α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities
This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α‐synuclein, while highly dynamic in the monomeric state, can access a large number o...
Uloženo v:
| Vydáno v: | Journal of neurochemistry Ročník 150; číslo 5; s. 522 - 534 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.09.2019
Wiley |
| Témata: | |
| ISSN: | 0022-3042, 1471-4159, 1471-4159 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α‐synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on‐pathway and others off‐pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson’s disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm).
This article is part of the Special Issue “Synuclein”.
This review discusses the roles of oligomers and fibrils in the molecular events underlying α‐synuclein (α‐syn) aggregation in an attempt to reconcile conflicting view on their roles in cytotoxicity. We start with a discussion of α‐syn dynamics, polymorphism, and kinetic partitioning between different aggregate species in vitro and in vivo. We provide an overview of different oligomeric species, including the co‐existence of on‐ and off‐pathway types of oligomers and the impact of chemical modifications on their formation and stabilities. Finally, we evaluate the role of oligomers and fibrils in the spread of pathology in Parkinson’s Disease, concluding that the mechanistic relationship between oligomers and fibrils still needs to be clarified and will likely remain a subject of intense investigation for some time.
This article is part of the Special Issue “Synuclein”. |
|---|---|
| AbstractList | This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α‐synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on‐pathway and others off‐pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson’s disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm).
This article is part of the Special Issue “Synuclein”.
This review discusses the roles of oligomers and fibrils in the molecular events underlying α‐synuclein (α‐syn) aggregation in an attempt to reconcile conflicting view on their roles in cytotoxicity. We start with a discussion of α‐syn dynamics, polymorphism, and kinetic partitioning between different aggregate species in vitro and in vivo. We provide an overview of different oligomeric species, including the co‐existence of on‐ and off‐pathway types of oligomers and the impact of chemical modifications on their formation and stabilities. Finally, we evaluate the role of oligomers and fibrils in the spread of pathology in Parkinson’s Disease, concluding that the mechanistic relationship between oligomers and fibrils still needs to be clarified and will likely remain a subject of intense investigation for some time.
This article is part of the Special Issue “Synuclein”. This review article provides an overview of the different species that $\alpha$-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. $\alpha$-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical inter-conversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both $in\ vitro$ and $in\ vivo$, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue "Synuclein". This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue "Synuclein".This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views regarding the cytotoxic roles of oligomers versus fibrils. α-synuclein, while highly dynamic in the monomeric state, can access a large number of different assembly states. Depending on assembly conditions, these states can interconvert over different timescales. The fibrillar state is the most thermodynamically favored due to the many stabilizing interactions formed between each monomeric unit, but different fibrillar types form at different rates. The end distribution is likely to reflect kinetic partitioning as much as thermodynamic equilibra. In addition, metastable oligomeric species, some of which are on-pathway and others off-pathway, can be populated for remarkably long periods of time. Chemical modifications (phosphorylation, oxidation, covalent links to ligands, etc.) perturb these physical interconversions and invariably destabilize the fibrillar state, leading to small prefibrillar assemblies which can coalesce into amorphous states. Both oligomeric and fibrillar species have been shown to be cytotoxic although firm conclusions require very careful evaluation of particle concentrations and is complicated by the great variety and heterogeneity of different experimentally observed states. The mechanistic relationship between oligomers and fibrils remains to be clarified, both in terms of assembly of oligomers into fibrils and potential dissolution of fibrils into oligomers. While oligomers are possibly implicated in the collapse of neuronal homeostasis, the fibrillar state(s) appears to be the most efficient at propagating itself both in vitro and in vivo, pointing to critical roles for multiple different aggregate species in the progression of Parkinson's disease (https://onlinelibrary.wiley.com/page/journal/14714159/homepage/virtual_issues.htm). This article is part of the Special Issue "Synuclein". |
| Author | Bousset, Luc Melki, Ronald Alam, Parvez Otzen, Daniel E. |
| Author_xml | – sequence: 1 givenname: Parvez surname: Alam fullname: Alam, Parvez organization: Aarhus University – sequence: 2 givenname: Luc surname: Bousset fullname: Bousset, Luc organization: Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS – sequence: 3 givenname: Ronald surname: Melki fullname: Melki, Ronald email: ronald.melki@cnrs.fr organization: Institute Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS – sequence: 4 givenname: Daniel E. orcidid: 0000-0002-2918-8989 surname: Otzen fullname: Otzen, Daniel E. email: dao@inano.au.dk organization: Aarhus University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31254394$$D View this record in MEDLINE/PubMed https://cea.hal.science/cea-02279218$$DView record in HAL |
| BookMark | eNp9kd1OFDEUxxuCgWXhwhcwk3CjiQP9mk6HO7JRkWzkBq6b0jkD3XTapZ1R985H8FV8ER_CJ7GyCyabaG9O0_M7H_3_D9CuDx4QeknwCcnndOHNCeESyx00IbwmJSdVs4smGFNaMszpPjpIaYExEVyQPbTPCK04a_gE3fz88evb97Tyo3FgfRGcvQs9xFRo3xadvY3WpbNCF2kJZohjX4Tu8W4hvd16HsJXa-yQM4foRaddgqNNnKKb9--uZxfl_OrDx9n5vDScUllqgLxIyzQH2TaYSW0EEZ0xRjBWVwyDplzTjkrGwNCagAEQ0jBhqhbzmk3Rm3Xfe-3UMtpex5UK2qqL87kyoFUWoG4okZ9JZl-v2WUMDyOkQfU2GXBOewhjUpRWWNAmj83o8Ra6CGP0-SeZqmtJKylFpl5tqPG2h_Z5_pO4f7czMaQUoXtGCFZ_jFPZOPVoXGZPt9ispB5s8EPU1v2v4ot1sPp3a3X5abau-A16qqjL |
| CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107742 crossref_primary_10_1038_s41419_021_04138_0 crossref_primary_10_1007_s12013_023_01154_z crossref_primary_10_1016_j_bbagen_2022_130151 crossref_primary_10_3390_biom12050655 crossref_primary_10_1016_j_bpc_2021_106736 crossref_primary_10_3390_ijms25031672 crossref_primary_10_1038_s41598_022_22647_6 crossref_primary_10_3389_fnsyn_2020_584536 crossref_primary_10_3389_fphar_2020_00356 crossref_primary_10_2147_DDDT_S458026 crossref_primary_10_3390_ijms222111702 crossref_primary_10_1038_s41467_022_34555_4 crossref_primary_10_1038_s41467_022_32687_1 crossref_primary_10_1002_tcr_202300282 crossref_primary_10_1002_chem_202003374 crossref_primary_10_1134_S0006297924030118 crossref_primary_10_1038_s41582_023_00905_z crossref_primary_10_1016_j_csbj_2020_05_026 crossref_primary_10_3233_JPD_201965 crossref_primary_10_1186_s40478_022_01440_6 crossref_primary_10_3389_fnagi_2025_1535310 crossref_primary_10_1016_j_abb_2023_109858 crossref_primary_10_1038_s41531_024_00747_6 crossref_primary_10_1111_bpa_13284 crossref_primary_10_1002_ange_202102408 crossref_primary_10_1021_acsnano_5c04005 crossref_primary_10_1007_s00232_020_00159_6 crossref_primary_10_3389_fneur_2022_787059 crossref_primary_10_1039_D4MD00576G crossref_primary_10_1038_s41531_022_00330_x crossref_primary_10_3390_biom11101466 crossref_primary_10_1042_EBC20220062 crossref_primary_10_1016_S0140_6736_23_01478_2 crossref_primary_10_1111_nan_12844 crossref_primary_10_1038_s42003_025_07906_2 crossref_primary_10_3390_cells13090739 crossref_primary_10_1038_s41598_022_10789_6 crossref_primary_10_3390_biology12091169 crossref_primary_10_1134_S1990519X23060093 crossref_primary_10_1007_s00018_023_04915_4 crossref_primary_10_1016_j_jbc_2021_100938 crossref_primary_10_1016_j_jmb_2020_10_023 crossref_primary_10_1016_j_nbd_2021_105527 crossref_primary_10_1007_s00018_022_04240_2 crossref_primary_10_3390_antiox10060893 crossref_primary_10_3390_cells11081261 crossref_primary_10_1016_j_jmb_2022_167775 crossref_primary_10_1038_s41467_024_50692_4 crossref_primary_10_3390_ijms24065914 crossref_primary_10_1080_0035919X_2025_2515392 crossref_primary_10_3389_fneur_2022_869103 crossref_primary_10_1038_s44321_024_00083_5 crossref_primary_10_31083_j_fbl2810266 crossref_primary_10_3389_fnins_2019_01399 crossref_primary_10_1038_s41570_021_00254_9 crossref_primary_10_1016_j_jmb_2025_169048 crossref_primary_10_3389_fcell_2020_562241 crossref_primary_10_1016_j_molliq_2024_125063 crossref_primary_10_1016_j_bbamem_2021_183776 crossref_primary_10_3389_fimmu_2021_611761 crossref_primary_10_1002_chem_202001847 crossref_primary_10_1016_j_bbamem_2020_183536 crossref_primary_10_1002_smtd_202001002 crossref_primary_10_1016_j_jbc_2022_101848 crossref_primary_10_1186_s13024_025_00797_1 crossref_primary_10_1002_ange_202014898 crossref_primary_10_1080_07391102_2020_1856721 crossref_primary_10_1038_s41467_021_26519_x crossref_primary_10_1002_pro_4686 crossref_primary_10_1016_j_bbamcr_2023_119567 crossref_primary_10_3390_cells9112495 crossref_primary_10_1016_j_ejmech_2025_117452 crossref_primary_10_1002_anie_202102408 crossref_primary_10_1016_j_str_2021_05_002 crossref_primary_10_1038_s41467_024_50825_9 crossref_primary_10_1073_pnas_2105548118 crossref_primary_10_1002_alz_70374 crossref_primary_10_1038_s42004_025_01558_3 crossref_primary_10_3390_molecules29030722 crossref_primary_10_1093_brain_awac261 crossref_primary_10_1111_ene_16206 crossref_primary_10_26599_NR_2025_94907916 crossref_primary_10_1111_jnc_14825 crossref_primary_10_1016_j_jneumeth_2020_108685 crossref_primary_10_3390_ijms25179197 crossref_primary_10_1186_s40035_022_00293_2 crossref_primary_10_3390_cells11101640 crossref_primary_10_1016_j_jmb_2023_167992 crossref_primary_10_1002_mdr2_70007 crossref_primary_10_1016_j_chemosphere_2024_143039 crossref_primary_10_1016_j_ccr_2023_215616 crossref_primary_10_1038_s41467_022_34552_7 crossref_primary_10_1371_journal_pone_0308521 crossref_primary_10_1016_j_mocell_2024_100161 crossref_primary_10_1016_j_bbi_2022_10_023 crossref_primary_10_4103_1673_5374_387987 crossref_primary_10_1080_15548627_2021_1917129 crossref_primary_10_1002_prot_26455 crossref_primary_10_1111_jnc_14955 crossref_primary_10_1002_anie_202014898 crossref_primary_10_1103_PhysRevX_15_011022 crossref_primary_10_1016_j_arr_2024_102538 crossref_primary_10_1016_j_bbagrm_2022_194825 crossref_primary_10_3390_pharmaceutics15082051 crossref_primary_10_3390_ph14090847 crossref_primary_10_1002_cbic_202300320 crossref_primary_10_1186_s12868_025_00926_y crossref_primary_10_1186_s12987_022_00334_y crossref_primary_10_3390_biom13101476 crossref_primary_10_1016_j_bbapap_2023_140943 crossref_primary_10_3390_cells11233829 crossref_primary_10_1002_pro_70296 crossref_primary_10_1371_journal_pone_0288138 crossref_primary_10_1073_pnas_2205591119 crossref_primary_10_3390_biomedicines10102649 crossref_primary_10_1016_S1474_4422_20_30136_8 crossref_primary_10_3390_life11050431 crossref_primary_10_1038_s41531_024_00841_9 crossref_primary_10_1038_s41531_024_00849_1 crossref_primary_10_1007_s40263_022_00903_7 crossref_primary_10_3390_cancers13020269 crossref_primary_10_1007_s13311_021_01161_z crossref_primary_10_1002_adhm_202002119 crossref_primary_10_3233_JPD_212594 crossref_primary_10_1007_s11307_023_01878_7 crossref_primary_10_3390_cells11111732 crossref_primary_10_3390_ijms222111455 crossref_primary_10_1016_j_ijbiomac_2022_12_134 crossref_primary_10_1016_j_ymthe_2021_04_035 crossref_primary_10_1002_brb3_1574 crossref_primary_10_1021_acschemneuro_4c00709 crossref_primary_10_1016_j_intimp_2025_114364 crossref_primary_10_1038_s41531_025_01075_z crossref_primary_10_1073_pnas_2201910120 crossref_primary_10_1016_j_ejmech_2025_117587 crossref_primary_10_1002_biof_2086 crossref_primary_10_1002_mds_29784 crossref_primary_10_3390_ijms22052240 crossref_primary_10_5607_en25016 crossref_primary_10_1016_j_nbd_2021_105482 crossref_primary_10_1111_neup_12819 crossref_primary_10_3389_fmolb_2021_745313 crossref_primary_10_3390_molecules25204647 crossref_primary_10_1016_j_ijbiomac_2025_145303 crossref_primary_10_1111_neup_12812 crossref_primary_10_1016_j_bbrc_2021_08_049 crossref_primary_10_3390_ijms241713403 crossref_primary_10_4103_1673_5374_371345 crossref_primary_10_1002_adma_202505503 crossref_primary_10_1186_s13024_022_00520_4 crossref_primary_10_3389_fmolb_2021_768004 crossref_primary_10_1038_s41467_021_23682_z crossref_primary_10_1111_jnc_15174 crossref_primary_10_1007_s12035_023_03481_x crossref_primary_10_1016_j_bpj_2019_12_019 crossref_primary_10_1016_j_neuint_2022_105422 crossref_primary_10_1042_EBC20220055 crossref_primary_10_1016_j_nbd_2022_105966 crossref_primary_10_3389_fmolb_2024_1455817 crossref_primary_10_1007_s00018_022_04166_9 crossref_primary_10_3389_fmolb_2022_959425 crossref_primary_10_3390_life11111126 crossref_primary_10_1007_s00401_021_02266_7 crossref_primary_10_1186_s13024_024_00787_9 crossref_primary_10_3390_ijms22158338 crossref_primary_10_1002_1873_3468_14263 crossref_primary_10_3390_ijms22158213 crossref_primary_10_1002_adma_202312823 crossref_primary_10_1371_journal_pgen_1009407 crossref_primary_10_1002_cbic_202100228 crossref_primary_10_3390_biom10091305 crossref_primary_10_1016_j_neulet_2019_134703 crossref_primary_10_1039_D0SC04051G crossref_primary_10_1007_s00203_023_03575_z crossref_primary_10_3390_life11111239 crossref_primary_10_3390_ijms20215312 crossref_primary_10_1007_s13311_023_01365_5 crossref_primary_10_1016_j_bpc_2024_107379 crossref_primary_10_1021_acschemneuro_5c00356 crossref_primary_10_1016_j_jbc_2021_100737 crossref_primary_10_14348_molcells_2022_0102 crossref_primary_10_1016_j_jbc_2021_100613 crossref_primary_10_1007_s40267_022_00950_6 crossref_primary_10_3389_fnagi_2020_00167 crossref_primary_10_1111_bpa_13196 crossref_primary_10_1016_j_neulet_2021_135623 crossref_primary_10_1021_acschemneuro_5c00106 crossref_primary_10_1016_j_jmb_2022_167855 crossref_primary_10_1016_j_phymed_2025_156652 crossref_primary_10_3233_JAD_200983 crossref_primary_10_3390_cells11010087 crossref_primary_10_1073_pnas_2017452118 crossref_primary_10_3390_biom12020163 crossref_primary_10_1016_j_jmb_2022_167859 crossref_primary_10_1038_s44328_025_00042_1 crossref_primary_10_1007_s11010_024_05190_y crossref_primary_10_1016_j_xpro_2024_103447 crossref_primary_10_3390_ijms241512134 crossref_primary_10_1038_s42003_020_1085_z crossref_primary_10_3389_fcell_2022_874596 crossref_primary_10_3389_fams_2022_1060489 |
| Cites_doi | 10.1126/science.1227157 10.1016/j.biocel.2009.05.008 10.1038/nsmb.3194 10.1074/jbc.M401076200 10.1021/ja411577t 10.1084/jem.20112457 10.1111/j.1749-6632.2000.tb06903.x 10.1038/s41467-018-05971-2 10.1074/jbc.M306390200 10.1038/nature14547 10.1073/pnas.1218424110 10.1016/j.brainres.2015.06.002 10.1016/j.neurobiolaging.2011.06.022 10.1126/science.aan6160 10.1073/pnas.1514475112 10.1007/s00401-017-1722-x 10.1038/nn.4529 10.1073/pnas.97.2.571 10.1007/978-1-4939-2978-8_9 10.1038/nature16531 10.1371/journal.pone.0213663 10.1103/PhysRevLett.120.208102 10.1021/bi020139h 10.1073/pnas.93.7.2696 10.1089/ars.2015.6343 10.1073/pnas.1013225108 10.1080/07391102.2003.10506918 10.1016/j.celrep.2014.09.042 10.1002/ana.24066 10.1002/ange.201200813 10.1021/bi961799n 10.1021/ja5016958 10.1038/ng0298-106 10.1016/S0022-2836(02)00735-0 10.1073/pnas.0809232106 10.1002/prot.22604 10.1007/s12035-012-8331-4 10.1074/jbc.M505307200 10.1111/j.1471-4159.2009.06324.x 10.1073/pnas.1318268110 10.1074/jbc.M114.554667 10.1074/jbc.M709634200 10.1038/nrn3820 10.1016/j.stemcr.2018.12.007 10.1002/anie.201403815 10.7554/eLife.36402 10.1038/nsmb.1437 10.1016/j.cell.2012.03.037 10.1038/nrn3406 10.1021/bi0121353 10.1039/C4MT00339J 10.3389/fnins.2016.00408 10.1523/JNEUROSCI.5368-11.2012 10.1021/bi5007833 10.1016/j.freeradbiomed.2010.11.027 10.1038/nature02261 10.1073/pnas.0908005106 10.1002/anie.201400491 10.1084/jem.20160368 10.1038/35041687 10.1038/srep24526 10.1038/nature12125 10.1172/JCI35314 10.1016/j.neuron.2011.08.033 10.1371/journal.pbio.0060006 10.1074/jbc.M110.139576 10.1038/ncb748 10.1042/bj3400821 10.1074/jbc.M113.478297 10.1126/science.276.5321.2045 10.1186/s40478-015-0257-4 10.1073/pnas.1100976108 10.1016/j.jmb.2009.10.021 10.1074/jbc.M608126200 10.1042/BJ20111924 10.1021/ja208316h 10.1074/jbc.M114.566695 10.1016/j.nbd.2014.05.009 10.1146/annurev-biochem-061516-045115 10.1101/sqb.2012.76.010637 10.1002/ana.10795 10.1093/brain/awt037 10.1021/tx000101a 10.1523/JNEUROSCI.2617-07.2007 10.1021/ja0356176 10.1007/s00401-013-1160-3 10.1006/jmbi.2001.4538 10.1016/S0304-3940(01)02514-9 10.1212/WNL.0b013e31828727ba 10.1186/s40478-017-0413-0 10.3389/fimmu.2019.00080 10.1126/science.1090278 10.1074/jbc.M600933200 10.1111/j.1440-1789.2007.00803.x 10.1088/1478-3975/9/5/056005 10.1016/j.bbrc.2016.09.109 10.1074/jbc.M110.202937 10.1074/jbc.M105343200 10.1038/s41422-018-0075-x 10.1021/ja3115696 10.1038/ncomms3575 10.1093/jmcb/mjr011 10.1016/j.bpj.2012.04.050 10.1111/j.1471-4159.2010.06638.x 10.1074/jbc.M112.365817 10.1074/jbc.M408906200 10.1002/ana.23894 10.1016/0891-5849(91)90192-6 10.1016/S1474-4422(11)70213-7 10.1083/jcb.201011118 10.1042/BJ20150617 10.1523/JNEUROSCI.5922-09.2010 10.1016/S0014-5793(03)00367-3 |
| ContentType | Journal Article |
| Copyright | 2019 International Society for Neurochemistry 2019 International Society for Neurochemistry. Copyright © 2019 International Society for Neurochemistry Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 International Society for Neurochemistry – notice: 2019 International Society for Neurochemistry. – notice: Copyright © 2019 International Society for Neurochemistry – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 1XC VOOES |
| DOI | 10.1111/jnc.14808 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1471-4159 |
| EndPage | 534 |
| ExternalDocumentID | oai:HAL:cea-02279218v1 31254394 10_1111_jnc_14808 JNC14808 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: European Union's Horizon 2020 Research funderid: 116060; 821522 – fundername: EC Joint Program on Neurodegenerative Diseases funderid: ANR-17-JPCD-0002-02; ANR-17-JPCD-0005-01 – fundername: Fondation Bettencourt Schueller – fundername: Novo Nordisk Foundation funderid: NNF17OC0028806 – fundername: Fondation pour la Recherche Médicale funderid: 20160334896 – fundername: The Fondation Simone et Cino Del Duca of the Institut de France |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM PKN 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c4228-aee125d3a4e8d9038ac616fccc6337530ea24a2f2833ec271ecee68c36c5d0473 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 229 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480000700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3042 1471-4159 |
| IngestDate | Sun Nov 02 08:50:35 EST 2025 Thu Jul 10 23:29:52 EDT 2025 Fri Jul 25 19:31:45 EDT 2025 Wed Feb 19 02:30:37 EST 2025 Sat Nov 29 06:49:42 EST 2025 Tue Nov 18 22:29:35 EST 2025 Wed Jan 22 16:39:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | conformations synuclein propagation biophysics oligomers fibrils |
| Language | English |
| License | 2019 International Society for Neurochemistry. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4228-aee125d3a4e8d9038ac616fccc6337530ea24a2f2833ec271ecee68c36c5d0473 |
| Notes | This article is part of the Special Issue “Synuclein”. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-2918-8989 0000-0002-0433-4337 |
| OpenAccessLink | https://cea.hal.science/cea-02279218 |
| PMID | 31254394 |
| PQID | 2277825886 |
| PQPubID | 31528 |
| PageCount | 13 |
| ParticipantIDs | hal_primary_oai_HAL_cea_02279218v1 proquest_miscellaneous_2250629753 proquest_journals_2277825886 pubmed_primary_31254394 crossref_primary_10_1111_jnc_14808 crossref_citationtrail_10_1111_jnc_14808 wiley_primary_10_1111_jnc_14808_JNC14808 |
| PublicationCentury | 2000 |
| PublicationDate | September 2019 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: New York |
| PublicationTitle | Journal of neurochemistry |
| PublicationTitleAlternate | J Neurochem |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | 2017; 86 2013; 4 2012; 124 1991; 11 2019; 10 2019; 12 2013; 126 1997; 276 2019; 14 2009; 111 1975 2002; 319 2012b; 209 2010; 183 2009; 119 2000a; 97 2011; 194 2001; 307 2014; 136 2018; 7 2017; 329 2000; 408 1998; 18 2012; 134 2014b; 53 2015; 1628 2000; 13 2011; 72 2010; 113 2014; 15 2013; 110 2006; 281 2010; 30 2012a; 338 2012; 102 2007; 282 2015; 522 1999; 340 2016; 10 1996; 93 2002; 4 2011; 76 2010; 285 2017; 134 2011; 3 2012; 33 2012; 32 2018; 25 1999 2018b; 28 2015; 471 2001; 276 2004; 55 2016; 6 2004; 279 2013; 73 2015; 112 2013; 80 2016; 213 2016; 24 2003; 21 2016; 23 2009; 106 2018; 120 2017; 5 2009; 41 2004; 126 2012; 287 2012; 443 2014a; 136 2013; 288 2014; 69 2011; 10 2008; 6 2014a; 53 2009; 394 1996; 35 2017; 358 2013; 14 2002; 41 2016; 479 2014; 9 2011; 286 2007; 27 2014; 289 2014; 53 2010; 78 2017; 20 2013; 47 2015; 3 2008; 15 2016; 1345 2014b; 289 2012; 149 2015; 7 2008; 283 2003; 426 2011; 108 2002; 322 2011; 50 2016; 530 2018 2013; 136 2013; 498 2013; 135 2000b; 920 2003; 302 2003; 542 2018a; 9 2012; 9 2014; 75 e_1_2_14_114_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 Cremades N. (e_1_2_14_23_1) 2017 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 Diggelen F. (e_1_2_14_27_1) 2019; 14 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 Alan F. (e_1_2_14_2_1) 1999 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 Oosawa F. (e_1_2_14_78_1) 1975 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_119_1 e_1_2_14_115_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_120_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_65_1 e_1_2_14_88_1 e_1_2_14_69_1 Oueslati A. (e_1_2_14_80_1) 2010 e_1_2_14_116_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 Ar F. (e_1_2_14_5_1) 1999 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_83_1 Kurnik M. (e_1_2_14_54_1) 2018; 25 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_117_1 Ho P. W.‐L. (e_1_2_14_46_1) 2018 e_1_2_14_113_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_29_1 e_1_2_14_9_1 e_1_2_14_106_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_118_1 |
| References_xml | – volume: 7 start-page: 395 year: 2015 end-page: 404 article-title: Insights on the interaction of alpha‐synuclein and metals in the pathophysiology of Parkinson's disease publication-title: Metallomics – volume: 209 start-page: 975 year: 2012b end-page: 986 article-title: Intracerebral inoculation of pathological alpha‐ synuclein initiates a rapidly progressive neurodegenerative α‐synucleinopathy in mice publication-title: J. Exp. Med. – volume: 282 start-page: 5862 year: 2007 end-page: 5870 article-title: Effect of 4‐hydroxy‐2‐nonenal modification on alpha‐synuclein aggregation publication-title: J. Biol. Chem. – volume: 1628 start-page: 247 year: 2015 end-page: 253 article-title: Post‐translational modification of alpha‐synuclein in Parkinson's disease publication-title: Brain Res. – volume: 136 start-page: 3859 year: 2014a end-page: 3868 article-title: The role of stable alpha‐synuclein oligomers in the molecular events underlying amyloid formation publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 4087 year: 2013 end-page: 92 article-title: Large alpha‐synuclein oligomers inhibit neuronal SNARE‐mediated vesicle docking publication-title: Proc. Natl Acad. Sci. USA – volume: 72 start-page: 57 year: 2011 end-page: 71 article-title: Exogenous alpha‐synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death publication-title: Neuron – year: 1975 – volume: 41 start-page: 10209 year: 2002 end-page: 10217 article-title: Annular alpha‐synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain‐derived membranes publication-title: Biochemistry – volume: 14 start-page: 38 year: 2013 article-title: The many faces of alpha‐synuclein: from structure and toxicity to therapeutic target publication-title: Nat. Rev. Neurosci. – volume: 14 start-page: e0213663 year: 2019 article-title: Two conformationally distinct in vitro α‐synuclein oligomers share common epitopes and the ability to impair long‐term potentiation publication-title: PLoS ONE – volume: 289 start-page: 21299 year: 2014b end-page: 21310 article-title: How epigallogatechin gallate can inhibit α‐synuclein oligomer toxicity publication-title: J. Biol. Chem. – volume: 78 start-page: 714 year: 2010 end-page: 722 article-title: Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: conformational heterogeneity of α‐synuclein publication-title: Proteins – volume: 498 start-page: E4 year: 2013 article-title: Properties of native brain alpha‐synuclein publication-title: Nature – volume: 1345 start-page: 133 year: 2016 end-page: 150 article-title: Formation and characterization of α‐synuclein oligomers publication-title: Methods Mol. Biol. – volume: 27 start-page: 494 year: 2007 end-page: 506 article-title: The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha‐synuclein aggregates publication-title: Neuropathology – volume: 10 start-page: 1015 year: 2011 end-page: 1025 article-title: Pathological roles of alpha‐synuclein in neurological disorders publication-title: Lancet Neurol. – volume: 55 start-page: 164 year: 2004 end-page: 173 article-title: The new mutation, E46K, of alpha‐synuclein causes Parkinson and Lewy body dementia publication-title: Ann. Neurol. – volume: 530 start-page: 45 year: 2016 article-title: Structural disorder of monomeric alpha‐synuclein persists in mammalian cells publication-title: Nature – volume: 279 start-page: 21966 year: 2004 end-page: 21975 article-title: Alpha‐synuclein has a high affinity for packing defects in a bilayer membrane a thermodynamics study publication-title: J. Biol. Chem. – volume: 53 start-page: 7560 year: 2014b end-page: 7563 article-title: Co‐existence of two different α‐synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry publication-title: Angew. Chem. Int. Ed Engl. – volume: 69 start-page: 134 year: 2014 end-page: 143 article-title: Immunotherapy targeting alpha‐synuclein protofibrils reduced pathology in (Thy‐1)‐h[A30P] alpha‐synuclein mice publication-title: Neurobiol. Dis. – volume: 106 start-page: 5645 year: 2009 end-page: 5650 article-title: Interplay of alpha‐synuclein binding and conformational switching probed by single‐molecule fluorescence publication-title: Proc. Natl Acad. Sci. USA – volume: 108 start-page: 3246 year: 2011 end-page: 3251 article-title: Low‐resolution structure of a vesicle disrupting alpha‐synuclein oligomer that accumulates during fibrillation publication-title: Proc. Natl Acad. Sci. USA – volume: 41 start-page: 2015 year: 2009 end-page: 2024 article-title: Alpha‐synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells publication-title: Int. J. Biochem. Cell Biol. – volume: 194 start-page: 89 year: 2011 end-page: 103 article-title: Alpha‐synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding publication-title: J. Cell. Biol. – volume: 319 start-page: 25 year: 2002 end-page: 28 article-title: Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans publication-title: Neurosci. Lett. – volume: 4 start-page: 160 year: 2002 article-title: Alpha‐Synuclein is phosphorylated in synucleinopathy lesions publication-title: Nat. Cell Biol. – volume: 102 start-page: 2894 year: 2012 end-page: 2905 article-title: Fibrillar alpha‐synuclein and huntingtin exon 1 assemblies are toxic to the cells publication-title: Biophys. J. – volume: 30 start-page: 3184 year: 2010 end-page: 3198 article-title: Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α‐synuclein oligomerization, and influences synuclein‐membrane interactions publication-title: J. Neurosci. – volume: 5 start-page: 12 year: 2017 article-title: Propagation of pathological alpha‐synuclein in marmoset brain publication-title: Acta Neuropathol. Commun. – volume: 322 start-page: 1089 year: 2002 end-page: 1102 article-title: Alpha‐synuclein, especially the Parkinson's disease‐associated mutants, forms pore‐like annular and tubular protofibrils publication-title: J. Mol. Biol. – volume: 135 start-page: 7503 year: 2013 end-page: 7510 article-title: Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils publication-title: J. Am. Chem. Soc. – volume: 286 start-page: 22262 year: 2011 end-page: 22274 article-title: Structural and morphological characterization of aggregated species of alpha‐synuclein induced by docosahexaenoic acid publication-title: J. Biol. Chem. – volume: 24 start-page: 376 year: 2016 end-page: 391 article-title: Alpha‐synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease publication-title: Antioxid. Redox Signal. – volume: 76 start-page: 91 year: 2011 end-page: 99 – volume: 283 start-page: 10992 year: 2008 end-page: 1003 article-title: Single‐particle characterization of iron‐induced pore‐forming alpha‐synuclein oligomers publication-title: J. Biol. Chem. – volume: 136 start-page: 1128 year: 2013 end-page: 1138 article-title: Prion‐like spreading of pathological alpha‐synuclein in brain publication-title: Brain – volume: 124 start-page: 8951 year: 2012 end-page: 8954 article-title: Molecular composition of sub‐ stoichiometrically labeled alpha‐synuclein oligomers determined by single‐molecule photobleaching publication-title: Angew. Chem. – volume: 10 start-page: 408 year: 2016 article-title: Alpha‐synuclein oligomers‐neurotoxic molecules in Parkinson's disease and other Lewy body disorders publication-title: Front. Neurosci. – volume: 426 start-page: 884 year: 2003 article-title: Protein folding and misfolding publication-title: Nature – volume: 522 start-page: 340 year: 2015 article-title: Alpha‐synuclein strains cause distinct synucleinopathies after local and systemic administration publication-title: Nature – volume: 20 start-page: 681 year: 2017 article-title: Alpha‐synuclein promotes dilation of the exocytotic fusion pore publication-title: Nat. Neurosci. – volume: 113 start-page: 704 year: 2010 end-page: 714 article-title: Copper binding regulates intracellular alpha‐synuclein localisation, aggregation and toxicity publication-title: J. Neurochem. – volume: 27 start-page: 9220 year: 2007 end-page: 9232 article-title: Different species of alpha‐synuclein oligomers induce calcium influx and seeding publication-title: J. Neurosci. – volume: 443 start-page: 719 year: 2012 end-page: 726 article-title: Toxic prefibrillar alpha‐synuclein amyloid oligomers adopt a distinctive antiparallel beta‐sheet structure publication-title: Biochem. J. – volume: 408 start-page: 239 year: 2000 article-title: Oxidants, oxidative stress and the biology of ageing publication-title: Nature – volume: 134 start-page: 629 year: 2017 end-page: 653 article-title: Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins publication-title: Acta Neuropathol. – volume: 281 start-page: 3463 year: 2006 end-page: 3472 article-title: Dequalinium‐induced protofibril formation of alpha‐synuclein publication-title: J. Biol. Chem. – volume: 106 start-page: 20051 year: 2009 end-page: 20056 article-title: Exogenous alpha‐synuclein fibrils seed the formation of Lewy body‐like intracellular inclusions in cultured cells publication-title: Proc. Natl Acad. Sci. USA – volume: 112 start-page: E5308 year: 2015 end-page: E5317 article-title: Evidence for alpha‐synuclein prions causing multiple system atrophy in humans with parkinsonism publication-title: Proc. Natl Acad. Sci. USA – volume: 288 start-page: 20883 year: 2013 end-page: 20895 article-title: Alpha‐synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling publication-title: J. Biol. Chem. – volume: 471 start-page: 323 year: 2015 end-page: 333 article-title: Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease publication-title: Biochem. J. – volume: 394 start-page: 826 year: 2009 end-page: 833 article-title: Tryptophan fluorescence reveals structural features of alpha‐synuclein oligomers publication-title: J. Mol. Biol. – volume: 281 start-page: 29739 year: 2006 end-page: 29752 article-title: Phosphorylation of Ser‐129 is the dominant pathological modification of alpha‐synuclein in familial and sporadic Lewy body disease publication-title: J. Biol. Chem. – volume: 338 start-page: 949 year: 2012a end-page: 953 article-title: Pathological alpha‐synuclein transmission initiates Parkinson‐like neurodegeneration in nontransgenic mice publication-title: Science – volume: 97 start-page: 571 year: 2000a end-page: 576 article-title: Acceleration of oligomerization, not fibrillization, is a shared property of both alpha‐ synuclein mutations linked to early‐onset Parkinson's disease: implications for pathogenesis and therapy publication-title: Proc. Natl Acad. Sci. USA – volume: 120 start-page: 208102 year: 2018 article-title: Hydrophobic‐Interaction‐Induced Stiffening of alpha‐Synuclein Fibril Networks publication-title: Phys. Rev. Lett. – volume: 542 start-page: 147 year: 2003 end-page: 152 article-title: Nitration inhibits fibrillation of human alpha‐synuclein in vitro by formation of soluble oligomers publication-title: FEBS Lett. – volume: 32 start-page: 3301 year: 2012 end-page: 3305 article-title: Accumulation of toxic alpha‐synuclein oligomer within endoplasmic reticulum occurs in alpha‐synucleinopathy in vivo publication-title: J. Neurosci. – volume: 110 start-page: 19555 year: 2013 end-page: 19560 article-title: Transmission of multiple system atrophy prions to transgenic mice publication-title: Proc. Natl Acad. Sci. USA – volume: 126 start-page: 555 year: 2013 end-page: 573 article-title: Transfer of human alpha‐synuclein from the olfactory bulb to interconnected brain regions in mice publication-title: Acta Neuropathol. – volume: 15 start-page: 771 year: 2014 article-title: Polyunsaturated fatty acids and their metabolites in brain function and disease publication-title: Nat. Rev. Neurosci. – volume: 276 start-page: 2045 year: 1997 end-page: 2047 article-title: Mutation in the alpha‐synuclein gene identified in families with Parkinson's disease publication-title: Science – volume: 86 start-page: 27 year: 2017 end-page: 68 article-title: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade publication-title: Annu. Rev. Biochem. – volume: 279 start-page: 47746 year: 2004 end-page: 47753 article-title: Functional consequences of alpha‐synuclein tyrosine nitration diminished binding to lipid vesicles and increased fibril formation publication-title: J. Biol. Chem. – volume: 289 start-page: 26733 year: 2014 end-page: 26742 article-title: Structural insights into amyloid oligomers of the Parkinson disease‐related protein alpha‐synuclein publication-title: J. Biol. Chem. – volume: 7 start-page: e36402 year: 2018 article-title: Cryo‐EM structure of alpha‐synuclein fibrils publication-title: Elife – volume: 358 start-page: 1440 year: 2017 end-page: 1443 article-title: Structural basis of membrane disruption and cellular toxicity by alpha‐synuclein oligomers publication-title: Science – volume: 53 start-page: 6252 year: 2014a end-page: 6263 article-title: High stability and cooperative unfolding of cytotoxic α‐synuclein oligomers publication-title: Biochemistry – volume: 287 start-page: 29301 year: 2012 end-page: 29311 article-title: Remodeling of lipid vesicles into cylindrical micelles by alpha‐ synuclein in an extended alpha helical conformation publication-title: J. Biol. Chem. – volume: 6 start-page: e6 year: 2008 article-title: Conformational equilibria in monomeric α‐synuclein at the single‐molecule level publication-title: PLoS Biol. – volume: 149 start-page: 1048 year: 2012 end-page: 1059 article-title: Direct observation of the interconversion of normal and toxic forms of α‐synuclein publication-title: Cell – volume: 302 start-page: 841 year: 2003 article-title: alpha‐Synuclein locus triplication causes Parkinson's disease publication-title: Science – volume: 80 start-page: 1062 year: 2013 end-page: 1064 article-title: A novel alpha‐synuclein missense mutation in Parkinson disease publication-title: Neurology – volume: 111 start-page: 192 year: 2009 end-page: 203 article-title: Seeding induced by alpha‐synuclein oligomers provides evidence for spreading of alpha‐synuclein pathology publication-title: J. Neurochem. – volume: 213 start-page: 1759 year: 2016 end-page: 1778 article-title: Widespread transneuronal propagation of alpha‐synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease publication-title: J. Exp. Med. – volume: 285 start-page: 32486 year: 2010 end-page: 32493 article-title: Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins publication-title: J. Biol. Chem. – volume: 9 start-page: 1135 year: 2014 end-page: 1150 article-title: A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease publication-title: Cell Rep. – volume: 119 start-page: 3257 year: 2009 end-page: 3265 article-title: Tyrosine and serine phosphorylation of alpha‐synuclein have opposing effects on neurotoxicity and soluble oligomer formation publication-title: J. Clin. Investig. – volume: 18 start-page: 106 year: 1998 article-title: AlaSOPro mutation in the gene encoding alpha‐synuclein in Parkinson's disease publication-title: Nat. Genet. – volume: 10 start-page: 80 year: 2019 article-title: Peripheral inflammation regulates CNS immune surveillance through the recruitment of inflammatory monocytes upon systemic alpha‐synuclein administration publication-title: Front. Immunol. – start-page: 1 year: 2018 end-page: 24 article-title: Age‐dependent accumulation of oligomeric SNCA/alpha‐synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone‐mediated autophagy (CMA) publication-title: Autophagy – volume: 12 start-page: 230 year: 2019 end-page: 244 article-title: Propagation of alpha‐synuclein strains within human reconstructed neuronal network publication-title: Stem Cell Rep. – volume: 9 start-page: 3609 year: 2018a article-title: Cryo‐EM of full‐length alpha‐synuclein reveals fibril polymorphs with a common structural kernel publication-title: Nat. Commun. – volume: 73 start-page: 459 year: 2013 end-page: 471 article-title: G51D alpha‐ synuclein mutation causes a novel Parkinsonian‐pyramidal syndrome publication-title: Ann. Neurol. – volume: 75 start-page: 351 year: 2014 end-page: 362 article-title: Lewy body extracts from Parkinson disease brains trigger alpha‐synuclein pathology and neurodegeneration in mice and monkeys publication-title: Ann. Neurol. – volume: 23 start-page: 409 year: 2016 end-page: 415 article-title: Solid‐state NMR structure of a pathogenic fibril of full‐length human alpha‐synuclein publication-title: Nat. Struct. Mol. Biol. – volume: 50 start-page: 428 year: 2011 end-page: 437 article-title: The lipid peroxidation products 4‐oxo‐2‐nonenal and 4‐hydroxy‐2‐nonenal promote the formation of alpha‐synuclein oligomers with distinct biochemical, morphological, and functional properties publication-title: Free Radic. Biol. Med. – volume: 108 start-page: 4194 year: 2011 end-page: 4199 article-title: In vivo demonstration that alpha‐synuclein oligomers are toxic publication-title: Proc. Natl Acad. Sci. USA – volume: 25 start-page: 1389 year: 2018 end-page: 1140 article-title: Novel α‐synuclein aggregation inhibitors, identified by HTS, mainly target the monomeric state publication-title: Chem. Biol. – volume: 6 start-page: 24526 year: 2016 article-title: Structural and functional properties of prefibrillar alpha‐synuclein oligomers publication-title: Sci. Rep. – volume: 15 start-page: 558 year: 2008 article-title: EGCG redirects amyloidogenic polypeptides into unstructured, off‐pathway oligomers publication-title: Nat. Struct. Mol. Biol. – volume: 53 start-page: 7799 year: 2014 end-page: 7804 article-title: Cold denaturation of alpha‐synuclein amyloid fibrils publication-title: Angew. Chem. Int. Ed Engl. – volume: 276 start-page: 44284 year: 2001 end-page: 44296 article-title: Metal‐triggered structural transformations, aggregation, and fibrillation of human alpha‐synuclein a possible molecular link between Parkinson's disease and heavy metal exposure publication-title: J. Biol. Chem. – volume: 136 start-page: 9962 year: 2014 end-page: 9972 article-title: Alpha‐synuclein‐induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 698 year: 2000 end-page: 702 article-title: Characterization of 4‐oxo‐2‐nonenal as a novel product of lipid peroxidation publication-title: Chem. Res. Toxicol. – volume: 4 start-page: 1 year: 2013 end-page: 13 article-title: Structural and functional characterization of two alpha‐synuclein strains publication-title: Nat. Commun. – volume: 279 start-page: 12924 year: 2004 end-page: 34 article-title: Proteasomal inhibition by alpha‐synuclein filaments and oligomers publication-title: J. Biol. Chem. – volume: 3 start-page: 239 year: 2011 end-page: 249 article-title: A novel molecular mechanism for nitrated alpha‐synuclein‐induced cell death publication-title: J. Mol. Cell Biol. – volume: 47 start-page: 613 year: 2013 end-page: 621 article-title: Alpha‐synuclein oligomers: an amyloid pore? publication-title: Mol. Neurobiol. – volume: 340 start-page: 821 year: 1999 end-page: 828 article-title: Copper (II)‐induced self‐oligomerization of α‐synuclein publication-title: Biochem. J. – volume: 28 start-page: 897 year: 2018b end-page: 903 article-title: Amyloid fibril structure of alpha‐synuclein determined by cryo‐electron microscopy publication-title: Cell Res. – volume: 307 start-page: 1061 year: 2001 end-page: 1073 article-title: Conformational properties of alpha‐synuclein in its free and lipid‐associated states publication-title: J. Mol. Biol. – volume: 479 start-page: 881 year: 2016 end-page: 886 article-title: Alpha‐synuclein activates BV2 microglia dependent on its aggregation state publication-title: Biochem. Biophys. Res. Comm. – volume: 35 start-page: 13709 year: 1996 end-page: 13715 article-title: NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded publication-title: Biochemistry – volume: 9 start-page: 056005 year: 2012 article-title: Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha‐synuclein aggregation publication-title: Phys. Biol. – volume: 21 start-page: 211 year: 2003 end-page: 234 article-title: A protein‐chameleon: conformational plasticity of alpha‐ synuclein, a disordered protein involved in neurodegenerative disorders publication-title: J. Biomol. Struct. Dyn. – volume: 41 start-page: 4595 year: 2002 end-page: 4602 article-title: Vesicle permeabilization by protofibrillar alpha‐synuclein is sensitive to Parkinson's disease‐linked mutations and occurs by a pore‐like mechanism publication-title: Biochemistry – volume: 126 start-page: 2399 year: 2004 end-page: 2408 article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha‐synuclein publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 2696 year: 1996 end-page: 2701 article-title: Immunohistochemical detection of 4‐hydroxynonenal protein adducts in Parkinson disease publication-title: Proc. Natl Acad. Sci. USA – volume: 920 start-page: 42 year: 2000b end-page: 45 article-title: Accelerated oligomerization by Parkinson's disease linked alpha‐synuclein mutants publication-title: Ann. N. Y. Acad. Sci. – volume: 33 start-page: 2225 year: 2012 end-page: 2228 article-title: Prion‐like acceleration of a synucleinopathy in a transgenic mouse model publication-title: Neurobiol. Aging – volume: 183 start-page: 115 year: 2010 end-page: 145 – volume: 134 start-page: 2613 year: 2012 end-page: 2620 article-title: Alpha‐synuclein induces both positive mean curvature and negative Gaussian curvature in membranes publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 81 year: 1991 end-page: 128 article-title: Chemistry and biochemistry of 4‐hydroxynonenal, malonaldehyde and related aldehydes publication-title: Free Radic. Biol. Med. – volume: 329 start-page: 79 year: 2017 end-page: 143 – volume: 3 start-page: 76 year: 2015 article-title: Altered machinery of protein synthesis is region‐and stage‐dependent and is associated with alpha‐synuclein oligomers in Parkinson's disease publication-title: Acta Neuropathol. Commun. – year: 1999 – ident: e_1_2_14_69_1 doi: 10.1126/science.1227157 – ident: e_1_2_14_83_1 doi: 10.1016/j.biocel.2009.05.008 – ident: e_1_2_14_106_1 doi: 10.1038/nsmb.3194 – ident: e_1_2_14_77_1 doi: 10.1074/jbc.M401076200 – ident: e_1_2_14_66_1 doi: 10.1021/ja411577t – ident: e_1_2_14_70_1 doi: 10.1084/jem.20112457 – ident: e_1_2_14_21_1 doi: 10.1111/j.1749-6632.2000.tb06903.x – ident: e_1_2_14_60_1 doi: 10.1038/s41467-018-05971-2 – ident: e_1_2_14_62_1 doi: 10.1074/jbc.M306390200 – ident: e_1_2_14_87_1 doi: 10.1038/nature14547 – ident: e_1_2_14_18_1 doi: 10.1073/pnas.1218424110 – ident: e_1_2_14_6_1 doi: 10.1016/j.brainres.2015.06.002 – ident: e_1_2_14_75_1 doi: 10.1016/j.neurobiolaging.2011.06.022 – ident: e_1_2_14_39_1 doi: 10.1126/science.aan6160 – ident: e_1_2_14_94_1 doi: 10.1073/pnas.1514475112 – ident: e_1_2_14_35_1 doi: 10.1007/s00401-017-1722-x – ident: e_1_2_14_65_1 doi: 10.1038/nn.4529 – ident: e_1_2_14_20_1 doi: 10.1073/pnas.97.2.571 – ident: e_1_2_14_86_1 doi: 10.1007/978-1-4939-2978-8_9 – ident: e_1_2_14_105_1 doi: 10.1038/nature16531 – volume: 14 start-page: e0213663 year: 2019 ident: e_1_2_14_27_1 article-title: Two conformationally distinct in vitro α‐synuclein oligomers share common epitopes and the ability to impair long‐term potentiation publication-title: PLoS ONE doi: 10.1371/journal.pone.0213663 – ident: e_1_2_14_101_1 doi: 10.1103/PhysRevLett.120.208102 – ident: e_1_2_14_28_1 doi: 10.1021/bi020139h – ident: e_1_2_14_119_1 doi: 10.1073/pnas.93.7.2696 – ident: e_1_2_14_26_1 doi: 10.1089/ars.2015.6343 – ident: e_1_2_14_42_1 doi: 10.1073/pnas.1013225108 – ident: e_1_2_14_107_1 doi: 10.1080/07391102.2003.10506918 – ident: e_1_2_14_11_1 doi: 10.1016/j.celrep.2014.09.042 – ident: e_1_2_14_96_1 doi: 10.1002/ana.24066 – ident: e_1_2_14_121_1 doi: 10.1002/ange.201200813 – ident: e_1_2_14_116_1 doi: 10.1021/bi961799n – ident: e_1_2_14_10_1 doi: 10.1021/ja5016958 – ident: e_1_2_14_53_1 doi: 10.1038/ng0298-106 – ident: e_1_2_14_55_1 doi: 10.1016/S0022-2836(02)00735-0 – ident: e_1_2_14_33_1 doi: 10.1073/pnas.0809232106 – ident: e_1_2_14_37_1 doi: 10.1002/prot.22604 – ident: e_1_2_14_104_1 doi: 10.1007/s12035-012-8331-4 – start-page: 115 volume-title: Progress in Brain Research year: 2010 ident: e_1_2_14_80_1 – ident: e_1_2_14_58_1 doi: 10.1074/jbc.M505307200 – ident: e_1_2_14_25_1 doi: 10.1111/j.1471-4159.2009.06324.x – volume: 25 start-page: 1389 year: 2018 ident: e_1_2_14_54_1 article-title: Novel α‐synuclein aggregation inhibitors, identified by HTS, mainly target the monomeric state Cell publication-title: Chem. Biol. – ident: e_1_2_14_115_1 doi: 10.1073/pnas.1318268110 – ident: e_1_2_14_67_1 doi: 10.1074/jbc.M114.554667 – ident: e_1_2_14_52_1 doi: 10.1074/jbc.M709634200 – start-page: 79 volume-title: International Review of Cell and Molecular Biology year: 2017 ident: e_1_2_14_23_1 – ident: e_1_2_14_7_1 doi: 10.1038/nrn3820 – start-page: 1 year: 2018 ident: e_1_2_14_46_1 article-title: Age‐dependent accumulation of oligomeric SNCA/alpha‐synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone‐mediated autophagy (CMA) publication-title: Autophagy – ident: e_1_2_14_43_1 doi: 10.1016/j.stemcr.2018.12.007 – ident: e_1_2_14_50_1 doi: 10.1002/anie.201403815 – ident: e_1_2_14_44_1 doi: 10.7554/eLife.36402 – volume-title: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding year: 1999 ident: e_1_2_14_2_1 – ident: e_1_2_14_30_1 doi: 10.1038/nsmb.1437 – ident: e_1_2_14_22_1 doi: 10.1016/j.cell.2012.03.037 – ident: e_1_2_14_56_1 doi: 10.1038/nrn3406 – ident: e_1_2_14_111_1 doi: 10.1021/bi0121353 – ident: e_1_2_14_13_1 doi: 10.1039/C4MT00339J – ident: e_1_2_14_51_1 doi: 10.3389/fnins.2016.00408 – ident: e_1_2_14_19_1 doi: 10.1523/JNEUROSCI.5368-11.2012 – ident: e_1_2_14_84_1 doi: 10.1021/bi5007833 – ident: e_1_2_14_76_1 doi: 10.1016/j.freeradbiomed.2010.11.027 – volume-title: Thermodynamics of the Polymerization of Protein year: 1975 ident: e_1_2_14_78_1 – ident: e_1_2_14_29_1 doi: 10.1038/nature02261 – ident: e_1_2_14_68_1 doi: 10.1073/pnas.0908005106 – ident: e_1_2_14_85_1 doi: 10.1002/anie.201400491 – ident: e_1_2_14_98_1 doi: 10.1084/jem.20160368 – ident: e_1_2_14_34_1 doi: 10.1038/35041687 – ident: e_1_2_14_90_1 doi: 10.1038/srep24526 – ident: e_1_2_14_12_1 doi: 10.1038/nature12125 – ident: e_1_2_14_16_1 doi: 10.1172/JCI35314 – ident: e_1_2_14_112_1 doi: 10.1016/j.neuron.2011.08.033 – ident: e_1_2_14_100_1 doi: 10.1371/journal.pbio.0060006 – ident: e_1_2_14_109_1 doi: 10.1074/jbc.M110.139576 – ident: e_1_2_14_38_1 doi: 10.1038/ncb748 – ident: e_1_2_14_49_1 doi: 10.1042/bj3400821 – ident: e_1_2_14_79_1 doi: 10.1074/jbc.M113.478297 – ident: e_1_2_14_91_1 doi: 10.1126/science.276.5321.2045 – ident: e_1_2_14_41_1 doi: 10.1186/s40478-015-0257-4 – ident: e_1_2_14_117_1 doi: 10.1073/pnas.1100976108 – ident: e_1_2_14_99_1 doi: 10.1016/j.jmb.2009.10.021 – ident: e_1_2_14_95_1 doi: 10.1074/jbc.M608126200 – ident: e_1_2_14_15_1 doi: 10.1042/BJ20111924 – ident: e_1_2_14_9_1 doi: 10.1021/ja208316h – ident: e_1_2_14_40_1 doi: 10.1074/jbc.M114.566695 – ident: e_1_2_14_63_1 doi: 10.1016/j.nbd.2014.05.009 – ident: e_1_2_14_17_1 doi: 10.1146/annurev-biochem-061516-045115 – ident: e_1_2_14_74_1 doi: 10.1101/sqb.2012.76.010637 – ident: e_1_2_14_120_1 doi: 10.1002/ana.10795 – ident: e_1_2_14_72_1 doi: 10.1093/brain/awt037 – ident: e_1_2_14_57_1 doi: 10.1021/tx000101a – ident: e_1_2_14_24_1 doi: 10.1523/JNEUROSCI.2617-07.2007 – ident: e_1_2_14_71_1 doi: 10.1021/ja0356176 – ident: e_1_2_14_97_1 doi: 10.1007/s00401-013-1160-3 – ident: e_1_2_14_31_1 doi: 10.1006/jmbi.2001.4538 – ident: e_1_2_14_14_1 doi: 10.1016/S0304-3940(01)02514-9 – ident: e_1_2_14_93_1 doi: 10.1212/WNL.0b013e31828727ba – ident: e_1_2_14_102_1 doi: 10.1186/s40478-017-0413-0 – ident: e_1_2_14_88_1 doi: 10.3389/fimmu.2019.00080 – ident: e_1_2_14_103_1 doi: 10.1126/science.1090278 – ident: e_1_2_14_3_1 doi: 10.1074/jbc.M600933200 – ident: e_1_2_14_113_1 doi: 10.1111/j.1440-1789.2007.00803.x – ident: e_1_2_14_4_1 doi: 10.1088/1478-3975/9/5/056005 – volume-title: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding year: 1999 ident: e_1_2_14_5_1 – ident: e_1_2_14_48_1 doi: 10.1016/j.bbrc.2016.09.109 – ident: e_1_2_14_36_1 doi: 10.1074/jbc.M110.202937 – ident: e_1_2_14_108_1 doi: 10.1074/jbc.M105343200 – ident: e_1_2_14_61_1 doi: 10.1038/s41422-018-0075-x – ident: e_1_2_14_82_1 doi: 10.1021/ja3115696 – ident: e_1_2_14_8_1 doi: 10.1038/ncomms3575 – ident: e_1_2_14_64_1 doi: 10.1093/jmcb/mjr011 – ident: e_1_2_14_89_1 doi: 10.1016/j.bpj.2012.04.050 – ident: e_1_2_14_114_1 doi: 10.1111/j.1471-4159.2010.06638.x – ident: e_1_2_14_73_1 doi: 10.1074/jbc.M112.365817 – ident: e_1_2_14_47_1 doi: 10.1074/jbc.M408906200 – ident: e_1_2_14_59_1 doi: 10.1002/ana.23894 – ident: e_1_2_14_32_1 doi: 10.1016/0891-5849(91)90192-6 – ident: e_1_2_14_110_1 doi: 10.1016/S1474-4422(11)70213-7 – ident: e_1_2_14_92_1 doi: 10.1083/jcb.201011118 – ident: e_1_2_14_45_1 doi: 10.1042/BJ20150617 – ident: e_1_2_14_81_1 doi: 10.1523/JNEUROSCI.5922-09.2010 – ident: e_1_2_14_118_1 doi: 10.1016/S0014-5793(03)00367-3 |
| SSID | ssj0016461 |
| Score | 2.6666582 |
| SecondaryResourceType | review_article |
| Snippet | This review article provides an overview of the different species that α‐synuclein aggregates can populate. It also attempts to reconcile conflicting views... This review article provides an overview of the different species that α-synuclein aggregates can populate. It also attempts to reconcile conflicting views... This review article provides an overview of the different species that $\alpha$-synuclein aggregates can populate. It also attempts to reconcile conflicting... |
| SourceID | hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 522 |
| SubjectTerms | alpha-Synuclein - chemistry alpha-Synuclein - genetics Amyloid - chemistry Assembly biophysics Coalescing Collapse conformations Cytotoxicity Fibrillogenesis fibrils Heterogeneity Homeostasis Humans Kinetics Lewy Bodies - chemistry Life Sciences Lipid Peroxidation Metals - metabolism Models, Molecular Movement disorders Mutation, Missense Neurobiology Neurodegenerative diseases Neurons and Cognition Oligomers Organic chemistry Oxidation Parkinson's disease Phosphorylation Point Mutation propagation Protein Aggregation, Pathological Protein Conformation Protein Folding Protein Multimerization Protein Processing, Post-Translational Solubility Species Structure-Activity Relationship Synuclein Synucleinopathies - genetics Synucleinopathies - metabolism Thermodynamics Toxicity |
| Title | α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.14808 https://www.ncbi.nlm.nih.gov/pubmed/31254394 https://www.proquest.com/docview/2277825886 https://www.proquest.com/docview/2250629753 https://cea.hal.science/cea-02279218 |
| Volume | 150 |
| WOSCitedRecordID | wos000480000700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1471-4159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016461 issn: 0022-3042 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1471-4159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016461 issn: 0022-3042 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61BYle-Gn5CZSVQQhxIFKcOF4HTquFVUHVCiFW7C1yJg6stHWqpq3ojUfgVXgRHoInYez8iPIjIXGz4knieGbiGXvmG4BHJANxpCsMEVMTikxUYVaUWaiVLh3cXJGWbbGJ8XyulsvszQY873NhWnyIYcPNaYb_XzsF10Xzs5KT_pAt7xN9ufBK-f7VfDhBkELyASmcJLNDFfJRPP2dF9aizY8uEvJ3M_Oi1eqXndm1_xrwdbjaWZts0orHDdgwdgd2J5Y87cNz9pj5-E-_sb4DV6Z97bddWHz7-v3zl-bcOrTjlWX1evWhdjvcTNuSVS5NYN08Y5r5RM3j00NWV75NfvfTXy6f1J9W6HFbb8Ji9vLddD_sCjCE6JDBQm0M2T9looVRZRYlSqPkskJEmSTk50RGx0LHFZkoicF4zA0tuVJhIjEtIzFObsGWra25A6zKuMmkiUry-Vz5dRUbemjMC12IKtIYwJOeFTl26OSuSMY6H7wUi7mfvgAeDqRHLSTHH4mIn0O_A9HenxzkaHTegiZydcYD2OvZnXeq2-TUS1ZTqpQM4MHQTfPvTlK0NfWpo0kj6XOSA7jdisnwqoQ7fIFM0Bd5afj7GPPX86lv3P130nuwTSZbF-W2B1vES3MfLuPZyao5HsHmeKlGcOnF29niYOQV4gfR1wtS |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2VLVJ54dJySVvAIIR4aKRcHK-DeFktrBZYVgh1pb5Z3okDK20d1G2r9o1P4Ff6I3wEX8LYuYhykZB4s-JJ4tgz8cx45gzAE-KBJNIlhoiZCXnOyzCfF3mopS4c3Nw8K-piE_3pVB4c5O_X4EWbC1PjQ3QONycZ_n_tBNw5pH-WchIgUuZdpu86JzbKerD-8sNoNulOEQQXcYcWTtzZIAv5SJ725kv70ZVPLhryd1Xzsubqt57Rjf8b9E243qicbFDzyC1YM3YTtgaWzO3Dc_aU-SBQ713fhI1hWwBuC2bfLr5_-bo6tw7yeGFZtVx8rJybm2lbsNLlCixXz5lmPlvz6OSQVaVvk_G998vl4-psgR689TbMRq_2h-OwqcIQooMHC7UxpAQVqeZGFnmUSo0iFiUiijQlYycyOuE6KUlPSQ0m_djQviskpgKzIuL99A70bGXNPWBlHptcmKggw8_VYJeJoYcm8VzPeRlpDOBZuxYKG4hyVyljqTpTxaLy0xfA4470c43L8UciWtCu3yFpjwcThUarGjkxlqdxALvteqtGfleKekl1yqQUATzqumn-3XGKtqY6cTRZJHxicgB3az7pXpXGDmQg5_RFnh3-Pkb1Zjr0je1_J30IG-P9dxM1eT19uwPXSIdrwt52oUfrau7DVTw9XqyOHjQS8QMPJg4W |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxEC2FBAEXloSlIYBBCHGgpV7cHhtxGU0YBRiNIsRIuVkeLzDSxB1lkojc-AR-hR_hI_gSyu5FhEVC4ma1q7vdrqp2lV31CuAJykCRKadTrSubUkFdKuZGpIorE-Dm5pVpik0MplO-vy_21uBllwvT4EP0G25BM-L_Oii4PTTuZy1HBUJjPmT6btBKMFTLjZ1349mkP0VglOU9WjhKZ4ssFCN5upvPrUcXPoZoyN9NzfOWa1x6xtf-b9DX4WprcpJhIyM3YM36TdgaenS3D87IUxKDQOPu-iZcHnUF4LZg9u3r989fVmc-QB4vPKmXiw912OYmyhviQq7AcvWCKBKzNY9ODkjtYhud7-e_XD6uPy10BG-9CbPxq_ej3bStwpDqAA-WKmvRCDKlopYbkZVcaZYzp7VmZYnOTmZVQVXh0E4prS4GucV1l3FdMl2ZjA7KW7Dua2_vAHEit4LZzKDjF2qw88LiQ4t8rubUZUon8KzjhdQtRHmolLGUvavitYzTl8DjnvSwweX4IxEytO8PSNq7w4nUVskGOTHnp3kC2x2_Zau_K4m9aDpVnLMEHvXdOP_hOEV5W58EmipjMTE5gduNnPSvKvMAMiAoflEUh7-PUb6ZjmLj7r-TPoRLeztjOXk9fXsPrqAJ10a9bcM6stXeh4v69HixOnrQKsQPhi0NkQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=alpha%24%E2%80%90synuclein+oligomers+and+fibrils%3A+a+spectrum+of+species%2C+a+spectrum+of+toxicities&rft.jtitle=Journal+of+neurochemistry&rft.au=Alam%2C+Parvez&rft.au=Bousset%2C+Luc&rft.au=Melki%2C+Ronald&rft.au=Otzen%2C+Daniel&rft.date=2019-09-01&rft.pub=Wiley&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=150&rft.issue=5&rft.spage=522&rft.epage=534&rft_id=info:doi/10.1111%2Fjnc.14808&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Acea-02279218v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |