Multi-Objective Optimization Design of FRP Reinforced Flat Slabs under Punching Shear by Using NGBoost-Based Surrogate Model
Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and efficiency of the surrogate models, which are conventionally adopted as mechanics-driven models or numerical models. Data-driven models, such...
Uložené v:
| Vydané v: | Buildings (Basel) Ročník 13; číslo 11; s. 2727 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.11.2023
|
| Predmet: | |
| ISSN: | 2075-5309, 2075-5309 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and efficiency of the surrogate models, which are conventionally adopted as mechanics-driven models or numerical models. Data-driven models, such as machine learning models, can be instrumental in resolving intricate structural engineering issues that cannot be tackled through mechanics-driven models. This study aims to address the challenges of multi-objective optimization punching shear design of fiber-reinforced polymer (FRP) reinforced flat slabs by using a data-driven surrogate model. Firstly, this study employs an advanced machine learning model, namely Natural Gradient Boosting (NGBoost), to predict the punching shear resistance of FRP reinforced flat slabs. The comparisons with other machine learning models, design provisions and empirical theory models illustrate that the NGBoost model has higher accuracy in predicting the punching shear resistance. Additionally, the NGBoost model is explained with Shapley Additive Explanation (SHAP), revealing that the slab’s effective depth is the primary factor affecting the punching shear resistance. Then, the formulated NGBoost model is adopted as a surrogate model in conjunction with the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm for multi-objective optimization design of FRP reinforced flat slabs subjected to punching shear. Through a case study, it is demonstrated that the Pareto-optimal set of the punching shear resistance and cost of the FRP reinforced flat slabs can be successfully obtained. By discussing the effects of design parameter changes on the results, it is also shown that increasing the slab’s effective depth is a relatively effective way to achieve higher punching shear resistance of FRP reinforced flat slabs. |
|---|---|
| AbstractList | Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and efficiency of the surrogate models, which are conventionally adopted as mechanics-driven models or numerical models. Data-driven models, such as machine learning models, can be instrumental in resolving intricate structural engineering issues that cannot be tackled through mechanics-driven models. This study aims to address the challenges of multi-objective optimization punching shear design of fiber-reinforced polymer (FRP) reinforced flat slabs by using a data-driven surrogate model. Firstly, this study employs an advanced machine learning model, namely Natural Gradient Boosting (NGBoost), to predict the punching shear resistance of FRP reinforced flat slabs. The comparisons with other machine learning models, design provisions and empirical theory models illustrate that the NGBoost model has higher accuracy in predicting the punching shear resistance. Additionally, the NGBoost model is explained with Shapley Additive Explanation (SHAP), revealing that the slab’s effective depth is the primary factor affecting the punching shear resistance. Then, the formulated NGBoost model is adopted as a surrogate model in conjunction with the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm for multi-objective optimization design of FRP reinforced flat slabs subjected to punching shear. Through a case study, it is demonstrated that the Pareto-optimal set of the punching shear resistance and cost of the FRP reinforced flat slabs can be successfully obtained. By discussing the effects of design parameter changes on the results, it is also shown that increasing the slab’s effective depth is a relatively effective way to achieve higher punching shear resistance of FRP reinforced flat slabs. |
| Audience | Academic |
| Author | Shen, Yuanxie Cai, Yiqing Liang, Shixue Fei, Zhengyu |
| Author_xml | – sequence: 1 givenname: Shixue orcidid: 0000-0002-0454-4836 surname: Liang fullname: Liang, Shixue – sequence: 2 givenname: Yiqing surname: Cai fullname: Cai, Yiqing – sequence: 3 givenname: Zhengyu surname: Fei fullname: Fei, Zhengyu – sequence: 4 givenname: Yuanxie orcidid: 0000-0002-2910-284X surname: Shen fullname: Shen, Yuanxie |
| BookMark | eNp9kU1v1DAQhiNUJErpD-BmiXOKPxPn2Ba2VGrZqkvP0cQZp15l48V2kIr48ThdhBBI2AfPjOZ9ZuT3dXE0-QmL4i2jZ0I09H03u7F30xCZYIzXvH5RHHNaq1IJ2hz9Eb8qTmPc0ny04lzJ4-LH7TwmV667LZrkviFZ75Pbue-QnJ_IB4xumIi3ZHV_R-7RTdYHgz1ZjZDIZoQuknnqMZC7eTKPeQWyeUQIpHsiD3FJP19deB9TeQExyzZzCH6AhOTW9zi-KV5aGCOe_npPiofVxy-Xn8qb9dX15flNaSRnqQRJjVE8J0pBVVfaVgKg0r1qKqsNlaAkk5VmaGzuwkprDZ21DFUjOEpxUlwfuL2HbbsPbgfhqfXg2ueCD0MLITkzYls1qpF9rUUnmGQZJLCGjBKmkxptl1nvDqx98F9njKnd-jlMef2W60ZQVXO6TDw7dA2Qocu3pQAm3x53zmT3rMv187qWgmmmFgE7CEzwMQa0v9dktF1Mbv8xOWvqvzTGpWfj8jA3_kf5E3znsDo |
| CitedBy_id | crossref_primary_10_1016_j_tws_2024_112367 crossref_primary_10_1016_j_cscm_2024_e03162 crossref_primary_10_1007_s41939_024_00672_4 crossref_primary_10_18400_tjce_1497261 |
| Cites_doi | 10.1007/s11721-007-0002-0 10.1109/TMECH.2019.2903140 10.1007/s11709-021-0766-0 10.1007/3-540-45356-3_83 10.1016/S0045-7825(99)00359-X 10.1061/(ASCE)1090-0268(2003)7:3(258) 10.1038/nature14544 10.1061/JCCOF2.CCENG-4274 10.3390/polym15112483 10.1016/j.conbuildmat.2011.04.028 10.3390/buildings12101750 10.1061/(ASCE)CC.1943-5614.0000424 10.1061/(ASCE)CC.1943-5614.0000324 10.1023/A:1010933404324 10.1155/2018/5906279 10.1016/j.jobe.2023.106257 10.1061/(ASCE)1090-0268(2000)4:3(154) 10.1016/j.engfailanal.2022.106647 10.1016/j.asoc.2019.01.015 10.1016/j.compstruct.2020.113336 10.1007/BF00994018 10.1016/j.energy.2022.123676 10.1007/s10463-006-0099-8 10.1007/978-3-030-10925-7_40 10.1016/j.compstruct.2022.116446 10.1007/s00366-022-01604-x 10.1126/science.220.4598.671 10.1016/j.jspi.2013.05.012 10.1016/j.compstruct.2017.02.038 10.3390/ma16020583 10.1007/s12206-014-0509-4 10.1016/j.engstruct.2023.116739 10.1109/TCYB.2019.2950779 10.1016/j.istruc.2022.11.140 10.1016/j.compstruct.2020.113497 10.1061/(ASCE)ST.1943-541X.0003401 10.1109/TEVC.2017.2773341 10.1007/s11047-018-9685-y 10.3934/era.2022176 10.1109/WCSP.2015.7341038 10.1016/j.istruc.2022.09.110 10.1016/j.istruc.2021.05.077 10.1016/j.compstruct.2021.115060 10.1016/j.autcon.2021.103655 10.1016/j.compstruct.2009.09.013 10.1016/j.jmatprotec.2008.01.014 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
| DOI | 10.3390/buildings13112727 |
| DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2075-5309 |
| ExternalDocumentID | oai_doaj_org_article_69594d783b31418883e7aff13cb48efb A774318154 10_3390_buildings13112727 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c421t-a40cc52c4255a6768f63aa68d596f8c04a5414681ecf2c4e6888abff1e5932e43 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-5309 |
| IngestDate | Tue Oct 14 19:04:23 EDT 2025 Mon Nov 24 15:11:21 EST 2025 Tue Nov 04 18:40:53 EST 2025 Sat Nov 29 07:17:13 EST 2025 Tue Nov 18 20:56:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-a40cc52c4255a6768f63aa68d596f8c04a5414681ecf2c4e6888abff1e5932e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0454-4836 0000-0002-2910-284X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2893057204?pq-origsite=%requestingapplication% |
| PQID | 2893057204 |
| PQPubID | 2032422 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_69594d783b31418883e7aff13cb48efb proquest_journals_2893057204 gale_infotracacademiconefile_A774318154 crossref_primary_10_3390_buildings13112727 crossref_citationtrail_10_3390_buildings13112727 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Buildings (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Jin (ref_19) 2018; 22 ref_58 ref_57 ref_56 ref_55 Zhang (ref_7) 2009; 92 ref_53 Breiman (ref_52) 2001; 45 (ref_16) 2013; 17 Coello (ref_23) 2020; 53 Dawid (ref_51) 2007; 59 Liang (ref_59) 2022; 45 Wang (ref_45) 2022; 30 Lu (ref_10) 2021; 15 Eiben (ref_18) 2015; 521 Poli (ref_25) 2007; 1 Wang (ref_32) 2014; 28 ref_60 Pilakoutas (ref_14) 2003; 7 Xu (ref_20) 2019; 24 Wang (ref_49) 2019; 77 Wood (ref_8) 2003; 37 Chen (ref_47) 2022; 148 Seyyedabbasi (ref_27) 2022; 39 Li (ref_34) 2021; 259 ref_63 Onsree (ref_61) 2022; 249 ref_62 Benmokrane (ref_15) 2005; 102 ref_28 Xian (ref_1) 2022; 281 Corinna (ref_54) 1995; 20 Hassan (ref_43) 2013; 17 Kirkpatrick (ref_26) 1984; 220 ref_36 Wysmulsk (ref_4) 2017; 85 Zou (ref_11) 2021; 262 Miguel (ref_9) 2010; 107 ref_31 (ref_5) 2023; 17 Wysmulski (ref_6) 2023; 305 Liu (ref_24) 2021; 126 Sandeep (ref_38) 2023; 47 Aljidda (ref_2) 2023; 27 Sun (ref_42) 2019; 50 (ref_30) 2017; 168 Leyva (ref_29) 2018; 2018 Emmerich (ref_21) 2018; 17 Shen (ref_39) 2022; 141 ref_46 ref_44 Reason (ref_50) 2013; 143 ref_40 Ospina (ref_17) 2003; 100 Liang (ref_37) 2023; 69 ref_3 Liu (ref_35) 2008; 208 Steven (ref_33) 2000; 188 Ding (ref_48) 2023; 294 Bouguerra (ref_13) 2011; 25 Matthys (ref_12) 2000; 4 Chand (ref_22) 2015; 20 Kookalani (ref_41) 2021; 33 |
| References_xml | – volume: 1 start-page: 33 year: 2007 ident: ref_25 article-title: Particle swarm optimization publication-title: Swarm Intell-Us doi: 10.1007/s11721-007-0002-0 – volume: 24 start-page: 808 year: 2019 ident: ref_20 article-title: Optimal design of hydraulic excavator shovel attachment based on multiobjective evolutionary algorithm publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2903140 – ident: ref_55 – volume: 15 start-page: 1097 year: 2021 ident: ref_10 article-title: A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021 publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-021-0766-0 – ident: ref_28 doi: 10.1007/3-540-45356-3_83 – volume: 188 start-page: 743 year: 2000 ident: ref_33 article-title: Evolutionary structural optimisation (ESO) for combined topology and size optimisation of discrete structures publication-title: Comput. Method Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00359-X – volume: 20 start-page: 35 year: 2015 ident: ref_22 article-title: Evolutionary many-objective optimization: A quick-start guide publication-title: Surv. Oper. Res. Manag. Sci. – volume: 100 start-page: 589 year: 2003 ident: ref_17 article-title: Punching of two-way concrete slabs with fiber-reinforced polymer reinforcing bars or grids publication-title: Struct. J. – volume: 7 start-page: 258 year: 2003 ident: ref_14 article-title: Punching shear behavior of fiber reinforced polymers reinforced concrete flat slabs: Experimental study publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)1090-0268(2003)7:3(258) – volume: 521 start-page: 476 year: 2015 ident: ref_18 article-title: From evolutionary computation to the evolution of things publication-title: Nature doi: 10.1038/nature14544 – volume: 27 start-page: 4023055 year: 2023 ident: ref_2 article-title: Bond Durability of Near-Surface-Mounted BFRP and GFRP Bars in Aggressive Environments publication-title: J. Compos. Constr. doi: 10.1061/JCCOF2.CCENG-4274 – ident: ref_3 doi: 10.3390/polym15112483 – volume: 25 start-page: 3956 year: 2011 ident: ref_13 article-title: Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.04.028 – ident: ref_40 doi: 10.3390/buildings12101750 – volume: 17 start-page: 04013003 year: 2013 ident: ref_43 article-title: Punching-shear strength of normal and high-strength two-way concrete slabs reinforced with GFRP bars publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000424 – volume: 17 start-page: 2 year: 2013 ident: ref_16 article-title: Punching shear resistance of interior GFRP reinforced slab-column connections publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000324 – volume: 45 start-page: 5 year: 2001 ident: ref_52 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 2018 start-page: 5906279 year: 2018 ident: ref_29 article-title: design of reinforced concrete buildings using NSGA-II publication-title: Adv. Civ. Eng. doi: 10.1155/2018/5906279 – volume: 69 start-page: 106257 year: 2023 ident: ref_37 article-title: Symbolic machine learning improved MCFT model for punching shear resistance of FRP-reinforced concrete slabs publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.106257 – volume: 4 start-page: 154 year: 2000 ident: ref_12 article-title: Concrete slabs reinforced with FRP grids. II: Punching resistance publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)1090-0268(2000)4:3(154) – volume: 141 start-page: 106647 year: 2022 ident: ref_39 article-title: Explainable machine learning-based model for failure mode identification of RC flat slabs without transverse reinforcement publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2022.106647 – volume: 77 start-page: 188 year: 2019 ident: ref_49 article-title: Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.01.015 – ident: ref_56 – volume: 262 start-page: 113336 year: 2021 ident: ref_11 article-title: A review on FRP-concrete hybrid sections for bridge applications publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113336 – volume: 20 start-page: 273 year: 1995 ident: ref_54 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 249 start-page: 123676 year: 2022 ident: ref_61 article-title: Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass publication-title: Energy doi: 10.1016/j.energy.2022.123676 – volume: 59 start-page: 77 year: 2007 ident: ref_51 article-title: The geometry of proper scoring rules publication-title: Ann. Inst. Stat. Math. doi: 10.1007/s10463-006-0099-8 – ident: ref_58 doi: 10.1007/978-3-030-10925-7_40 – ident: ref_62 – volume: 305 start-page: 116446 year: 2023 ident: ref_6 article-title: Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.116446 – volume: 39 start-page: 2627 year: 2022 ident: ref_27 article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 17 start-page: 133 year: 2023 ident: ref_5 article-title: Failure analysis of beam composite elements subjected to three-point bending using advanced numerical damage publication-title: Acta Mech. Autom. – volume: 220 start-page: 671 year: 1984 ident: ref_26 article-title: Optimization by Simulated Annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 143 start-page: 1781 year: 2013 ident: ref_50 article-title: Contrasting probabilistic scoring rules publication-title: J. Stat. Plan. Infer. doi: 10.1016/j.jspi.2013.05.012 – ident: ref_53 – volume: 168 start-page: 498 year: 2017 ident: ref_30 article-title: Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.02.038 – ident: ref_36 doi: 10.3390/ma16020583 – volume: 37 start-page: 29 year: 2003 ident: ref_8 article-title: Pipers Row car park collapse: Identifying risk publication-title: Concrete – volume: 107 start-page: 434 year: 2010 ident: ref_9 article-title: Strengthening of flat slabs against punching shear using post-installed shear reinforcement publication-title: Aci. Struct. J. – volume: 28 start-page: 2205 year: 2014 ident: ref_32 article-title: Multi-objective optimization of drive gears for power split device using surrogate models publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-014-0509-4 – volume: 85 start-page: 35 year: 2017 ident: ref_4 article-title: The analysis of buckling and post buckling in the compressed composite columns publication-title: Arch. Mater. Sci. – volume: 294 start-page: 116739 year: 2023 ident: ref_48 article-title: Efficient seismic fragility analysis method utilizing ground motion clustering and probabilistic machine learning publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.116739 – volume: 50 start-page: 3668 year: 2019 ident: ref_42 article-title: A survey of optimization methods from a machine learning perspective publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2950779 – volume: 47 start-page: 1196 year: 2023 ident: ref_38 article-title: Shear strength prediction of reinforced concrete beams using machine learning publication-title: Structures doi: 10.1016/j.istruc.2022.11.140 – ident: ref_63 – ident: ref_44 – volume: 259 start-page: 113497 year: 2021 ident: ref_34 article-title: Evolutionary topology optimization for structures made of multiple materials with different properties in tension and compression publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113497 – volume: 148 start-page: 4022096 year: 2022 ident: ref_47 article-title: Probabilistic Machine-Learning Methods for Performance Prediction of Structure and Infrastructures through Natural Gradient Boosting publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003401 – volume: 22 start-page: 1 year: 2018 ident: ref_19 article-title: Guest editorial evolutionary many-objective optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2017.2773341 – volume: 102 start-page: 727 year: 2005 ident: ref_15 article-title: Behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer bars under concentrated loads publication-title: Aci. Struct. J. – volume: 17 start-page: 585 year: 2018 ident: ref_21 article-title: A tutorial on multiobjective optimization: Fundamentals and evolutionary methods publication-title: Nat. Comput. doi: 10.1007/s11047-018-9685-y – ident: ref_46 – volume: 30 start-page: 3452 year: 2022 ident: ref_45 article-title: An innovative approach of determining the sample data size for machine learning models: A case study on health and safety management for infrastructure workers publication-title: Electron. Res. Arch. doi: 10.3934/era.2022176 – ident: ref_31 doi: 10.1109/WCSP.2015.7341038 – volume: 45 start-page: 1333 year: 2022 ident: ref_59 article-title: Comparative study of influential factors for punching shear resistance/failure of RC slab-column joints using machine-learning models publication-title: Structures doi: 10.1016/j.istruc.2022.09.110 – volume: 33 start-page: 2066 year: 2021 ident: ref_41 article-title: Shape optimization of GFRP elastic gridshells by the weighted Lagrange ε-twin support vector machine and multi-objective particle swarm optimization algorithm considering structural weight publication-title: Structures doi: 10.1016/j.istruc.2021.05.077 – volume: 281 start-page: 115060 year: 2022 ident: ref_1 article-title: Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.115060 – volume: 53 start-page: 1 year: 2020 ident: ref_23 article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey publication-title: ACM Comput. Surv. – ident: ref_60 – ident: ref_57 – volume: 126 start-page: 103655 year: 2021 ident: ref_24 article-title: Automatic and optimal rebar layout in reinforced concrete structure by decomposed optimization algorithms publication-title: Automat. Constr. doi: 10.1016/j.autcon.2021.103655 – volume: 92 start-page: 730 year: 2009 ident: ref_7 article-title: A new shear-flexible FRP-reinforced concrete slab element publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2009.09.013 – volume: 208 start-page: 499 year: 2008 ident: ref_35 article-title: Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm publication-title: J. Mater. Process. Tech. doi: 10.1016/j.jmatprotec.2008.01.014 |
| SSID | ssj0000852254 |
| Score | 2.2758896 |
| Snippet | Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2727 |
| SubjectTerms | Algorithms Case studies Concrete Concrete slabs Corrosion resistance Datasets Design Design optimization Design parameters Fiber reinforced plastics Fiber reinforced polymers FRP reinforced flat slabs Genetic algorithms Learning algorithms Machine learning Mathematical models Mechanics (physics) Model accuracy multi-objective optimization Multiple objective analysis NGBoost NSGA-II Numerical models Optimization algorithms Pareto optimization Polymers Probability distribution Punching shear punching shear resistance Reinforced concrete SHAP Shear strength Slabs Sorting algorithms Structural engineering |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NAeSpK2dJuk6FAoFETs1dPHbJJNDmWzJC3kJiRZgobNuthOodAf3xnZCQulzaVHGxnkmdE87JnvI-QDxHDEffIsai2ZUGXNjHKcVYLrWhqTpMuDwp_1YmFubqrlBtUX9oQN8MCD4I5UJStRa8M9L0UJ9RqP2qVU8uCFicmj9y10tVFM3Q7dV2CoYviNyaGuP_Ijy3SH-DJTjSwyG4Eo4_X_zSvnUDPfIS_HHJEeD3vbJc_ieo-82EAOfEV-5cFZdulvB4dFL-Ho340zlfQ0t2XQJtH51ZJexYyOGmJN5yvX02tQfEdxeKylSwhr-A2KZmZr6n_S3ENAF-ezpul6NoMgV9Pr-7Zt8HsbReq01WvydX725eSCjUQKLIhp2TMnihDkFC6kdAoKjKS4c8rUslLJhEI4JANXpowhwaqoQMzOg5CjhPQuCv6GbK2bdXxLaAXliHEqeA7qKGpnpIjgonSSkmsh5IQUD1K1YUQZR7KLlYVqAxVh_1DEhHx6fOT7ALHxr8UzVNXjQkTHzjfAZuxoM_Ypm5mQj6hoi9KHzQU3jiLAKyIalj3WmFcZyC4n5ODBFux4uDsLNSp4SWT3efc_drNPniOH_TDgeEC2-vY-HpLt8KP_1rXvs13_BqGX_Fw priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Objective Optimization Design of FRP Reinforced Flat Slabs under Punching Shear by Using NGBoost-Based Surrogate Model |
| URI | https://www.proquest.com/docview/2893057204 https://doaj.org/article/69594d783b31418883e7aff13cb48efb |
| Volume | 13 |
| WOSCitedRecordID | wos001108157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: M7S dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: PATMY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9NAFB-09eAe_JatrmUOgiAMbTqfOclWtypoN7QK6ylMJhNRarMmWUHwj_e9ybQuiHvymGQCM5mX9zXv_X6EPAUbjrhPBfNaSyZUUjKjLGep4LqUxlTShkbhd3q5NGdnaRbbo9tYVrnTiUFR92jPWLcNSnhS1g4z5hMIE0BQkWDlxfl3hhxSeNYaCTWukyECb00HZJi9fZ992udcwL0A8RX94SaHaH9SRO7pFlFnZhq5ZS6Zp4Di_y9dHQzQ4vb_nfodcis6ovS4l5y75Jrf3iMHl-AJ75NfoTuXnRZfe61IT0G_fIuNm_RVqP2gdUUXq4yufIBgdb6ki43t6Bqkq6XYodbQDGwnJrpooM-mxU8aChXo8vW8rtuOzcGSlnR90TQ1JvUo8rNtHpCPi5MPL9-wyNbAnJglHbNi6pycwYWUVkEUUylurTKlTFVl3FRYZBxXJvGuglFeQexti6pKvAQf0gv-kAy29dYfEppCzGOscgXnEP-V1kjhQQ_qSkquhZAjMt1tUu4ilDkyamxyCGlwX_O_9nVEnu9fOe9xPK4aPMed3w9ECO5wo24-5_GPzlUqU1FqwwuYZAKL4V5bWA53hTC-KkbkGcpNjl8fJuds7HeAJSLkVn6s0Xkz4MKOyNFObvKoQdr8j5g8uvrxY3JzBo5X3x95RAZdc-GfkBvuR_elbcZkOD9ZZqtxyDWMsbJ1PY6_xW950xsE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKOADCAkpahLbiXNAqEtZuup2G7VFak_BcZyqaNmUJAVV4jfxG5nJY6mE6K0HjknsKON8noftmQ_gJdpwqvuUOjYMpSMCL3NUoLkTCR5mUqlc6iZReBrOZurwMIpX4FefC0PHKnud2CjqrDC0Rr6OgQFCkyhV3p1-c4g1inZXewqNFhbb9vwHhmzV28km_t9Xvj_-cPB-y-lYBRwjfK92tHCNkT5eSKkD9LbzgGsdqExGQa6MKzQxYwfKsybHVjbAGFGnee5Zib6OFRzfew1WBfZ3B7AaT3bio-WqDjowOEFEu33KeeSupx27dUV1bfyQ2GsuGMCGJ-Bf1qAxceM7_9vg3IXbnTPNNlr034MVu7gPty6UWHwAP5sMY2c3_dJqdraLOvJrl3zKNpvzK6zI2XgvZnu2KSNrbMbGc12zfZwhFaMsu5LFaP9psY41FOAsPWfNYQs2-zgqiqp2RugNZGz_rCwLWphkxDE3fwifrkT8RzBYFAv7GFiEcZvSgUk5xxg200oKi7o8zKXkoRByCG4Pg8R05diJFWSeYFhGyEn-Qs4Q3iy7nLa1SC5rPCJsLRtSGfHmRlEeJ51WSoJIRiILFU_xIz0UhttQozjcpELZPB3Ca0JmQqOPH2d0l7OBIlLZsGQjJAdUoRs-hLUemUmnBavkDyyfXP74BdzYOtiZJtPJbPsp3PTRkWzzPddgUJdn9hlcN9_rk6p83k04Bp-vGsa_AZ5OaDw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJw4BuxUMAHEBJStLuxHTsHhLpsA1WrNNqC1FvqOA4CLZuSbEGV-GX8OmbysVRC9NYDxyROZDvP4ze2Zx7Ac5zDKe9T5jmlpCeCSe7pwHAvFFzlUutCmiZQeF_FsT46CpMN-NXHwtCxyt4mNoY6Ly2tkY_QMUBokqTKqOiORSSz6M3JN48UpGintZfTaCGy585-oPtWv96d4b9-4fvRzoe3771OYcCzwp-sPCPG1kofL6Q0ATLvIuDGBDqXYVBoOxaGVLIDPXG2wFIuQH_RZEUxcRJ5jxMcv3sFNhVHp2cAm9OdOJmvV3iQzOBgEe1WKufheJR1Stc15bjxFSnZnJsMG82Af80MzXQX3fqfO-o23OxINttuR8Ud2HDLu3DjXOrFe_CziTz2DrIvrcVnB2g7v3ZBqWzWnGthZcGiecLmrkkva13OooVZsUMcOTWj6LuKJcgLaBGPNdLgLDtjzSEMFr-blmW98qbIEnJ2eFpVJS1YMtKeW9yHj5fS_AcwWJZL9xBYiP6cNoHNOEffNjdaCoc2XhVSciWEHMK4h0RquzTtpBaySNFdIxSlf6FoCK_Wr5y0OUouKjwlnK0LUnrx5kZZfUo7a5UGoQxFrjTPsJITbAx3ymBzuM2EdkU2hJeE0pR6HytnTRfLgU2kdGLptiJiqpGeD2GrR2naWcc6_QPRRxc_fgbXELvp_m689xiu-8gv2zDQLRisqlP3BK7a76vPdfW0G3sMji8bxb8Bm0lw1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization+Design+of+FRP+Reinforced+Flat+Slabs+under+Punching+Shear+by+Using+NGBoost-Based+Surrogate+Model&rft.jtitle=Buildings+%28Basel%29&rft.au=Liang%2C+Shixue&rft.au=Cai%2C+Yiqing&rft.au=Fei%2C+Zhengyu&rft.au=Shen%2C+Yuanxie&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=13&rft.issue=11&rft_id=info:doi/10.3390%2Fbuildings13112727&rft.externalDocID=A774318154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |