Real-Time On-the-Fly Motion Planning for Urban Air Mobility via Updating Tree Data of Sampling-Based Algorithms Using Neural Network Inference

In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal location in the presence of dynamic geo-fences and uncertainties in the urban airspace. We have developed two sepa...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace Vol. 11; no. 1; p. 99
Main Authors: Lou, Junlin, Yuksek, Burak, Inalhan, Gokhan, Tsourdos, Antonios
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2024
Subjects:
ISSN:2226-4310, 2226-4310
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal location in the presence of dynamic geo-fences and uncertainties in the urban airspace. We have developed two separate approaches for this problem because designing an algorithm individually for each objective yields better performance. The first approach that we propose is a decoupled method that includes designing a policy network based on a recurrent neural network for a reinforcement learning algorithm, and then combining an online trajectory generation algorithm to obtain the minimal snap trajectory for the vehicle. Additionally, in the second approach, we propose a coupled method using a generative adversarial imitation learning algorithm for training a recurrent-neural-network-based policy network and generating the time-optimized trajectory. The simulation results show that our approaches have a short computation time when compared to other algorithms with similar performance while guaranteeing sufficient exploration of the environment. In urban air mobility operations, our approaches are able to provide real-time on-the-fly motion re-planning for vehicles, and the re-planned trajectories maintain continuity for the executed trajectory. To the best of our knowledge, we propose one of the first approaches enabling one to perform an on-the-fly update of the final landing position and to optimize the path and trajectory in real-time while keeping explorations in the environment.
AbstractList In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal location in the presence of dynamic geo-fences and uncertainties in the urban airspace. We have developed two separate approaches for this problem because designing an algorithm individually for each objective yields better performance. The first approach that we propose is a decoupled method that includes designing a policy network based on a recurrent neural network for a reinforcement learning algorithm, and then combining an online trajectory generation algorithm to obtain the minimal snap trajectory for the vehicle. Additionally, in the second approach, we propose a coupled method using a generative adversarial imitation learning algorithm for training a recurrent-neural-network-based policy network and generating the time-optimized trajectory. The simulation results show that our approaches have a short computation time when compared to other algorithms with similar performance while guaranteeing sufficient exploration of the environment. In urban air mobility operations, our approaches are able to provide real-time on-the-fly motion re-planning for vehicles, and the re-planned trajectories maintain continuity for the executed trajectory. To the best of our knowledge, we propose one of the first approaches enabling one to perform an on-the-fly update of the final landing position and to optimize the path and trajectory in real-time while keeping explorations in the environment.
Audience Academic
Author Inalhan, Gokhan
Tsourdos, Antonios
Lou, Junlin
Yuksek, Burak
Author_xml – sequence: 1
  givenname: Junlin
  orcidid: 0000-0002-8596-7979
  surname: Lou
  fullname: Lou, Junlin
– sequence: 2
  givenname: Burak
  orcidid: 0000-0001-9991-0618
  surname: Yuksek
  fullname: Yuksek, Burak
– sequence: 3
  givenname: Gokhan
  orcidid: 0000-0002-4490-8358
  surname: Inalhan
  fullname: Inalhan, Gokhan
– sequence: 4
  givenname: Antonios
  orcidid: 0000-0002-3966-7633
  surname: Tsourdos
  fullname: Tsourdos, Antonios
BookMark eNp9UV1vEzEQPKEiUUp_AG-WeL5in-_DfgyFQqRCESTPp7W9Th18dvA5RfkT_GYcghACCfthV-OZ8a7maXUWYsCqes7oFeeSvgRMcd6BRsYoo1TKR9V50zR93XJGz_7on1SX87yl5UjGBe3Oq--fEHy9chOSu1Dne6xv_IG8j9nFQD56CMGFDbExkXVSEMjCpfKqnHf5QB4ckPXOQD5yVgmRvIYMJFryGaadL2j9CmY0ZOE3Mbl8P81kPR_JH3CfwJeSv8X0hSyDxYRB47PqsQU_4-WvelGtb96srt_Vt3dvl9eL21q3Dcu1soIZZLKjnaadlVrKoew0yNb0wJQArlppBgChbK-t5LwTwPpOKS4M54JfVMuTr4mwHXfJTZAOYwQ3_gRi2oyQstMeR6tZUaPSstVtqwboDW-p6iRDxQdtiteLk9cuxa97nPO4jfsUyvhjI5noKO_6prCuTqwNFFMXbMwJdLkGJ6dLntYVfDEIKsoqAy8CdhLoEu6c0P4ek9HxGPv4T-xFM_yl0S7DMcvymfP_Uf4A_D-2qA
CitedBy_id crossref_primary_10_3390_aerospace11070598
Cites_doi 10.1016/j.paerosci.2021.100726
10.1109/DASC.2016.7778009
10.1109/IROS.2014.6942976
10.1007/s12532-020-00179-2
10.1109/ICUAS51884.2021.9476861
10.1109/LRA.2019.2931199
10.1017/CBO9780511546877
10.1016/j.asoc.2022.109660
10.1016/j.paerosci.2015.01.001
10.1162/neco.1997.9.8.1735
10.1109/ROBIO.2015.7419013
10.1109/ICRA.2013.6631299
10.2514/6.2020-1483
10.2514/6.2023-0786
10.2514/6.2021-1754
10.2514/6.2016-1374
10.1177/0278364915614386
10.1109/ICRA.2011.5980409
10.1177/0278364911406761
10.3115/v1/D14-1179
10.1109/DASC52595.2021.9594424
10.1177/0278364919890396
10.1109/IROS45743.2020.9341794
10.2514/6.2020-2919
10.1177/0278364914558129
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
7TG
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KL.
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/aerospace11010099
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2226-4310
ExternalDocumentID oai_doaj_org_article_fc1358ebc94c44b7a6d340b591eb37cd
A780870073
10_3390_aerospace11010099
GroupedDBID -~X
5VS
85S
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABPPZ
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BQN
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
LK5
M7R
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7TB
7TG
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KL.
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c421t-bf81de19505c05f9c997009794d6a1b8a3b49d7aa8bf6cf93358a165bb38d3383
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149215800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2226-4310
IngestDate Mon Nov 10 04:33:05 EST 2025
Thu Sep 11 05:41:52 EDT 2025
Tue Nov 04 18:39:31 EST 2025
Tue Nov 18 22:26:27 EST 2025
Sat Nov 29 07:10:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-bf81de19505c05f9c997009794d6a1b8a3b49d7aa8bf6cf93358a165bb38d3383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4490-8358
0000-0001-9991-0618
0000-0002-3966-7633
0000-0002-8596-7979
OpenAccessLink https://doaj.org/article/fc1358ebc94c44b7a6d340b591eb37cd
PQID 2918503562
PQPubID 2032442
ParticipantIDs doaj_primary_oai_doaj_org_article_fc1358ebc94c44b7a6d340b591eb37cd
proquest_journals_2918503562
gale_infotracacademiconefile_A780870073
crossref_primary_10_3390_aerospace11010099
crossref_citationtrail_10_3390_aerospace11010099
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Aerospace
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gammell (ref_37) 2020; 39
ref_14
ref_36
Hochreiter (ref_32) 1997; 9
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_30
Li (ref_42) 2016; 35
Zhang (ref_39) 2022; 130
ref_18
ref_16
Yu (ref_2) 2015; 74
ref_15
Wu (ref_38) 2019; 17
Stellato (ref_20) 2020; 12
Bry (ref_19) 2015; 34
Bauranov (ref_1) 2021; 125
Karaman (ref_13) 2011; 30
ref_25
ref_23
ref_22
ref_21
ref_43
Ng (ref_24) 2000; 1
ref_41
ref_40
Yuksek (ref_31) 2021; 18
ref_3
ref_29
ref_28
ref_27
ref_26
ref_8
Medsker (ref_9) 2001; 5
Chiang (ref_17) 2019; 4
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_28
– volume: 125
  start-page: 100726
  year: 2021
  ident: ref_1
  article-title: Designing airspace for urban air mobility: A review of concepts and approaches
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2021.100726
– ident: ref_30
– ident: ref_3
– ident: ref_7
  doi: 10.1109/DASC.2016.7778009
– ident: ref_34
– ident: ref_36
  doi: 10.1109/IROS.2014.6942976
– ident: ref_11
– volume: 12
  start-page: 637
  year: 2020
  ident: ref_20
  article-title: OSQP: An operator splitting solver for quadratic programs
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-020-00179-2
– ident: ref_25
  doi: 10.1109/ICUAS51884.2021.9476861
– volume: 4
  start-page: 4298
  year: 2019
  ident: ref_17
  article-title: RL-RRT: Kinodynamic motion planning via learning reachability estimators from RL policies
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2931199
– ident: ref_40
– ident: ref_8
  doi: 10.1017/CBO9780511546877
– ident: ref_23
– volume: 130
  start-page: 109660
  year: 2022
  ident: ref_39
  article-title: A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109660
– volume: 74
  start-page: 152
  year: 2015
  ident: ref_2
  article-title: Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2015.01.001
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_32
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_33
  doi: 10.1109/ROBIO.2015.7419013
– ident: ref_6
– ident: ref_29
– ident: ref_27
– ident: ref_16
  doi: 10.1109/ICRA.2013.6631299
– volume: 17
  start-page: 26
  year: 2019
  ident: ref_38
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: J. Electron. Sci. Technol.
– ident: ref_4
  doi: 10.2514/6.2020-1483
– ident: ref_26
  doi: 10.2514/6.2023-0786
– ident: ref_12
– ident: ref_10
– ident: ref_41
  doi: 10.2514/6.2021-1754
– ident: ref_43
  doi: 10.2514/6.2016-1374
– volume: 18
  start-page: 739
  year: 2021
  ident: ref_31
  article-title: Cooperative Planning for an Unmanned Combat Aerial Vehicle Fleet Using Reinforcement Learning
  publication-title: J. Aerosp. Inf. Syst.
– volume: 35
  start-page: 528
  year: 2016
  ident: ref_42
  article-title: Asymptotically optimal sampling-based kinodynamic planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364915614386
– ident: ref_18
  doi: 10.1109/ICRA.2011.5980409
– ident: ref_15
– volume: 30
  start-page: 846
  year: 2011
  ident: ref_13
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– volume: 1
  start-page: 2
  year: 2000
  ident: ref_24
  article-title: Algorithms for inverse reinforcement learning
  publication-title: Icml
– ident: ref_35
  doi: 10.3115/v1/D14-1179
– ident: ref_14
  doi: 10.1109/DASC52595.2021.9594424
– volume: 39
  start-page: 543
  year: 2020
  ident: ref_37
  article-title: Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919890396
– ident: ref_21
  doi: 10.1109/IROS45743.2020.9341794
– ident: ref_22
– volume: 5
  start-page: 64
  year: 2001
  ident: ref_9
  article-title: Recurrent neural networks
  publication-title: Des. Appl.
– ident: ref_5
  doi: 10.2514/6.2020-2919
– volume: 34
  start-page: 969
  year: 2015
  ident: ref_19
  article-title: Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914558129
SSID ssj0000913805
Score 2.249965
Snippet In this study, we consider the problem of motion planning for urban air mobility applications to generate a minimal snap trajectory and trajectory that cost...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 99
SubjectTerms Aircraft
Algorithms
Automation
Data mining
Efficiency
Flexibility
generative adversarial imitation learning
Geofences
Kinematics
Machine learning
Motion planning
Neural networks
Optimization
Planning
Real time
Recurrent neural networks
reinforcement learning
Trajectory optimization
Urban air
Urban air mobility
Vehicles
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeg44E98I1WGMgPSEhIVuM4ieMn1A0qJrFSwYrGU-SvlEolLWmYtH-Cv3l3iVNAiD3xGtvSWT7_7s65-x0hL6QUNvVpzDTnhiXWO2akiZnIVOkMmAzb8hR8fi-n0_z8XM1CefQ2pFX2mNgCdcf2jHnbAMIjt7b4Yj6KFdiZSIDxfr35zrCHFP5rDQ01bpI9JN6KBmRvdnI6-7J7c0EOzDxKu5-bAqL9kfZgiyA49WAFOXpLf5inlsX_X1jdGqDJ3f8r-j1yJziidNxpzn1yw1cPyP5v9IQPyc-P4EUyLBKhHyoGniKbrC7padv3h_bdjih4vXReG13R8bKG0Tbb9pJeLDWdb7B4Auac1d7TN7rRdF3STxqz2KsFOwIL6uh4tQDxmq_ftrTNX6DIFwKSTbsEdXrSlyQ-IvPJ27Pjdyz0b2A2iXnDTAnOsMc-s6mN0lJZpSTWjajEZZqbXAuTKCe1zk2Z2VIJkeaaZ6kxIncYOj8mg2pd-QNCFRLdy1KUBuI3k3OdS8OdcrA-kdrGQxL1x1bYQG6OPTZWBQQ5eNLFXyc9JK92SzYds8d1k49QF3YTkZS7_bCuF0W440VpOezAG6sSmyRG6syJJDKp4t4Iad2QvERNKhA6QDirQwUEbBFJuIqxzCOATwDdITnsNakImLItfinOk-uHn5LbMbhe3UPRIRk09Q__jNyyF81yWz8Pl-IKiLEfkQ
  priority: 102
  providerName: ProQuest
Title Real-Time On-the-Fly Motion Planning for Urban Air Mobility via Updating Tree Data of Sampling-Based Algorithms Using Neural Network Inference
URI https://www.proquest.com/docview/2918503562
https://doaj.org/article/fc1358ebc94c44b7a6d340b591eb37cd
Volume 11
WOSCitedRecordID wos001149215800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: P5Z
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: PCBAR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2226-4310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913805
  issn: 2226-4310
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4QCHivIQ25bKByQkJKtx7MT2cRd21UrsEpUuKlwiv1JWWrJVNq3UCz-B38zYyVaLEHDhkkNiS45nPPNNMvMNQq-EYDbzWUo0pYZw6x0xwqSE5apyBlyGjTwFn96L2UxeXKhiq9VXyAnr6IG7jTuuLGWZ9MYqbjk3QueO8cRkikIYKKwL1jcRaiuYijZYUSaTrPuNySCuP9YevA6EoR78HQ246BdHFPn6_2SVo6uZPEa7PUbEw25te-ier5-gR1vMgU_RjzMAeCTUb-APNQEQRybLWzyNLXnwphERBkCK543RNR4uGngaE2Fv8c1C4_lVqGuAMeeN9_idbjVeVfijDgnm9SUZgXNzeLi8XDWL9uu3NY6pBThQecDKZl3uOD7dVAs-Q_PJ-PztCelbKxDLU9oSUwFO9aEFbGaTrFJWKRFKOhR3uaZGama4ckJraarcVoqBDDTNM2OYdCGqfY526lXtXyCsAge9qFhlILQykmopDHXKwXwutE0HKNnsc2l73vHQ_mJZQvwRRFP-JpoBenM35aoj3fjb4FEQ3t3AwJcdb4AWlb0Wlf_SogF6HURfhlMNi7O6L06AVwz8WOVQyAQsG9jDATrcaEfZH_d1mSqAPQkDLLn_P1ZzgB6mgJ26Lz2HaKdtrv1L9MDetIt1c4Tuj8az4uwoajxcp9_HcC2yL_CkOJ0Wn38CKe8K6Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFgk48EYECuyBh4S0qt_rPXBwWqJGTUNVEtTbsi-HSMEJjinKn-Cn8BuZcewAQvTWA1d7ba3tz_PN7M58Q8hzzkMTuzhgyvc1i4yzTHMdsDARudVAGabWKfgw4MNhenYmTrbIj7YWBtMqW5tYG2o7N7hGvhcIYBYvBLpuMiiP3OobxGfLN_0D-JgvgqD3drR_yJoWAsxEgV8xnYM_5rDVaWy8OBdGCI6lCyKyifJ1qkIdCcuVSnWemByi-zhVfhJrHaYWoze478vFF4ZdqnA3t2nZcYXspImI4L_aOdnvZqebVR1U2Uy9eL19GobC21MO2A7CXwc866M_9gcB1n0C_sUGNcX1bv1vL-c2udk40zRbo_8O2XLFXXLjN4nFe-T7KXjCDAtd6LuCgbfLerMVPa57F9G2YxMFz52OS60Kmk1LOFtnDK_o-VTR8QILQGDMqHSOHqhK0XlO3yvMxC8mrAtegKXZbALTqz59XtI6B4Oi5gnMbLhOsqf9tqzyPhlfyjt6QLaLeeEeEipQrJ_nYa4hBtWpr1KufSssXB9xZYIO8VpgSNMItGOfkJmEQA2xJP_CUoe83lyyWKuTXDS4i2jbDERh8frAvJzIxk7J3PjwBE4bEZko0lwlNow8HQvf6ZAb2yGvEKsSzR9MzqimigMeEYXEZMZTDygAiKNDdlusysYuLuUvoD66-PQzcu1wdDyQg_7w6DG5HoAruV742iXbVfnVPSFXzXk1XZZPm1-Qko-XjfWfbdxwJg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYNFNgDCAlpFdtrZ70HhBLSiKglRKVBvZl9OY0UnOCYovwJfhC_jlk_AgjRWw9c7bVlrz_PN7M78w3AM86ZjmwUUOn7iobaGqq4CijritQopAxd6hR8POLjcXx6KiY78KOphXFplY1NLA21WWq3Rt4JBDKLx5CuO2mdFjEZDF-vvlDXQcrttDbtNCqIHNrNNwzf1q9GA_zWz4NgeHDy5i2tOwxQHQZ-QVWK7pp1nVAj7UWp0EJwV9kgQtOVvoolU6EwXMpYpV2dYvAfxdLvRkqx2LjgDu97BXY5w6CnBbv9g_HkeLvC4xQ3Yy-qtlIZE15HWmQ-DIUtcq7vfLM_yLDsGfAvZijpbnjrf56o23CzdrJJr_or7sCOze7Cjd-kF-_B92P0kKkrgCHvM4peMB0uNuRd2dOINJ2cCHr0ZJormZHePMezZSbxhpzPJZmuXGEIjjnJrSUDWUiyTMkH6TL0sxnto3dgSG8xw-kozj6vSZmbQZwWCj7ZuEq-J6Om3PI-TC9lQh5AK1tmdg-IcCL-PGWpwthUxb6MufKNMHh9yKUO2uA1IEl0Ldzu-ocsEgzgHK6Sv3DVhpfbS1aVaslFg_sOeduBTnC8PLDMZ0ltv5JU-_gGVmkR6jBUXHYNCz0VCd8qxrVpwwuH28SZRXw4LevqDnxFJzCW9HjsITUgobRhv8FtUtvLdfILtA8vPv0UriGak6PR-PARXA_Qw6zWw_ahVeRf7WO4qs-L-Tp_Uv-NBD5dNq5_AmVXeP8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+On-the-Fly+Motion+Planning+for+Urban+Air+Mobility+via+Updating+Tree+Data+of+Sampling-Based+Algorithms+Using+Neural+Network+Inference&rft.jtitle=Aerospace&rft.au=Junlin+Lou&rft.au=Burak+Yuksek&rft.au=Gokhan+Inalhan&rft.au=Antonios+Tsourdos&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2226-4310&rft.volume=11&rft.issue=1&rft.spage=99&rft_id=info:doi/10.3390%2Faerospace11010099&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fc1358ebc94c44b7a6d340b591eb37cd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-4310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-4310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-4310&client=summon