Multi-Objective Optimization Design of FRP Reinforced Flat Slabs under Punching Shear by Using NGBoost-Based Surrogate Model

Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and efficiency of the surrogate models, which are conventionally adopted as mechanics-driven models or numerical models. Data-driven models, such...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Buildings (Basel) Ročník 13; číslo 11; s. 2727
Hlavní autori: Liang, Shixue, Cai, Yiqing, Fei, Zhengyu, Shen, Yuanxie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2023
Predmet:
ISSN:2075-5309, 2075-5309
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and efficiency of the surrogate models, which are conventionally adopted as mechanics-driven models or numerical models. Data-driven models, such as machine learning models, can be instrumental in resolving intricate structural engineering issues that cannot be tackled through mechanics-driven models. This study aims to address the challenges of multi-objective optimization punching shear design of fiber-reinforced polymer (FRP) reinforced flat slabs by using a data-driven surrogate model. Firstly, this study employs an advanced machine learning model, namely Natural Gradient Boosting (NGBoost), to predict the punching shear resistance of FRP reinforced flat slabs. The comparisons with other machine learning models, design provisions and empirical theory models illustrate that the NGBoost model has higher accuracy in predicting the punching shear resistance. Additionally, the NGBoost model is explained with Shapley Additive Explanation (SHAP), revealing that the slab’s effective depth is the primary factor affecting the punching shear resistance. Then, the formulated NGBoost model is adopted as a surrogate model in conjunction with the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm for multi-objective optimization design of FRP reinforced flat slabs subjected to punching shear. Through a case study, it is demonstrated that the Pareto-optimal set of the punching shear resistance and cost of the FRP reinforced flat slabs can be successfully obtained. By discussing the effects of design parameter changes on the results, it is also shown that increasing the slab’s effective depth is a relatively effective way to achieve higher punching shear resistance of FRP reinforced flat slabs.
AbstractList Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and efficiency of the surrogate models, which are conventionally adopted as mechanics-driven models or numerical models. Data-driven models, such as machine learning models, can be instrumental in resolving intricate structural engineering issues that cannot be tackled through mechanics-driven models. This study aims to address the challenges of multi-objective optimization punching shear design of fiber-reinforced polymer (FRP) reinforced flat slabs by using a data-driven surrogate model. Firstly, this study employs an advanced machine learning model, namely Natural Gradient Boosting (NGBoost), to predict the punching shear resistance of FRP reinforced flat slabs. The comparisons with other machine learning models, design provisions and empirical theory models illustrate that the NGBoost model has higher accuracy in predicting the punching shear resistance. Additionally, the NGBoost model is explained with Shapley Additive Explanation (SHAP), revealing that the slab’s effective depth is the primary factor affecting the punching shear resistance. Then, the formulated NGBoost model is adopted as a surrogate model in conjunction with the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm for multi-objective optimization design of FRP reinforced flat slabs subjected to punching shear. Through a case study, it is demonstrated that the Pareto-optimal set of the punching shear resistance and cost of the FRP reinforced flat slabs can be successfully obtained. By discussing the effects of design parameter changes on the results, it is also shown that increasing the slab’s effective depth is a relatively effective way to achieve higher punching shear resistance of FRP reinforced flat slabs.
Audience Academic
Author Shen, Yuanxie
Cai, Yiqing
Liang, Shixue
Fei, Zhengyu
Author_xml – sequence: 1
  givenname: Shixue
  orcidid: 0000-0002-0454-4836
  surname: Liang
  fullname: Liang, Shixue
– sequence: 2
  givenname: Yiqing
  surname: Cai
  fullname: Cai, Yiqing
– sequence: 3
  givenname: Zhengyu
  surname: Fei
  fullname: Fei, Zhengyu
– sequence: 4
  givenname: Yuanxie
  orcidid: 0000-0002-2910-284X
  surname: Shen
  fullname: Shen, Yuanxie
BookMark eNp9kU1v1DAQhiNUJErpD-BmiXOKPxPn2Ba2VGrZqkvP0cQZp15l48V2kIr48ThdhBBI2AfPjOZ9ZuT3dXE0-QmL4i2jZ0I09H03u7F30xCZYIzXvH5RHHNaq1IJ2hz9Eb8qTmPc0ny04lzJ4-LH7TwmV667LZrkviFZ75Pbue-QnJ_IB4xumIi3ZHV_R-7RTdYHgz1ZjZDIZoQuknnqMZC7eTKPeQWyeUQIpHsiD3FJP19deB9TeQExyzZzCH6AhOTW9zi-KV5aGCOe_npPiofVxy-Xn8qb9dX15flNaSRnqQRJjVE8J0pBVVfaVgKg0r1qKqsNlaAkk5VmaGzuwkprDZ21DFUjOEpxUlwfuL2HbbsPbgfhqfXg2ueCD0MLITkzYls1qpF9rUUnmGQZJLCGjBKmkxptl1nvDqx98F9njKnd-jlMef2W60ZQVXO6TDw7dA2Qocu3pQAm3x53zmT3rMv187qWgmmmFgE7CEzwMQa0v9dktF1Mbv8xOWvqvzTGpWfj8jA3_kf5E3znsDo
CitedBy_id crossref_primary_10_1016_j_tws_2024_112367
crossref_primary_10_1016_j_cscm_2024_e03162
crossref_primary_10_1007_s41939_024_00672_4
crossref_primary_10_18400_tjce_1497261
Cites_doi 10.1007/s11721-007-0002-0
10.1109/TMECH.2019.2903140
10.1007/s11709-021-0766-0
10.1007/3-540-45356-3_83
10.1016/S0045-7825(99)00359-X
10.1061/(ASCE)1090-0268(2003)7:3(258)
10.1038/nature14544
10.1061/JCCOF2.CCENG-4274
10.3390/polym15112483
10.1016/j.conbuildmat.2011.04.028
10.3390/buildings12101750
10.1061/(ASCE)CC.1943-5614.0000424
10.1061/(ASCE)CC.1943-5614.0000324
10.1023/A:1010933404324
10.1155/2018/5906279
10.1016/j.jobe.2023.106257
10.1061/(ASCE)1090-0268(2000)4:3(154)
10.1016/j.engfailanal.2022.106647
10.1016/j.asoc.2019.01.015
10.1016/j.compstruct.2020.113336
10.1007/BF00994018
10.1016/j.energy.2022.123676
10.1007/s10463-006-0099-8
10.1007/978-3-030-10925-7_40
10.1016/j.compstruct.2022.116446
10.1007/s00366-022-01604-x
10.1126/science.220.4598.671
10.1016/j.jspi.2013.05.012
10.1016/j.compstruct.2017.02.038
10.3390/ma16020583
10.1007/s12206-014-0509-4
10.1016/j.engstruct.2023.116739
10.1109/TCYB.2019.2950779
10.1016/j.istruc.2022.11.140
10.1016/j.compstruct.2020.113497
10.1061/(ASCE)ST.1943-541X.0003401
10.1109/TEVC.2017.2773341
10.1007/s11047-018-9685-y
10.3934/era.2022176
10.1109/WCSP.2015.7341038
10.1016/j.istruc.2022.09.110
10.1016/j.istruc.2021.05.077
10.1016/j.compstruct.2021.115060
10.1016/j.autcon.2021.103655
10.1016/j.compstruct.2009.09.013
10.1016/j.jmatprotec.2008.01.014
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings13112727
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_69594d783b31418883e7aff13cb48efb
A774318154
10_3390_buildings13112727
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c421t-a40cc52c4255a6768f63aa68d596f8c04a5414681ecf2c4e6888abff1e5932e43
IEDL.DBID PIMPY
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-5309
IngestDate Tue Oct 14 19:04:23 EDT 2025
Mon Nov 24 15:11:21 EST 2025
Tue Nov 04 18:40:53 EST 2025
Sat Nov 29 07:17:13 EST 2025
Tue Nov 18 20:56:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-a40cc52c4255a6768f63aa68d596f8c04a5414681ecf2c4e6888abff1e5932e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0454-4836
0000-0002-2910-284X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2893057204?pq-origsite=%requestingapplication%
PQID 2893057204
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_69594d783b31418883e7aff13cb48efb
proquest_journals_2893057204
gale_infotracacademiconefile_A774318154
crossref_primary_10_3390_buildings13112727
crossref_citationtrail_10_3390_buildings13112727
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jin (ref_19) 2018; 22
ref_58
ref_57
ref_56
ref_55
Zhang (ref_7) 2009; 92
ref_53
Breiman (ref_52) 2001; 45
(ref_16) 2013; 17
Coello (ref_23) 2020; 53
Dawid (ref_51) 2007; 59
Liang (ref_59) 2022; 45
Wang (ref_45) 2022; 30
Lu (ref_10) 2021; 15
Eiben (ref_18) 2015; 521
Poli (ref_25) 2007; 1
Wang (ref_32) 2014; 28
ref_60
Pilakoutas (ref_14) 2003; 7
Xu (ref_20) 2019; 24
Wang (ref_49) 2019; 77
Wood (ref_8) 2003; 37
Chen (ref_47) 2022; 148
Seyyedabbasi (ref_27) 2022; 39
Li (ref_34) 2021; 259
ref_63
Onsree (ref_61) 2022; 249
ref_62
Benmokrane (ref_15) 2005; 102
ref_28
Xian (ref_1) 2022; 281
Corinna (ref_54) 1995; 20
Hassan (ref_43) 2013; 17
Kirkpatrick (ref_26) 1984; 220
ref_36
Wysmulsk (ref_4) 2017; 85
Zou (ref_11) 2021; 262
Miguel (ref_9) 2010; 107
ref_31
(ref_5) 2023; 17
Wysmulski (ref_6) 2023; 305
Liu (ref_24) 2021; 126
Sandeep (ref_38) 2023; 47
Aljidda (ref_2) 2023; 27
Sun (ref_42) 2019; 50
(ref_30) 2017; 168
Leyva (ref_29) 2018; 2018
Emmerich (ref_21) 2018; 17
Shen (ref_39) 2022; 141
ref_46
ref_44
Reason (ref_50) 2013; 143
ref_40
Ospina (ref_17) 2003; 100
Liang (ref_37) 2023; 69
ref_3
Liu (ref_35) 2008; 208
Steven (ref_33) 2000; 188
Ding (ref_48) 2023; 294
Bouguerra (ref_13) 2011; 25
Matthys (ref_12) 2000; 4
Chand (ref_22) 2015; 20
Kookalani (ref_41) 2021; 33
References_xml – volume: 1
  start-page: 33
  year: 2007
  ident: ref_25
  article-title: Particle swarm optimization
  publication-title: Swarm Intell-Us
  doi: 10.1007/s11721-007-0002-0
– volume: 24
  start-page: 808
  year: 2019
  ident: ref_20
  article-title: Optimal design of hydraulic excavator shovel attachment based on multiobjective evolutionary algorithm
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2903140
– ident: ref_55
– volume: 15
  start-page: 1097
  year: 2021
  ident: ref_10
  article-title: A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-021-0766-0
– ident: ref_28
  doi: 10.1007/3-540-45356-3_83
– volume: 188
  start-page: 743
  year: 2000
  ident: ref_33
  article-title: Evolutionary structural optimisation (ESO) for combined topology and size optimisation of discrete structures
  publication-title: Comput. Method Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00359-X
– volume: 20
  start-page: 35
  year: 2015
  ident: ref_22
  article-title: Evolutionary many-objective optimization: A quick-start guide
  publication-title: Surv. Oper. Res. Manag. Sci.
– volume: 100
  start-page: 589
  year: 2003
  ident: ref_17
  article-title: Punching of two-way concrete slabs with fiber-reinforced polymer reinforcing bars or grids
  publication-title: Struct. J.
– volume: 7
  start-page: 258
  year: 2003
  ident: ref_14
  article-title: Punching shear behavior of fiber reinforced polymers reinforced concrete flat slabs: Experimental study
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)1090-0268(2003)7:3(258)
– volume: 521
  start-page: 476
  year: 2015
  ident: ref_18
  article-title: From evolutionary computation to the evolution of things
  publication-title: Nature
  doi: 10.1038/nature14544
– volume: 27
  start-page: 4023055
  year: 2023
  ident: ref_2
  article-title: Bond Durability of Near-Surface-Mounted BFRP and GFRP Bars in Aggressive Environments
  publication-title: J. Compos. Constr.
  doi: 10.1061/JCCOF2.CCENG-4274
– ident: ref_3
  doi: 10.3390/polym15112483
– volume: 25
  start-page: 3956
  year: 2011
  ident: ref_13
  article-title: Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.04.028
– ident: ref_40
  doi: 10.3390/buildings12101750
– volume: 17
  start-page: 04013003
  year: 2013
  ident: ref_43
  article-title: Punching-shear strength of normal and high-strength two-way concrete slabs reinforced with GFRP bars
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)CC.1943-5614.0000424
– volume: 17
  start-page: 2
  year: 2013
  ident: ref_16
  article-title: Punching shear resistance of interior GFRP reinforced slab-column connections
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)CC.1943-5614.0000324
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_52
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 2018
  start-page: 5906279
  year: 2018
  ident: ref_29
  article-title: design of reinforced concrete buildings using NSGA-II
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2018/5906279
– volume: 69
  start-page: 106257
  year: 2023
  ident: ref_37
  article-title: Symbolic machine learning improved MCFT model for punching shear resistance of FRP-reinforced concrete slabs
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.106257
– volume: 4
  start-page: 154
  year: 2000
  ident: ref_12
  article-title: Concrete slabs reinforced with FRP grids. II: Punching resistance
  publication-title: J. Compos. Constr.
  doi: 10.1061/(ASCE)1090-0268(2000)4:3(154)
– volume: 141
  start-page: 106647
  year: 2022
  ident: ref_39
  article-title: Explainable machine learning-based model for failure mode identification of RC flat slabs without transverse reinforcement
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106647
– volume: 77
  start-page: 188
  year: 2019
  ident: ref_49
  article-title: Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.01.015
– ident: ref_56
– volume: 262
  start-page: 113336
  year: 2021
  ident: ref_11
  article-title: A review on FRP-concrete hybrid sections for bridge applications
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113336
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_54
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 249
  start-page: 123676
  year: 2022
  ident: ref_61
  article-title: Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123676
– volume: 59
  start-page: 77
  year: 2007
  ident: ref_51
  article-title: The geometry of proper scoring rules
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/s10463-006-0099-8
– ident: ref_58
  doi: 10.1007/978-3-030-10925-7_40
– ident: ref_62
– volume: 305
  start-page: 116446
  year: 2023
  ident: ref_6
  article-title: Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.116446
– volume: 39
  start-page: 2627
  year: 2022
  ident: ref_27
  article-title: Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 17
  start-page: 133
  year: 2023
  ident: ref_5
  article-title: Failure analysis of beam composite elements subjected to three-point bending using advanced numerical damage
  publication-title: Acta Mech. Autom.
– volume: 220
  start-page: 671
  year: 1984
  ident: ref_26
  article-title: Optimization by Simulated Annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 143
  start-page: 1781
  year: 2013
  ident: ref_50
  article-title: Contrasting probabilistic scoring rules
  publication-title: J. Stat. Plan. Infer.
  doi: 10.1016/j.jspi.2013.05.012
– ident: ref_53
– volume: 168
  start-page: 498
  year: 2017
  ident: ref_30
  article-title: Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.02.038
– ident: ref_36
  doi: 10.3390/ma16020583
– volume: 37
  start-page: 29
  year: 2003
  ident: ref_8
  article-title: Pipers Row car park collapse: Identifying risk
  publication-title: Concrete
– volume: 107
  start-page: 434
  year: 2010
  ident: ref_9
  article-title: Strengthening of flat slabs against punching shear using post-installed shear reinforcement
  publication-title: Aci. Struct. J.
– volume: 28
  start-page: 2205
  year: 2014
  ident: ref_32
  article-title: Multi-objective optimization of drive gears for power split device using surrogate models
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-014-0509-4
– volume: 85
  start-page: 35
  year: 2017
  ident: ref_4
  article-title: The analysis of buckling and post buckling in the compressed composite columns
  publication-title: Arch. Mater. Sci.
– volume: 294
  start-page: 116739
  year: 2023
  ident: ref_48
  article-title: Efficient seismic fragility analysis method utilizing ground motion clustering and probabilistic machine learning
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.116739
– volume: 50
  start-page: 3668
  year: 2019
  ident: ref_42
  article-title: A survey of optimization methods from a machine learning perspective
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2950779
– volume: 47
  start-page: 1196
  year: 2023
  ident: ref_38
  article-title: Shear strength prediction of reinforced concrete beams using machine learning
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.11.140
– ident: ref_63
– ident: ref_44
– volume: 259
  start-page: 113497
  year: 2021
  ident: ref_34
  article-title: Evolutionary topology optimization for structures made of multiple materials with different properties in tension and compression
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113497
– volume: 148
  start-page: 4022096
  year: 2022
  ident: ref_47
  article-title: Probabilistic Machine-Learning Methods for Performance Prediction of Structure and Infrastructures through Natural Gradient Boosting
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003401
– volume: 22
  start-page: 1
  year: 2018
  ident: ref_19
  article-title: Guest editorial evolutionary many-objective optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2017.2773341
– volume: 102
  start-page: 727
  year: 2005
  ident: ref_15
  article-title: Behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer bars under concentrated loads
  publication-title: Aci. Struct. J.
– volume: 17
  start-page: 585
  year: 2018
  ident: ref_21
  article-title: A tutorial on multiobjective optimization: Fundamentals and evolutionary methods
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-018-9685-y
– ident: ref_46
– volume: 30
  start-page: 3452
  year: 2022
  ident: ref_45
  article-title: An innovative approach of determining the sample data size for machine learning models: A case study on health and safety management for infrastructure workers
  publication-title: Electron. Res. Arch.
  doi: 10.3934/era.2022176
– ident: ref_31
  doi: 10.1109/WCSP.2015.7341038
– volume: 45
  start-page: 1333
  year: 2022
  ident: ref_59
  article-title: Comparative study of influential factors for punching shear resistance/failure of RC slab-column joints using machine-learning models
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.09.110
– volume: 33
  start-page: 2066
  year: 2021
  ident: ref_41
  article-title: Shape optimization of GFRP elastic gridshells by the weighted Lagrange ε-twin support vector machine and multi-objective particle swarm optimization algorithm considering structural weight
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.05.077
– volume: 281
  start-page: 115060
  year: 2022
  ident: ref_1
  article-title: Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.115060
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_23
  article-title: Indicator-based multi-objective evolutionary algorithms: A comprehensive survey
  publication-title: ACM Comput. Surv.
– ident: ref_60
– ident: ref_57
– volume: 126
  start-page: 103655
  year: 2021
  ident: ref_24
  article-title: Automatic and optimal rebar layout in reinforced concrete structure by decomposed optimization algorithms
  publication-title: Automat. Constr.
  doi: 10.1016/j.autcon.2021.103655
– volume: 92
  start-page: 730
  year: 2009
  ident: ref_7
  article-title: A new shear-flexible FRP-reinforced concrete slab element
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.09.013
– volume: 208
  start-page: 499
  year: 2008
  ident: ref_35
  article-title: Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm
  publication-title: J. Mater. Process. Tech.
  doi: 10.1016/j.jmatprotec.2008.01.014
SSID ssj0000852254
Score 2.2758896
Snippet Multi-objective optimization problems (MOPs) in structural engineering arise as a significant challenge in achieving a balance between prediction accuracy and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2727
SubjectTerms Algorithms
Case studies
Concrete
Concrete slabs
Corrosion resistance
Datasets
Design
Design optimization
Design parameters
Fiber reinforced plastics
Fiber reinforced polymers
FRP reinforced flat slabs
Genetic algorithms
Learning algorithms
Machine learning
Mathematical models
Mechanics (physics)
Model accuracy
multi-objective optimization
Multiple objective analysis
NGBoost
NSGA-II
Numerical models
Optimization algorithms
Pareto optimization
Polymers
Probability distribution
Punching shear
punching shear resistance
Reinforced concrete
SHAP
Shear strength
Slabs
Sorting algorithms
Structural engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NAeSpK2dJuk6FAoFETs1dPHbJJNDmWzJC3kJiRZgobNuthOodAf3xnZCQulzaVHGxnkmdE87JnvI-QDxHDEffIsai2ZUGXNjHKcVYLrWhqTpMuDwp_1YmFubqrlBtUX9oQN8MCD4I5UJStRa8M9L0UJ9RqP2qVU8uCFicmj9y10tVFM3Q7dV2CoYviNyaGuP_Ijy3SH-DJTjSwyG4Eo4_X_zSvnUDPfIS_HHJEeD3vbJc_ieo-82EAOfEV-5cFZdulvB4dFL-Ho340zlfQ0t2XQJtH51ZJexYyOGmJN5yvX02tQfEdxeKylSwhr-A2KZmZr6n_S3ENAF-ezpul6NoMgV9Pr-7Zt8HsbReq01WvydX725eSCjUQKLIhp2TMnihDkFC6kdAoKjKS4c8rUslLJhEI4JANXpowhwaqoQMzOg5CjhPQuCv6GbK2bdXxLaAXliHEqeA7qKGpnpIjgonSSkmsh5IQUD1K1YUQZR7KLlYVqAxVh_1DEhHx6fOT7ALHxr8UzVNXjQkTHzjfAZuxoM_Ypm5mQj6hoi9KHzQU3jiLAKyIalj3WmFcZyC4n5ODBFux4uDsLNSp4SWT3efc_drNPniOH_TDgeEC2-vY-HpLt8KP_1rXvs13_BqGX_Fw
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Objective Optimization Design of FRP Reinforced Flat Slabs under Punching Shear by Using NGBoost-Based Surrogate Model
URI https://www.proquest.com/docview/2893057204
https://doaj.org/article/69594d783b31418883e7aff13cb48efb
Volume 13
WOSCitedRecordID wos001108157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: M7S
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: PATMY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9NAFB-09eAe_JatrmUOgiAMbTqfOclWtypoN7QK6ylMJhNRarMmWUHwj_e9ybQuiHvymGQCM5mX9zXv_X6EPAUbjrhPBfNaSyZUUjKjLGep4LqUxlTShkbhd3q5NGdnaRbbo9tYVrnTiUFR92jPWLcNSnhS1g4z5hMIE0BQkWDlxfl3hhxSeNYaCTWukyECb00HZJi9fZ992udcwL0A8RX94SaHaH9SRO7pFlFnZhq5ZS6Zp4Di_y9dHQzQ4vb_nfodcis6ovS4l5y75Jrf3iMHl-AJ75NfoTuXnRZfe61IT0G_fIuNm_RVqP2gdUUXq4yufIBgdb6ki43t6Bqkq6XYodbQDGwnJrpooM-mxU8aChXo8vW8rtuOzcGSlnR90TQ1JvUo8rNtHpCPi5MPL9-wyNbAnJglHbNi6pycwYWUVkEUUylurTKlTFVl3FRYZBxXJvGuglFeQexti6pKvAQf0gv-kAy29dYfEppCzGOscgXnEP-V1kjhQQ_qSkquhZAjMt1tUu4ilDkyamxyCGlwX_O_9nVEnu9fOe9xPK4aPMed3w9ECO5wo24-5_GPzlUqU1FqwwuYZAKL4V5bWA53hTC-KkbkGcpNjl8fJuds7HeAJSLkVn6s0Xkz4MKOyNFObvKoQdr8j5g8uvrxY3JzBo5X3x95RAZdc-GfkBvuR_elbcZkOD9ZZqtxyDWMsbJ1PY6_xW950xsE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKOADCAkpahLbiXNAqEtZuup2G7VFak_BcZyqaNmUJAVV4jfxG5nJY6mE6K0HjknsKON8noftmQ_gJdpwqvuUOjYMpSMCL3NUoLkTCR5mUqlc6iZReBrOZurwMIpX4FefC0PHKnud2CjqrDC0Rr6OgQFCkyhV3p1-c4g1inZXewqNFhbb9vwHhmzV28km_t9Xvj_-cPB-y-lYBRwjfK92tHCNkT5eSKkD9LbzgGsdqExGQa6MKzQxYwfKsybHVjbAGFGnee5Zib6OFRzfew1WBfZ3B7AaT3bio-WqDjowOEFEu33KeeSupx27dUV1bfyQ2GsuGMCGJ-Bf1qAxceM7_9vg3IXbnTPNNlr034MVu7gPty6UWHwAP5sMY2c3_dJqdraLOvJrl3zKNpvzK6zI2XgvZnu2KSNrbMbGc12zfZwhFaMsu5LFaP9psY41FOAsPWfNYQs2-zgqiqp2RugNZGz_rCwLWphkxDE3fwifrkT8RzBYFAv7GFiEcZvSgUk5xxg200oKi7o8zKXkoRByCG4Pg8R05diJFWSeYFhGyEn-Qs4Q3iy7nLa1SC5rPCJsLRtSGfHmRlEeJ51WSoJIRiILFU_xIz0UhttQozjcpELZPB3Ca0JmQqOPH2d0l7OBIlLZsGQjJAdUoRs-hLUemUmnBavkDyyfXP74BdzYOtiZJtPJbPsp3PTRkWzzPddgUJdn9hlcN9_rk6p83k04Bp-vGsa_AZ5OaDw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJw4BuxUMAHEBJStLuxHTsHhLpsA1WrNNqC1FvqOA4CLZuSbEGV-GX8OmbysVRC9NYDxyROZDvP4ze2Zx7Ac5zDKe9T5jmlpCeCSe7pwHAvFFzlUutCmiZQeF_FsT46CpMN-NXHwtCxyt4mNoY6Ly2tkY_QMUBokqTKqOiORSSz6M3JN48UpGintZfTaCGy585-oPtWv96d4b9-4fvRzoe3771OYcCzwp-sPCPG1kofL6Q0ATLvIuDGBDqXYVBoOxaGVLIDPXG2wFIuQH_RZEUxcRJ5jxMcv3sFNhVHp2cAm9OdOJmvV3iQzOBgEe1WKufheJR1Stc15bjxFSnZnJsMG82Af80MzXQX3fqfO-o23OxINttuR8Ud2HDLu3DjXOrFe_CziTz2DrIvrcVnB2g7v3ZBqWzWnGthZcGiecLmrkkva13OooVZsUMcOTWj6LuKJcgLaBGPNdLgLDtjzSEMFr-blmW98qbIEnJ2eFpVJS1YMtKeW9yHj5fS_AcwWJZL9xBYiP6cNoHNOEffNjdaCoc2XhVSciWEHMK4h0RquzTtpBaySNFdIxSlf6FoCK_Wr5y0OUouKjwlnK0LUnrx5kZZfUo7a5UGoQxFrjTPsJITbAx3ymBzuM2EdkU2hJeE0pR6HytnTRfLgU2kdGLptiJiqpGeD2GrR2naWcc6_QPRRxc_fgbXELvp_m689xiu-8gv2zDQLRisqlP3BK7a76vPdfW0G3sMji8bxb8Bm0lw1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization+Design+of+FRP+Reinforced+Flat+Slabs+under+Punching+Shear+by+Using+NGBoost-Based+Surrogate+Model&rft.jtitle=Buildings+%28Basel%29&rft.au=Liang%2C+Shixue&rft.au=Cai%2C+Yiqing&rft.au=Fei%2C+Zhengyu&rft.au=Shen%2C+Yuanxie&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=13&rft.issue=11&rft_id=info:doi/10.3390%2Fbuildings13112727&rft.externalDocID=A774318154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon