Halpern’s type iterations with perturbations in Hilbert spaces: equilibrium solutions and fixed points
In this paper, we consider an iteration process of Halpern’s type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iter...
Saved in:
| Published in: | Journal of global optimization Vol. 56; no. 4; pp. 1591 - 1601 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.08.2013
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we consider an iteration process of Halpern’s type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iterations. Using this result, we obtain new strong convergence theorems in a Hilbert space. In particular, we solve partially an open problem posed by Kurokawa and Takahashi (Nonlinear Anal 73:1562–1568,
2010
) concerning Halpern’s iterations. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-012-9911-6 |