Halpern’s type iterations with perturbations in Hilbert spaces: equilibrium solutions and fixed points
In this paper, we consider an iteration process of Halpern’s type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iter...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 56; číslo 4; s. 1591 - 1601 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.08.2013
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we consider an iteration process of Halpern’s type for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points for a quasi-nonexpansive mapping with perturbation in a Hilbert space and then prove a strong convergence theorem for such iterations. Using this result, we obtain new strong convergence theorems in a Hilbert space. In particular, we solve partially an open problem posed by Kurokawa and Takahashi (Nonlinear Anal 73:1562–1568,
2010
) concerning Halpern’s iterations. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-012-9911-6 |