Alpaca. A Simplified and Reproducible Python‐Based Pipeline for Absolute Proteome Quantification Data Mining
ABSTRACT The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integrat...
Uložené v:
| Vydané v: | Proteomics (Weinheim) Ročník 25; číslo 9-10; s. e202400417 - n/a |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.05.2025
John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 1615-9853, 1615-9861, 1615-9861 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python‐based software tool available either as downloadable library or as web‐based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label‐free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools. |
|---|---|
| AbstractList | ABSTRACT
The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python‐based software tool available either as downloadable library or as web‐based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label‐free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools. The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python-based software tool available either as downloadable library or as web-based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label-free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools.The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python-based software tool available either as downloadable library or as web-based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label-free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools. The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute protein abundances. However, the complex nature of proteomics data analysis necessitates specialised expertise, making the integration of this data into models challenging. Therefore, the development of software tools that ease the analysis of proteomics data and bridge between disciplines is crucial for advancing the field of systems biology. We developed an open access Python‐based software tool available either as downloadable library or as web‐based graphical user interface (GUI). The pipeline simplifies the extraction and calculation of protein abundances from unprocessed proteomics data, accommodating a range of experimental approaches based on label‐free quantification. Our tool was conceived as a versatile and robust pipeline designed to ease and simplify data analysis, thereby improving reproducibility between researchers and institutions. Moreover, the robust modular structure of Alpaca allows its integration with other software tools. |
| Author | Ferrero‐Bordera, Borja Maaß, Sandra Becher, Dörte |
| AuthorAffiliation | 1 Department of Microbial Proteomics Institute of Microbiology Center of Functional Genomics of Microbes University of Greifswald Greifswald Germany 2 Institute of Medical Psychology Medical Faculty Ludwig‐Maximilians‐University Munich Munich Germany |
| AuthorAffiliation_xml | – name: 2 Institute of Medical Psychology Medical Faculty Ludwig‐Maximilians‐University Munich Munich Germany – name: 1 Department of Microbial Proteomics Institute of Microbiology Center of Functional Genomics of Microbes University of Greifswald Greifswald Germany |
| Author_xml | – sequence: 1 givenname: Borja orcidid: 0000-0002-6535-8607 surname: Ferrero‐Bordera fullname: Ferrero‐Bordera, Borja organization: Ludwig‐Maximilians‐University Munich – sequence: 2 givenname: Dörte orcidid: 0000-0002-9630-5735 surname: Becher fullname: Becher, Dörte organization: University of Greifswald – sequence: 3 givenname: Sandra orcidid: 0000-0002-6573-1088 surname: Maaß fullname: Maaß, Sandra email: sandra.maass@uni-greifswald.de organization: University of Greifswald |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285550$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi3UirYLV47IEhcuu_VHHCcntCyFVmrF8nW2HGfSunLs1E6o9sZP4DfyS_Bq2xVw4TQjzTOPZvSeoAMfPCD0gpIFJYSdDr01C0ZYQUhB5RN0TEsq5nVV0oN9L_gROknplhAqq1o-RUcFYZUQghwjv3SDNnqBl_iL7QdnOwst1r7Fn2GIoZ2MbRzg9Wa8Cf7Xj59vdcrztR3AWQ-4CxEvmxTcNGYohhFCD_jTpP2YTUaPNnj8To8aX1lv_fUzdNhpl-D5Q52hb-_Pvq7O55cfP1yslpdzUzBWzEuQUgvCSwpVwyk0tOYG6kboVkrBm1LwLn9ASVfUHApiWig7LsuKGGEE6_gMvdl5h6npoTXgx6idGqLtddyooK36e-LtjboO3xVlRGY7zYbXD4YY7iZIo-ptMuCc9hCmpDithax4XVYZffUPehum6PN_ijNWZ-FWOUMv_zxpf8tjFhlY7AATQ0oRuj1CidqGrbZhq33YeUHsFu6tg81_aLW-ulhRXouC_waogq3S |
| Cites_doi | 10.1093/bioadv/vbab041 10.1038/nprot.2017.040 10.1126/science.1069492 10.1093/BIOINFORMATICS/BTU200 10.1128/spectrum.02616‐23 10.1074/mcp.M113.037309 10.1186/s12864‐022‐09058‐7 10.1038/nature 10.1038/nmeth.3901 10.1002/pmic.201400441 10.1021/acs.analchem.9b02869 10.1038/nbt.1511 10.15252/msb.20209536 10.1016/j.jprot.2016.01.015 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley‐VCH GmbH. 2025 The Author(s). PROTEOMICS published by Wiley‐VCH GmbH. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley‐VCH GmbH. – notice: 2025 The Author(s). PROTEOMICS published by Wiley‐VCH GmbH. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.1002/pmic.202400417 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Chemistry Biology |
| EISSN | 1615-9861 |
| EndPage | n/a |
| ExternalDocumentID | PMC12076531 40285550 10_1002_pmic_202400417 PMIC13954 |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: People Programme (Marie Skłodowska‐Curie Actions) of the European Union's Horizon 2020 Programme under REA funderid: 813979 (SECRETERS) – fundername: People Programme (Marie Skłodowska-Curie Actions) of the European Union's Horizon 2020 Programme under REA grantid: 813979 (SECRETERS) – fundername: People Programme (Marie Skłodowska‐Curie Actions) of the European Union's Horizon 2020 Programme under REA grantid: 813979 (SECRETERS) |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-1 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 Y6R ZGI ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4224-6e77a50361e8b31eb193ce9b5ad7753b653f28510f493e40cde6f37680c5c52f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001476056400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-9853 1615-9861 |
| IngestDate | Tue Nov 04 02:04:32 EST 2025 Sat Nov 01 14:36:22 EDT 2025 Sat Nov 29 14:29:18 EST 2025 Sat Aug 30 02:00:30 EDT 2025 Sat Nov 29 07:08:04 EST 2025 Fri May 16 00:45:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9-10 |
| Keywords | open source proteomics data mining protein abundances Python absolute proteome quantification proteomics analysis |
| Language | English |
| License | Attribution 2025 The Author(s). PROTEOMICS published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4224-6e77a50361e8b31eb193ce9b5ad7753b653f28510f493e40cde6f37680c5c52f3 |
| Notes | This study was funded by the People Programme (Marie Skłodowska‐Curie Actions) of the European Union's Horizon 2020 Programme under REA grant agreement no. 813979 (SECRETERS). Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding: This study was funded by the People Programme (Marie Skłodowska‐Curie Actions) of the European Union's Horizon 2020 Programme under REA grant agreement no. 813979 (SECRETERS). |
| ORCID | 0000-0002-6535-8607 0000-0002-6573-1088 0000-0002-9630-5735 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.202400417 |
| PMID | 40285550 |
| PQID | 3229076765 |
| PQPubID | 1016439 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12076531 proquest_miscellaneous_3195783968 proquest_journals_3229076765 pubmed_primary_40285550 crossref_primary_10_1002_pmic_202400417 wiley_primary_10_1002_pmic_202400417_PMIC13954 |
| PublicationCentury | 2000 |
| PublicationDate | May 2025 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Proteomics (Weinheim) |
| PublicationTitleAlternate | Proteomics |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2015; 15 2019; 91 2016; 537 2002; 295 2021; 17 2017; 12 2022; 23 2008; 26 2014; 13 2024; 12 2022; 2 2016; 136 2014; 30 2016; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 |
| References_xml | – volume: 13 start-page: 731 year: 2016 end-page: 740 article-title: The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data publication-title: Nature Methods – volume: 12 start-page: 1289 year: 2017 end-page: 1294 article-title: Quantitative Proteomics: Challenges and Opportunities in Basic and Applied Research publication-title: Nature Protocols – volume: 2 year: 2022 article-title: protti: An R Package for Comprehensive Data Analysis of Peptide‐ and Protein‐Centric Bottom‐Up Proteomics Data publication-title: Bioinformatics Advances – volume: 15 start-page: 3163 year: 2015 end-page: 3168 article-title: Version 4.0 of PaxDb: Protein Abundance Data, Integrated Across Model Organisms, Tissues, and Cell‐Lines publication-title: Proteomics – volume: 136 start-page: 222 year: 2016 end-page: 233 article-title: Methods and Applications of Absolute Protein Quantification in Microbial Systems publication-title: Journal of Proteomics – volume: 12 year: 2024 article-title: From the Outer Space to the Inner Cell: Deconvoluting the Complexity of Disulfide Stress Responses by Redox State and Absolute Abundance Quantification of Extracellular, Membrane, and Cytosolic Proteins publication-title: Microbiology Spectrum – volume: 91 start-page: 11972 year: 2019 end-page: 11980 article-title: Ariadne's Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins publication-title: Analytical Chemistry – volume: 26 start-page: 1367 year: 2008 end-page: 1372 article-title: MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.‐Range Mass Accuracies and Proteome‐Wide Protein Quantification publication-title: Nature Biotechnology – volume: 23 year: 2022 article-title: amica: An Interactive and User‐Friendly Web‐Platform for the Analysis of Proteomics Data publication-title: BMC Genomics – volume: 13 start-page: 3497 year: 2014 end-page: 3506 article-title: A “Proteomic Ruler” for Protein Copy Number and Concentration Estimation Without Spike‐in Standards publication-title: Molecular & Cellular Proteomics – volume: 295 start-page: 1662 year: 2002 end-page: 1664 article-title: Systems Biology: A Brief Overview publication-title: Science – volume: 537 start-page: 347 year: 2016 end-page: 355 article-title: Mass‐Spectrometric Exploration of Proteome Structure and Function publication-title: Nature Communications – volume: 30 start-page: 2511 year: 2014 end-page: 2513 article-title: aLFQ: An R‐Package for Estimating Absolute Protein Quantities From Label‐Free LC‐MS/MS Proteomics Data publication-title: Bioinformatics – volume: 17 year: 2021 article-title: From Coarse to Fine: The Absolute Proteome Under Diverse Growth Conditions publication-title: Molecular Systems Biology – ident: e_1_2_7_12_1 doi: 10.1093/bioadv/vbab041 – ident: e_1_2_7_3_1 doi: 10.1038/nprot.2017.040 – ident: e_1_2_7_2_1 doi: 10.1126/science.1069492 – ident: e_1_2_7_13_1 doi: 10.1093/BIOINFORMATICS/BTU200 – ident: e_1_2_7_15_1 doi: 10.1128/spectrum.02616‐23 – ident: e_1_2_7_8_1 doi: 10.1074/mcp.M113.037309 – ident: e_1_2_7_11_1 doi: 10.1186/s12864‐022‐09058‐7 – ident: e_1_2_7_4_1 doi: 10.1038/nature – ident: e_1_2_7_9_1 doi: 10.1038/nmeth.3901 – ident: e_1_2_7_5_1 doi: 10.1002/pmic.201400441 – ident: e_1_2_7_7_1 doi: 10.1021/acs.analchem.9b02869 – ident: e_1_2_7_10_1 doi: 10.1038/nbt.1511 – ident: e_1_2_7_6_1 doi: 10.15252/msb.20209536 – ident: e_1_2_7_14_1 doi: 10.1016/j.jprot.2016.01.015 |
| SSID | ssj0017897 |
| Score | 2.466139 |
| Snippet | ABSTRACT
The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically,... The accurate construction of computational models in systems biology heavily relies on the availability of quantitative proteomics data, specifically, absolute... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | e202400417 |
| SubjectTerms | absolute proteome quantification Animals Availability Biology Data analysis Data mining Data Mining - methods Data processing Graphical user interface Mathematical models Modular structures open source protein abundances Proteins Proteome - analysis Proteomes Proteomics Proteomics - methods proteomics analysis Python Reproducibility Reproducibility of Results Robustness Software Technical Brief User-Computer Interface |
| Title | Alpaca. A Simplified and Reproducible Python‐Based Pipeline for Absolute Proteome Quantification Data Mining |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.202400417 https://www.ncbi.nlm.nih.gov/pubmed/40285550 https://www.proquest.com/docview/3229076765 https://www.proquest.com/docview/3195783968 https://pubmed.ncbi.nlm.nih.gov/PMC12076531 |
| Volume | 25 |
| WOSCitedRecordID | wos001476056400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1615-9861 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017897 issn: 1615-9853 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Bi0Q58NhCCZTKSAhOoevYie1jaFlxKFV4VNpbZMeOiNTNrrq7SL3xE_iN_BLGzm7YVQ8IcckltpzY8_jGHn8D8Eql0mQVTWKbMBtzrXlsBHextkZLTa2jHYnrmTg_l-OxKjZu8Xf8EP2Gm9eMYK-9gmszP_5DGjqbNJ6C0OdAcipuwy6lTHi5TnjRnyMI2ZVXQb8dK_RMa9rGYXK83X_bLd3AmjdTJjehbPBFowf__xcP4f4Kh5K8E5xHcMu1A9jPW4zBJ9fkNQmZoWHLfQB3T9ZV4QZwb4PAcB_a_BJjbv2W5ORL43PTa0S0RLeWILAPXLKNuXSkuPYMBb9-_HyHPtOSopn5W_COIGAmuQnSj408Y8R04sinpe4ymILQkFO90ORjqGPxGC5G77-efIhXFRziiiM2iDMnhE7RSVInDaPoFxSrnDKptgLjJJOlrE4Q8w1rrpjjw8q6rEaTJ4dVWqVJzZ7ATjtt3VMgtkZ3m6m6ZkpyXhuJUMVS41ylDa84j-DNegHLWUfUUXaUzEnpJ7nsJzmCw_X6liuFnZfM896LTGRpBC_71zi3_vxEt266xDZUoX1jKpMRHHTi0A-FYbhMMdqLQG4JSt_A03hvv2mbb4HOmyY4MJrCCDpJ-cvnlwXqJ-L2lD_71w7PYS_x5YtDvuYh7Cyulu4F3Km-L5r51VHQHHyKsTyC3dPPo4uz3xTxHwM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CDmnwMKDjkm2AkRA8hTWJndiPYaMaoqsKbNLeIt8iIq1ptbVIe-Mn8Bv5JTt20rBqDwiJZztxYp_Ld-zj7wC8EYyrVEdxaOLEhFRKGqqM2lAaJbmMjI0aEtdRNh7zszMxabMJ3V2Yhh-i23BzmuHttVNwtyG9_4c1dD6tHAehS4KkUXYXNijKEuvBxuHX4emoO0rIeFNhBV13KNA5rZgbB_H--hvWPdMtuHk7a_ImmvXuaPjwP_zII9hqsSjJG-F5DHds3YftvMY4fHpF3hKfHeq33fuwebCqDNeHBzdIDLehzs8x7pbvSU6-VS4_vURUS2RtCIJ7zydbqXNLJleOpeD3z18f0G8aMqnm7ia8JQiaSa68BmAnxxoxm1ryZSmbLCYvOORQLiQ59rUsnsDp8OPJwVHYVnEINUV8EKY2yyRDRxlZrpIIfYNItBWKSZNhrKRSlpQx4r5BSUVi6UAbm5Zo9vhAM83iMnkKvXpW2-dATIkuNxVlmQhOaak4whUTKWu1VFRTGsC71QoW84aso2homePCTXLRTXIAe6sFLlqlvSwSx32fpVnKAnjdNePcujMUWdvZEvtEAm1cIlIewLNGHrqhMBTnDCO-APiapHQdHJX3ektdffeU3lGMA6M5DKARlb98fjFBHUXszujOvz7wCjaPTo5HxejT-PMu3I9dOWOfv7kHvcXF0r6Ae_rHorq8eNkq0jWFaCH4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BQRQO_GwpBAoYCbWntJvEju1jaFmBKKsgqNRbZMe2iNTNrtpdpN54BJ6RJ2Hs7IauekBInG3LiT0_39jjbwDeSCZ0XidpbNLMxFQpGmtObayMVkIlxiYdiesxH4_F6aksl9mE_i1Mxw_RH7h5zQj22iu4nRl38Ic1dDZpPAehT4KkCb8JtyhDQ-vJnWnZXyRw0dVXQccdS3RNK97GYXqwPn7dL10Dm9dzJq9i2eCMRg_-w288hPtLJEqKTnQewQ3bDmCraDEKn1ySXRJyQ8Oh-wA2D1d14QZw7wqF4Ra0xRlG3WqfFORL47PTHWJaolpDENoHNtlGn1lSXnqOgl8_fr5Fr2lI2cz8O3hLEDKTQgf5x06eM2I6seTzQnU5TEFsyJGaK_IpVLJ4DCejd18P38fLGg5xTREdxLnlXDF0k4kVOkvQM8istlIzZThGSjpnmUsR9Q0dlZmlw9rY3KHRE8Oa1Sx12TZstNPWPgViHDrcXDqXSUGp0wLBikm0tbXStKY0gr3VDlazjqqj6kiZ08ovctUvcgQ7qw2ulip7UWWe-Z7nPGcRvO6bcW39DYpq7XSBfRKJFi6TuYjgSScP_VQYiAuG8V4EYk1S-g6eyHu9pW2-BULvJMWJ0RhG0InKXz6_KlFDEbkz-uxfB7yCO-XRqDr-MP74HO6mvpZxSN7cgY35-cK-gNv193lzcf4yaNFvwWMf4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpaca.+A+Simplified+and+Reproducible+Python-Based+Pipeline+for+Absolute+Proteome+Quantification+Data+Mining&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Ferrero-Bordera%2C+Borja&rft.au=Becher%2C+D%C3%B6rte&rft.au=Maa%C3%9F%2C+Sandra&rft.date=2025-05-01&rft.issn=1615-9861&rft.eissn=1615-9861&rft.volume=25&rft.issue=9-10&rft.spage=e202400417&rft_id=info:doi/10.1002%2Fpmic.202400417&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon |