Halpern’s type iterations with perturbations in Hilbert spaces: equilibrium solutions and fixed points

In this paper, we consider an iteration process of Halpern’s type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 56; číslo 4; s. 1591 - 1601
Hlavní autoři: Chuang, Chih-Sheng, Lin, Lai-Jiu, Takahashi, Wataru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.08.2013
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider an iteration process of Halpern’s type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iterations. Using this result, we obtain new strong convergence theorems in a Hilbert space. In particular, we solve partially an open problem posed by Kurokawa and Takahashi (Nonlinear Anal 73:1562–1568, 2010 ) concerning Halpern’s iterations.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-012-9911-6