8QMPJg4W
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxEC2FBAEXloSlIYBBCHGgpV7cHhtxGU0YBRiNIsRIuVkeLzDSxB1lkojc-AR-hR_hI_gSyu5FhEVC4ma1q7vdrqp2lV31CuAJykCRKadTrSubUkFdKuZGpIorE-Dm5pVpik0MplO-vy_21uBllwvT4EP0G25BM-L_Oii4PTTuZy1HBUJjPmT6btBKMFTLjZ1349mkP0VglOU9WjhKZ4ssFCN5upvPrUcXPoZoyN9NzfOWa1x6xtf-b9DX4WprcpJhIyM3YM36TdgaenS3D87IUxKDQOPu-iZcHnUF4LZg9u3r989fVmc-QB4vPKmXiw912OYmyhviQq7AcvWCKBKzNY9ODkjtYhud7-e_XD6uPy10BG-9CbPxq_ej3bStwpDqAA-WKmvRCDKlopYbkZVcaZYzp7VmZYnOTmZVQVXh0E4prS4GucV1l3FdMl2ZjA7KW7Dua2_vAHEit4LZzKDjF2qw88LiQ4t8rubUZUon8KzjhdQtRHmolLGUvavitYzTl8DjnvSwweX4IxEytO8PSNq7w4nUVskGOTHnp3kC2x2_Zau_K4m9aDpVnLMEHvXdOP_hOEV5W58EmipjMTE5gduNnPSvKvMAMiAoflEUh7-PUb6ZjmLj7r-TPoRLeztjOXk9fXsPrqAJ10a9bcM6stXeh4v69HixOnrQKsQPhi0NkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=alpha%24%E2%80%90synuclein+oligomers+and+fibrils%3A+a+spectrum+of+species%2C+a+spectrum+of+toxicities&rft.jtitle=Journal+of+neurochemistry&rft.au=Alam%2C+Parvez&rft.au=Bousset%2C+Luc&rft.au=Melki%2C+Ronald&rft.au=Otzen%2C+Daniel&rft.date=2019-09-01&rft.pub=Wiley&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=150&rft.issue=5&rft.spage=522&rft.epage=534&rft_id=info:doi/10.1111%2Fjnc.14808&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Acea-02279218v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon