A refined index of model performance: a rejoinder
Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology, forthcoming. DOI:10.1002/joc.2419.] recently suggest a refined index of model performance (dr) that they purport to be superior to other methods. Their refined inde...
Uložené v:
| Vydané v: | International journal of climatology Ročník 33; číslo 4; s. 1053 - 1056 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
30.03.2013
Wiley Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0899-8418, 1097-0088 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology, forthcoming. DOI:10.1002/joc.2419.] recently suggest a refined index of model performance (dr) that they purport to be superior to other methods. Their refined index ranges from − 1.0 to 1.0 to resemble a correlation coefficient, but it is merely a linear rescaling of our modified coefficient of efficiency (E1) over the positive portion of the domain of dr. We disagree with Willmott et al. (2012) that dr provides a better interpretation; rather, E1 is more easily interpreted such that a value of E1 = 1.0 indicates a perfect model (no errors) while E1 = 0.0 indicates a model that is no better than the baseline comparison (usually the observed mean). Negative values of E1 (and, for that matter, dr < 0.5) indicate a substantially flawed model as they simply describe a ‘level of inefficacy’ for a model that is worse than the comparison baseline. Moreover, while dr is piecewise continuous, it is not continuous through the second and higher derivatives. We explain why the coefficient of efficiency (E or E2) and its modified form (E1) are superior and preferable to many other statistics, including dr, because of intuitive interpretability and because these indices have a fundamental meaning at zero.
We also expand on the discussion begun by Garrick et al. [Garrick M, Cunnane C, Nash JE. 1978. A criterion of efficiency for rainfall‐runoff models. Journal of Hydrology 36: 375‐381.] and continued by Legates and McCabe [Legates DR, McCabe GJ. 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233‐241.] and Schaefli and Gupta [Schaefli B, Gupta HV. 2007. Do Nash values have value? Hydrological Processes 21: 2075‐2080. DOI: 10.1002/hyp.6825.]. This important discussion focuses on the appropriate baseline comparison to use, and why the observed mean often may be an inadequate choice for model evaluation and development. Copyright © 2012 Royal Meteorological Society |
|---|---|
| AbstractList | Willmott
et al.
[Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance.
International Journal of Climatology
, forthcoming. DOI:10.1002/joc.2419.] recently suggest a refined index of model performance (
d
r
) that they purport to be superior to other methods. Their refined index ranges from − 1.0 to 1.0 to resemble a correlation coefficient, but it is merely a linear rescaling of our modified coefficient of efficiency (
E
1
) over the positive portion of the domain of
d
r
. We disagree with Willmott
et al.
(
2012
) that
d
r
provides a better interpretation; rather,
E
1
is more easily interpreted such that a value of
E
1
= 1.0 indicates a perfect model (no errors) while
E
1
= 0.0 indicates a model that is no better than the baseline comparison (usually the observed mean). Negative values of
E
1
(and, for that matter,
d
r
< 0.5) indicate a substantially flawed model as they simply describe a ‘level of inefficacy’ for a model that is worse than the comparison baseline. Moreover, while
d
r
is piecewise continuous, it is not continuous through the second and higher derivatives. We explain why the coefficient of efficiency (
E
or
E
2
) and its modified form (
E
1
) are superior and preferable to many other statistics, including
d
r
, because of intuitive interpretability and because these indices have a fundamental meaning at zero.
We also expand on the discussion begun by Garrick
et al.
[Garrick M, Cunnane C, Nash JE. 1978. A criterion of efficiency for rainfall‐runoff models.
Journal of Hydrology
36
: 375‐381.] and continued by Legates and McCabe [Legates DR, McCabe GJ. 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation.
Water Resources Research
35
(1): 233‐241.] and Schaefli and Gupta [Schaefli B, Gupta HV. 2007. Do Nash values have value?
Hydrological Processes
21
: 2075‐2080. DOI: 10.1002/hyp.6825.]. This important discussion focuses on the appropriate baseline comparison to use, and why the observed mean often may be an inadequate choice for model evaluation and development. Copyright © 2012 Royal Meteorological Society Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology, forthcoming. DOI:10.1002/joc.2419.] recently suggest a refined index of model performance (dr) that they purport to be superior to other methods. Their refined index ranges from - 1.0 to 1.0 to resemble a correlation coefficient, but it is merely a linear rescaling of our modified coefficient of efficiency (E1) over the positive portion of the domain of dr. We disagree with Willmott et al. (2012) that dr provides a better interpretation; rather, E1 is more easily interpreted such that a value of E1 = 1.0 indicates a perfect model (no errors) while E1 = 0.0 indicates a model that is no better than the baseline comparison (usually the observed mean). Negative values of E1 (and, for that matter, dr < 0.5) indicate a substantially flawed model as they simply describe a 'level of inefficacy' for a model that is worse than the comparison baseline. Moreover, while dr is piecewise continuous, it is not continuous through the second and higher derivatives. We explain why the coefficient of efficiency (E or E2) and its modified form (E1) are superior and preferable to many other statistics, including dr, because of intuitive interpretability and because these indices have a fundamental meaning at zero. We also expand on the discussion begun by Garrick et al. [Garrick M, Cunnane C, Nash JE. 1978. A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36: 375-381.] and continued by Legates and McCabe [Legates DR, McCabe GJ. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.] and Schaefli and Gupta [Schaefli B, Gupta HV. 2007. Do Nash values have value? Hydrological Processes 21: 2075-2080. DOI: 10.1002/hyp.6825.]. This important discussion focuses on the appropriate baseline comparison to use, and why the observed mean often may be an inadequate choice for model evaluation and development. Copyright © 2012 Royal Meteorological Society [PUBLICATION ABSTRACT] Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology, forthcoming. DOI:10.1002/joc.2419.] recently suggest a refined index of model performance (dr) that they purport to be superior to other methods. Their refined index ranges from − 1.0 to 1.0 to resemble a correlation coefficient, but it is merely a linear rescaling of our modified coefficient of efficiency (E1) over the positive portion of the domain of dr. We disagree with Willmott et al. (2012) that dr provides a better interpretation; rather, E1 is more easily interpreted such that a value of E1 = 1.0 indicates a perfect model (no errors) while E1 = 0.0 indicates a model that is no better than the baseline comparison (usually the observed mean). Negative values of E1 (and, for that matter, dr < 0.5) indicate a substantially flawed model as they simply describe a ‘level of inefficacy’ for a model that is worse than the comparison baseline. Moreover, while dr is piecewise continuous, it is not continuous through the second and higher derivatives. We explain why the coefficient of efficiency (E or E2) and its modified form (E1) are superior and preferable to many other statistics, including dr, because of intuitive interpretability and because these indices have a fundamental meaning at zero. We also expand on the discussion begun by Garrick et al. [Garrick M, Cunnane C, Nash JE. 1978. A criterion of efficiency for rainfall‐runoff models. Journal of Hydrology 36: 375‐381.] and continued by Legates and McCabe [Legates DR, McCabe GJ. 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233‐241.] and Schaefli and Gupta [Schaefli B, Gupta HV. 2007. Do Nash values have value? Hydrological Processes 21: 2075‐2080. DOI: 10.1002/hyp.6825.]. This important discussion focuses on the appropriate baseline comparison to use, and why the observed mean often may be an inadequate choice for model evaluation and development. Copyright © 2012 Royal Meteorological Society Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology, forthcoming. DOI:10.1002/joc.2419.] recently suggest a refined index of model performance (d sub(r)) that they purport to be superior to other methods. Their refined index ranges from - 1.0 to 1.0 to resemble a correlation coefficient, but it is merely a linear rescaling of our modified coefficient of efficiency (E sub(1)) over the positive portion of the domain of d sub(r). We disagree with Willmott et al. (2012) that d sub(r) provides a better interpretation; rather, E sub(1) is more easily interpreted such that a value of E sub(1) = 1.0 indicates a perfect model (no errors) while E sub(1) = 0.0 indicates a model that is no better than the baseline comparison (usually the observed mean). Negative values of E sub(1) (and, for that matter, d sub(r) < 0.5) indicate a substantially flawed model as they simply describe a 'level of inefficacy' for a model that is worse than the comparison baseline. Moreover, while d sub(r) is piecewise continuous, it is not continuous through the second and higher derivatives. We explain why the coefficient of efficiency (E or E sub(2)) and its modified form (E sub(1)) are superior and preferable to many other statistics, including d sub(r), because of intuitive interpretability and because these indices have a fundamental meaning at zero. We also expand on the discussion begun by Garrick et al. [Garrick M, Cunnane C, Nash JE. 1978. A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36: 375-381.] and continued by Legates and McCabe [Legates DR, McCabe GJ. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.] and Schaefli and Gupta [Schaefli B, Gupta HV. 2007. Do Nash values have value? Hydrological Processes 21: 2075-2080. DOI: 10.1002/hyp.6825.]. This important discussion focuses on the appropriate baseline comparison to use, and why the observed mean often may be an inadequate choice for model evaluation and development. |
| Author | Legates, David R. McCabe, Gregory J. |
| Author_xml | – sequence: 1 givenname: David R. surname: Legates fullname: Legates, David R. email: legates@udel.edu. – sequence: 2 givenname: Gregory J. surname: McCabe fullname: McCabe, Gregory J. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27146267$$DView record in Pascal Francis |
| BookMark | eNp10F1LwzAUBuAgE9ym4E8oiOBNZ9KkTerdGH4y2I1ehzQ5hZQ2mcmG7t_buqkgenUIPDkf7wSNnHeA0DnBM4Jxdt14PaNM8CM0JrjkKcZCjNAYi7JMBSPiBE1ibDDGZUmKMSLzJEBtHZjEOgPvia-TzhtokzWE2odOOQ03iepV4wcRTtFxrdoIZ4c6RS93t8-Lh3S5un9czJepZlnGU0IV0UWeg8hpnRsQoqJKq7wyJXBOqYCKK6aZyQpjapLzqmKif4sKaJFjTafoat93HfzrFuJGdjZqaFvlwG-jJIwyTGlR0J5e_KKN3wbXbycJJUwIgSnv1eVBqahVW4f-NBvlOthOhZ3MOGFFVgxutnc6-Bj7dKS2G7Wx3m2Csq0kWA5J9zO0HJL-2fT7w1fPP2i6p2-2hd2_Tj6tFp_-A0vWjCQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3587245 crossref_primary_10_3389_ffgc_2020_00103 crossref_primary_10_1016_j_gsf_2020_05_003 crossref_primary_10_1016_j_newast_2014_08_002 crossref_primary_10_1016_j_catena_2019_02_012 crossref_primary_10_3390_pr10051013 crossref_primary_10_1007_s40808_022_01424_4 crossref_primary_10_1007_s40808_022_01489_1 crossref_primary_10_1016_j_still_2018_03_021 crossref_primary_10_1016_j_ijsrc_2020_03_018 crossref_primary_10_1007_s40808_021_01238_w crossref_primary_10_3390_w15091704 crossref_primary_10_1016_j_jhydrol_2019_02_033 crossref_primary_10_1002_er_6788 crossref_primary_10_1007_s10706_018_00777_x crossref_primary_10_1016_j_flowmeasinst_2020_101878 crossref_primary_10_1371_journal_pone_0183250 crossref_primary_10_1007_s00477_022_02177_3 crossref_primary_10_1016_j_apenergy_2020_115561 crossref_primary_10_1016_j_catena_2020_104940 crossref_primary_10_2134_agronj14_0202 crossref_primary_10_1002_rra_3823 crossref_primary_10_1007_s10666_016_9507_5 crossref_primary_10_1007_s11356_022_22601_z crossref_primary_10_3390_rs8030170 crossref_primary_10_1016_j_oceaneng_2024_117914 crossref_primary_10_1007_s11434_015_0856_2 crossref_primary_10_1016_j_envsoft_2019_104620 crossref_primary_10_3390_rs12203345 crossref_primary_10_1111_gcb_13704 crossref_primary_10_1016_j_envsoft_2015_08_012 crossref_primary_10_1016_j_landusepol_2019_104117 crossref_primary_10_1016_j_envsoft_2014_02_013 crossref_primary_10_3390_rs12050813 crossref_primary_10_1007_s00703_016_0493_6 crossref_primary_10_1007_s11069_024_06962_x crossref_primary_10_1016_j_renene_2022_12_048 crossref_primary_10_1007_s00366_021_01370_2 crossref_primary_10_1016_j_compag_2018_10_014 crossref_primary_10_1007_s13762_024_05944_7 crossref_primary_10_1109_ACCESS_2020_3039002 crossref_primary_10_1007_s00500_019_04648_2 crossref_primary_10_1007_s00704_018_2627_x crossref_primary_10_1016_j_rsase_2022_100759 crossref_primary_10_1080_15435075_2024_2319228 crossref_primary_10_1007_s40808_023_01882_4 crossref_primary_10_1007_s11629_023_8388_8 crossref_primary_10_1007_s11270_015_2406_6 crossref_primary_10_2166_hydro_2020_003 crossref_primary_10_1007_s11069_024_06472_w crossref_primary_10_1007_s12046_024_02547_3 crossref_primary_10_1016_j_jhydrol_2018_12_060 crossref_primary_10_1007_s00382_018_4101_y crossref_primary_10_1071_WF23120 crossref_primary_10_1016_j_jhydrol_2012_12_004 crossref_primary_10_5194_acp_16_6453_2016 crossref_primary_10_1016_j_jhydrol_2021_126350 crossref_primary_10_3389_fmars_2021_647437 crossref_primary_10_1007_s11063_024_11552_w crossref_primary_10_1109_ACCESS_2024_3401091 crossref_primary_10_3390_math12152376 crossref_primary_10_1007_s10661_021_09007_z crossref_primary_10_1038_s41597_022_01373_8 crossref_primary_10_5194_hess_27_1827_2023 crossref_primary_10_3390_rs12203405 crossref_primary_10_1016_j_apr_2025_102678 crossref_primary_10_1590_0034_737x2021680400 crossref_primary_10_1016_j_rser_2014_07_117 crossref_primary_10_3390_atmos13091456 crossref_primary_10_3390_rs13040554 crossref_primary_10_1007_s00704_024_05010_9 crossref_primary_10_1038_s41597_023_02777_w crossref_primary_10_1002_fes3_151 crossref_primary_10_1016_j_ecolind_2023_110551 crossref_primary_10_1016_j_rsase_2022_100779 crossref_primary_10_3390_ma15186188 crossref_primary_10_1680_jgein_23_00172 crossref_primary_10_1155_2021_8836806 crossref_primary_10_1016_j_atmosres_2020_105051 crossref_primary_10_5194_acp_16_13773_2016 crossref_primary_10_1038_srep19401 crossref_primary_10_1002_met_2030 crossref_primary_10_3390_pr9030486 crossref_primary_10_1016_j_asr_2021_04_039 crossref_primary_10_1007_s00704_017_2041_9 crossref_primary_10_1016_j_desal_2024_117849 crossref_primary_10_1016_j_foreco_2022_120347 crossref_primary_10_3390_w12030755 crossref_primary_10_1016_j_envpol_2020_115346 crossref_primary_10_1007_s11356_020_08023_9 crossref_primary_10_1007_s12517_022_10232_0 crossref_primary_10_1016_j_atmosenv_2022_119008 crossref_primary_10_2166_wcc_2023_352 crossref_primary_10_3390_coatings12010054 crossref_primary_10_1007_s11069_023_06060_4 crossref_primary_10_1007_s40808_022_01637_7 crossref_primary_10_1016_j_jhydrol_2024_130772 crossref_primary_10_1016_j_envsoft_2025_106623 crossref_primary_10_1109_ACCESS_2021_3135362 crossref_primary_10_1007_s40808_018_0463_8 crossref_primary_10_1016_j_atmosres_2021_105715 crossref_primary_10_1002_hyp_13265 crossref_primary_10_1016_j_envsoft_2019_01_005 crossref_primary_10_1016_j_jenvman_2021_113774 crossref_primary_10_1016_j_rser_2015_01_065 crossref_primary_10_1016_j_compag_2018_07_008 crossref_primary_10_1080_09715010_2020_1743208 crossref_primary_10_3390_math10234533 crossref_primary_10_1016_j_chemolab_2020_104010 crossref_primary_10_2166_nh_2021_071 crossref_primary_10_1007_s12524_021_01483_7 crossref_primary_10_3390_w14223714 crossref_primary_10_1016_j_scitotenv_2022_154722 crossref_primary_10_1016_j_renene_2017_09_078 crossref_primary_10_1007_s13344_024_0074_2 crossref_primary_10_1016_j_jglr_2012_12_007 crossref_primary_10_1007_s10661_023_12199_1 crossref_primary_10_1016_j_buildenv_2022_109268 crossref_primary_10_1016_j_enconman_2018_12_020 crossref_primary_10_1038_s41598_021_82977_9 crossref_primary_10_1061_JHYEFF_HEENG_6035 crossref_primary_10_1016_j_asr_2021_03_023 crossref_primary_10_1007_s00477_021_01969_3 crossref_primary_10_1007_s10706_020_01464_6 crossref_primary_10_1016_j_cscm_2023_e01898 crossref_primary_10_1016_j_apenergy_2017_10_076 crossref_primary_10_1016_j_still_2018_09_012 crossref_primary_10_1061__ASCE_IR_1943_4774_0001610 crossref_primary_10_2166_nh_2019_121 crossref_primary_10_1002_joc_4127 crossref_primary_10_5194_acp_18_4497_2018 crossref_primary_10_1016_j_still_2022_105346 crossref_primary_10_3390_jmse10020149 crossref_primary_10_1007_s41062_020_00382_z crossref_primary_10_1016_j_apenergy_2018_02_140 crossref_primary_10_1016_j_geoderma_2018_05_035 |
| Cites_doi | 10.1002/hyp.6825 10.3354/cr030079 10.1029/JC090iC05p08995 10.1002/joc.2419 10.1016/0022-1694(78)90155-5 10.1029/2005WR004820 10.1029/1998WR900018 10.1016/0022-1694(70)90255-6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 Royal Meteorological Society 2014 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2012 Royal Meteorological Society – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TG 7TN F1W H96 KL. L.G 7UA C1K |
| DOI | 10.1002/joc.3487 |
| DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1097-0088 |
| EndPage | 1056 |
| ExternalDocumentID | 2909605511 27146267 10_1002_joc_3487 JOC3487 |
| Genre | shortCommunication |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY BANNL CITATION O8X 31~ AANHP ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AGHNM AGQPQ ASPBG AVWKF AZFZN BDRZF DDYGU FEDTE HF~ HVGLF IQODW M62 PALCI RIWAO RJQFR SAMSI VOH XJT 7TG 7TN F1W H96 KL. L.G 7UA C1K |
| ID | FETCH-LOGICAL-c4227-13a1c655e853f5de88b3aca5bd9e77338eb7a4c4d26ddf157bb484c48be3650c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 144 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315972400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0899-8418 |
| IngestDate | Tue Oct 07 10:04:54 EDT 2025 Fri Jul 25 07:22:54 EDT 2025 Mon Jul 21 09:16:27 EDT 2025 Tue Nov 18 22:31:53 EST 2025 Sat Nov 29 02:53:13 EST 2025 Wed Jan 22 17:09:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Performance evaluation Climatology models efficiency Proxy accuracy indices model evaluation coefficient of efficiency model-performance statistics goodness-of-fit statistical analysis |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4227-13a1c655e853f5de88b3aca5bd9e77338eb7a4c4d26ddf157bb484c48be3650c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
| PQID | 1314888037 |
| PQPubID | 996368 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_1434033663 proquest_journals_1314888037 pascalfrancis_primary_27146267 crossref_citationtrail_10_1002_joc_3487 crossref_primary_10_1002_joc_3487 wiley_primary_10_1002_joc_3487_JOC3487 |
| PublicationCentury | 2000 |
| PublicationDate | 30 March 2013 |
| PublicationDateYYYYMMDD | 2013-03-30 |
| PublicationDate_xml | – month: 03 year: 2013 text: 30 March 2013 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester – name: Bognor Regis |
| PublicationTitle | International journal of climatology |
| PublicationYear | 2013 |
| Publisher | John Wiley & Sons, Ltd Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 1999; 35 2005; 30 1970; 10 1985; 90 2006; 42 1978; 36 2012 2007; 21 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_3_1 e_1_2_6_2_1 |
| References_xml | – volume: 35 start-page: 233 issue: 1 year: 1999 end-page: 241 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resources Research – volume: 42 start-page: W05302 year: 2006 article-title: Ignorance is bliss: Or seven reasons not to use uncertainty analysis publication-title: Water Resources Research – volume: 10 start-page: 282 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models, I. A discussion of principles publication-title: Journal of Hydrology – volume: 36 start-page: 375 year: 1978 end-page: 381 article-title: A criterion of efficiency for rainfall‐runoff models publication-title: Journal of Hydrology – volume: 30 start-page: 79 year: 2005 end-page: 82 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Climate Research – volume: 90 start-page: 8995 issue: C5 year: 1985 end-page: 9005 article-title: Statistics for the evaluation of model performance publication-title: Journal of Geophysical Research – year: 2012 article-title: A refined index of model performance publication-title: International Journal of Climatology – volume: 21 start-page: 2075 year: 2007 end-page: 2080 article-title: Do Nash values have value? publication-title: Hydrological Processes – ident: e_1_2_6_6_1 doi: 10.1002/hyp.6825 – ident: e_1_2_6_8_1 doi: 10.3354/cr030079 – ident: e_1_2_6_7_1 doi: 10.1029/JC090iC05p08995 – ident: e_1_2_6_9_1 doi: 10.1002/joc.2419 – ident: e_1_2_6_2_1 doi: 10.1016/0022-1694(78)90155-5 – ident: e_1_2_6_5_1 doi: 10.1029/2005WR004820 – ident: e_1_2_6_3_1 doi: 10.1029/1998WR900018 – ident: e_1_2_6_4_1 doi: 10.1016/0022-1694(70)90255-6 |
| SSID | ssj0009916 |
| Score | 2.4513764 |
| Snippet | Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology, forthcoming.... Willmott et al. [Willmott CJ, Robeson SM, Matsuura K. 2012. A refined index of model performance. International Journal of Climatology , forthcoming.... |
| SourceID | proquest pascalfrancis crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1053 |
| SubjectTerms | accuracy indices coefficient of efficiency Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models goodness‐of‐fit Meteorology model evaluation model‐performance statistics Other topics in atmospheric geophysics |
| Title | A refined index of model performance: a rejoinder |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.3487 https://www.proquest.com/docview/1314888037 https://www.proquest.com/docview/1434033663 |
| Volume | 33 |
| WOSCitedRecordID | wos000315972400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0088 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009916 issn: 0899-8418 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9EEQ7-K8EUH0qbrm0qS-yXSIeEMUfCtpksJE1rGpv9-TtNscKAg-ldCvbTjJSb6TNN8BOCySImWiZSOdShFxLkykC4x5qEmlVYIXnJmQbELe3amXl_Sh_qvSn4Wp9CHGC27eM8J47R1c58PTiWjoa2lOGNLtWZij2G15A-YuHjvPNxPJ3TQkPvX7WpHisRpJz7bo6ejZqclosa-HaJeiSmgxxTi_89Yw8XSW_1PlFViq6SY5r_rHKsy43ho0b5Epl4OwoE6OSPuti7Q1lNYhPidYTfySJUFIkZQFCdlySH9yxOCMaES9lh4x2IDnzuVT-yqq0ypEhlMqo5jp2CRCOJypC2GdUjnTRovcpk5KDFldLjU33NLE2iIWMs-5wrLKHUM-Z9gmNHplz20BocwHdImziOU0xxchITEJT6lW1Li0Cccj-2am1hz3qS_eskotmWZoksybpAkHY2S_0tn4AbM_1URjIJU43tMEAbujNstqVxxmMcOID0cp5r8xvo1O5HdGdM-VH4jhjLcYQ_bVhKPQgr9WIru-b_vr9l-BO7BAQwoNFrHWLjTeBx9uD-bN53t3ONivO-0XUmHu3A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB7sKVgQq1XpVasRRJ9Wb_Njk9Unufaw9TyLKPi2ZJMsKHJ73Kl_fyfZ3TsPLBT6tIT9dhMmmeSbhHwDcFAkRcpEx0Y6lSLiXJhIFxjzUJNKqwQvODMh2YQcDNT9ffp7Ac6auzCVPsR0w817RpivvYP7DemTmWroY2mOGfLtD7DIcRSJFix-v-nd9Weau2nIfOoPtiLFY9Voz3boSfPt3Gq0MtITNExRZbSYo5xviWtYeXqf_qvNa7BaE05yXo2QdVhww8_QvkKuXI7Dljo5JN2nBySuobQB8TnBdmJVlgQpRVIWJOTLIaPZJYNTohH1WHrEeBPuej9uuxdRnVghMpxSGcVMxyYRwuFaXQjrlMqZNlrkNnVSYtDqcqm54ZYm1haxkHnOFZZV7hgyOsO2oDUsh-4LEMp8SJc4i1hOc_wRUhKT8JRqRY1L23DUGDgzteq4T37xlFV6yTRDk2TeJG3YnyJHldLGO5jduT6aAqnEGZ8mCNhpOi2rnXGSxQxjPpynmK9j-hrdyJ-N6KErXxDDGe8whvyrDYehC__aiOzXddc_v_4rcA-WL26v-ln_5-ByGz7SkFCDRayzA63n8Yv7Bkvm9flhMt6tR_AfoTjyzA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD5YLaVQrL3RVaspFPs0dSeXSaJPsnap1m6lVPBtyOQCiuwsu9rf35PMzK4LCoU-DWG-mYSTnOQ7CfkOwKdQBM1E32VGS5FxLmxmAsY81GrplOCBM5uSTcjRSF1e6vMVOOzuwjT6EPMNt-gZab6ODu4nLuwvVEOva_uFId9-Amtc6AK9cu341_DibKG5q1Pm03iwlSmeq057tk_3u2-XVqMXEzNDw4Qmo8US5bxPXNPKM3z5X23egPWWcJKjZoS8ghU_fg29H8iV62naUid7ZHBzhcQ1ld5AfkSwnViVI0lKkdSBpHw5ZLK4ZHBADKKu64iYvoWL4dffg29Zm1ghs5xSmeXM5LYQwuNaHYTzSlXMWCMqp72UGLT6ShpuuaOFcyEXsqq4wrKqPENGZ9k7WB3XY_8eCGUxpCu8QyynFf4IKYktuKZGUet1Dz53Bi5tqzoek1_clI1eMi3RJGU0SQ8-zpGTRmnjAczOUh_NgVTijE8LBGx3nVa2zjgrc4YxH85TLNYxf41uFM9GzNjXd4jhjPcZQ_7Vg73UhY82ojz9OYjPzX8F7sKz8-NheXYy-r4Fz2nKp8Ey1t-G1dvpnf8AT-2f26vZdKcdwH8BQGPyRw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+refined+index+of+model+performance%3A+a+rejoinder&rft.jtitle=International+journal+of+climatology&rft.au=LEGATES%2C+David+R&rft.au=MCCABE%2C+Gregory+J&rft.date=2013-03-30&rft.pub=Wiley&rft.issn=0899-8418&rft.volume=33&rft.issue=4&rft.spage=1053&rft.epage=1056&rft_id=info:doi/10.1002%2Fjoc.3487&rft.externalDBID=n%2Fa&rft.externalDocID=27146267 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |