SAKM: Self-adaptive kernel machine A kernel-based algorithm for online clustering

This paper presents a new online clustering algorithm called SAKM (Self-Adaptive Kernel Machine) which is developed to learn continuously evolving clusters from non-stationary data. Based on SVM and kernel methods, the SAKM algorithm uses a fast adaptive learning procedure to take into account varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks Jg. 21; H. 9; S. 1287 - 1301
Hauptverfasser: Amadou Boubacar, Habiboulaye, Lecoeuche, Stéphane, Maouche, Salah
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.11.2008
Elsevier
Schlagworte:
ISSN:0893-6080, 1879-2782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a new online clustering algorithm called SAKM (Self-Adaptive Kernel Machine) which is developed to learn continuously evolving clusters from non-stationary data. Based on SVM and kernel methods, the SAKM algorithm uses a fast adaptive learning procedure to take into account variations over time. Dedicated to online clustering in a multi-class environment, the algorithm designs an unsupervised neural architecture with self-adaptive abilities. Based on a specific kernel-induced similarity measure, the SAKM learning procedures consist of four main stages: Creation, Adaptation, Fusion and Elimination. In addition to these properties, the SAKM algorithm is attractive to be computationally efficient in online learning of real-drifting targets. After a theoretical study of the error convergence bound of the SAKM local learning, a comparison with NORMA and ALMA algorithms is made. In the end, some experiments conducted on simulation data, UCI benchmarks and real data are given to illustrate the capacities of the SAKM algorithm for online clustering in non-stationary and multi-class environment.
AbstractList This paper presents a new online clustering algorithm called SAKM (Self-Adaptive Kernel Machine) which is developed to learn continuously evolving clusters from non-stationary data. Based on SVM and kernel methods, the SAKM algorithm uses a fast adaptive learning procedure to take into account variations over time. Dedicated to online clustering in a multi-class environment, the algorithm designs an unsupervised neural architecture with self-adaptive abilities. Based on a specific kernel-induced similarity measure, the SAKM learning procedures consist of four main stages: Creation, Adaptation, Fusion and Elimination. In addition to these properties, the SAKM algorithm is attractive to be computationally efficient in online learning of real-drifting targets. After a theoretical study of the error convergence bound of the SAKM local learning, a comparison with NORMA and ALMA algorithms is made. In the end, some experiments conducted on simulation data, UCI benchmarks and real data are given to illustrate the capacities of the SAKM algorithm for online clustering in non-stationary and multi-class environment.This paper presents a new online clustering algorithm called SAKM (Self-Adaptive Kernel Machine) which is developed to learn continuously evolving clusters from non-stationary data. Based on SVM and kernel methods, the SAKM algorithm uses a fast adaptive learning procedure to take into account variations over time. Dedicated to online clustering in a multi-class environment, the algorithm designs an unsupervised neural architecture with self-adaptive abilities. Based on a specific kernel-induced similarity measure, the SAKM learning procedures consist of four main stages: Creation, Adaptation, Fusion and Elimination. In addition to these properties, the SAKM algorithm is attractive to be computationally efficient in online learning of real-drifting targets. After a theoretical study of the error convergence bound of the SAKM local learning, a comparison with NORMA and ALMA algorithms is made. In the end, some experiments conducted on simulation data, UCI benchmarks and real data are given to illustrate the capacities of the SAKM algorithm for online clustering in non-stationary and multi-class environment.
This paper presents a new online clustering algorithm called SAKM (Self- Adaptive Kernel Machine) which is developed to learn continuously evolving clusters from non-stationary data. Based on SVM and kernel methods, the SAKM algorithm uses a fast adaptive learning procedure to take into account variations over time. Dedicated to online clustering in a multi-class environment, the algorithm designs an unsupervised neural architecture with self-adaptive abilities. Based on a specific kernel-induced similarity measure, the SAKM learning procedures consist of four main stages: Creation, Adaptation, Fusion and Elimination. In addition to these properties, the SAKM algorithm is attractive to be computationally efficient in online learning of real-drifting targets. After a theoretical study of the error convergence bound of the SAKM local learning, a comparison with NORMA and ALMA algorithms is made. In the end, some experiments conducted on simulation data, UCI benchmarks and real data are given to illustrate the capacities of the SAKM algorithm for online clustering in non-stationary and multi-class environment.
This paper presents a new online clustering algorithm called SAKM (Self-Adaptive Kernel Machine) which is developed to learn continuously evolving clusters from non-stationary data. Based on SVM and kernel methods, the SAKM algorithm uses a fast adaptive learning procedure to take into account variations over time. Dedicated to online clustering in a multi-class environment, the algorithm designs an unsupervised neural architecture with self-adaptive abilities. Based on a specific kernel-induced similarity measure, the SAKM learning procedures consist of four main stages: Creation, Adaptation, Fusion and Elimination. In addition to these properties, the SAKM algorithm is attractive to be computationally efficient in online learning of real-drifting targets. After a theoretical study of the error convergence bound of the SAKM local learning, a comparison with NORMA and ALMA algorithms is made. In the end, some experiments conducted on simulation data, UCI benchmarks and real data are given to illustrate the capacities of the SAKM algorithm for online clustering in non-stationary and multi-class environment.
Author Maouche, Salah
Amadou Boubacar, Habiboulaye
Lecoeuche, Stéphane
Author_xml – sequence: 1
  givenname: Habiboulaye
  surname: Amadou Boubacar
  fullname: Amadou Boubacar, Habiboulaye
  email: amadou@ensm-douai.fr
  organization: Ecole des Mines de Douai, Département Informatique et Automatique, 941, Rue Charles Bourseul, BP838, 59 508 Douai, France
– sequence: 2
  givenname: Stéphane
  surname: Lecoeuche
  fullname: Lecoeuche, Stéphane
  email: lecoeuche@ensm-douai.fr
  organization: Ecole des Mines de Douai, Département Informatique et Automatique, 941, Rue Charles Bourseul, BP838, 59 508 Douai, France
– sequence: 3
  givenname: Salah
  surname: Maouche
  fullname: Maouche, Salah
  email: salah.maouche@univ-lille.fr
  organization: Laboratoire Automatique, Génie Informatique et Signal, UMR CNRS 8146, Université des Sciences et Technologies de Lille, Bâtiment P2, 59655 Villeneuve d’Ascq, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20887283$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18835695$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r3DAUxEVJaTZpv0EpvjQ3u0-WbUk5FJbQfyQhlOQuZPk50VaWtpIc6Levl93m0ENyejD8ZhjenJAjHzwS8p5CRYF2nzaVx9ljrmoAUQGrFvEVWVHBZVlzUR-RFQjJyg4EHJOTlDYA0ImGvSHHVAjWdrJdkZ-368vr8-IW3VjqQW-zfcTiF0aPrpi0ebAei_VBKHudcCi0uw_R5oepGEMsgnc7xrg5ZYzW378lr0ftEr473FNy9_XL3cX38urm24-L9VVpmprmUnIjpUDO27rVYmxx6BkwwVgrB5S66TQMo-S0E9T0yJueGs01oOkpxZ6xU3K2j93G8HvGlNVkk0HntMcwJ9VJ3tVd27wIUtlAyyks4IcDOPcTDmob7aTjH_XvWQvw8QDoZLQbo_bGpieuBiF4LXbVzveciSGliKMyNutsg89RW6coqN2CaqP2C6rdggqYWsTF3PxnfurxvO3z3obLyx8tRpWMRW9wsBFNVkOwzwf8BbeStmk
CitedBy_id crossref_primary_10_3390_math12243935
crossref_primary_10_1016_j_ress_2014_12_005
crossref_primary_10_1016_j_neucom_2014_02_036
crossref_primary_10_1016_j_ins_2010_02_005
crossref_primary_10_1007_s10044_017_0608_9
crossref_primary_10_1517_17425250902753261
Cites_doi 10.1162/089976602317250933
10.1109/TSP.2004.830991
10.1109/3477.969494
10.1145/380995.380999
10.1109/72.712183
10.1162/089976600300015565
10.1007/s00521-004-0427-y
10.1109/TFUZZ.1993.390282
10.1016/S0925-2312(02)00599-4
10.1162/089976601750264965
10.1109/72.788640
10.1023/A:1009715923555
10.1109/TSP.2005.851098
10.1109/IJCNN.2001.938743
10.1016/S0031-3203(03)00140-7
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.neunet.2008.03.016
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 1301
ExternalDocumentID 18835695
20887283
10_1016_j_neunet_2008_03_016
S0893608008001184
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c421t-97c998e77525a8f5edb30383359de9a46a0df971681cbe74b1ca7a0ecb11eb33
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000261550100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
IngestDate Sun Sep 28 06:15:38 EDT 2025
Sat Sep 27 21:10:59 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Mon Jul 21 09:15:30 EDT 2025
Tue Nov 18 22:35:02 EST 2025
Sat Nov 29 02:39:39 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Online clustering
RKHS
Non-stationary data
Multi-class problems
Evolving models
Cluster analysis
Automatic classification
On line
Similarity
Adaptability
Support vector machine
Approximation algorithm
Combinatorial optimization
Adaptive method
Hilbert space
Architecture
Theoretical study
Error bound
Non stationary condition
On-line systems
Experimental study
Signal classification
Unsupervised learning
Kernel method
Simulation
Metric
Comparative study
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-97c998e77525a8f5edb30383359de9a46a0df971681cbe74b1ca7a0ecb11eb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18835695
PQID 19405710
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_69762654
proquest_miscellaneous_19405710
pubmed_primary_18835695
pascalfrancis_primary_20887283
crossref_citationtrail_10_1016_j_neunet_2008_03_016
crossref_primary_10_1016_j_neunet_2008_03_016
elsevier_sciencedirect_doi_10_1016_j_neunet_2008_03_016
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gentile (b17) 2001; 2
Kriegel, Sander, Ester, Xu (b21) 1997; 2
Ben-Hur, Horn, Siegelmann, Vapnik (b3) 2001; 2
Bennett, Campbell (b4) 2000; 2
Laboratoire LAGIS. Université de Sciences et Technologies de Lille 1 (USTL)
Blake, C., & Merz, C. (1998). UCI Repository of machine learning databases.
Schölkopf, Platt, Shawe-Taylor, Smola (b25) 2001; 13
Bishop (b5) 1995
Cheong, Oh, Lee (b12) 2004; 2
Kivinen, Smola, Williamson (b20) 2004; 52
TU Deft, Netherlands
Vapnik (b31) 1998
Amadou, B. H., Lecoeuche, S., & Maouche, S. (2005). Self-adaptive kernel machine: Online clustering in RKHS. In
Borer, S. (2003). New support vector algorithms for multi-categorical data: Applied to real-time object recognition.
Tax, D. (2001). One-class classification.
Schölkopf, Smola (b27) 2002
Burges (b10) 1998; 2
(pp. 2404–2409).
Simpson (b28) 1993; 11
Lausanne Swiss EPFL
Bordes, Bottou (b7) 2005; Vol. 3720
Gretton, Desobry (b18) 2003; vol. 2
Amadou-Boubacar, H. (2006). Classification Dynamique de données non-stationnaires: Apprentissage et Suivi de classes évolutives.
Kasabov (b19) 2001; 31
Bordes, Ertekin, Weston, Bottou (b8) 2005; 6
Cauwenberghs, Poggio (b11) 2000; Vol. 13
Tax, Laskov (b29) 2003
Lecoeuche, Lurette (b24) 2003
Csato, Opper (b13) 2002; 14
Eltoft, Figueiredo (b16) 1998; 9
Deng, Kasabov (b14) 2003; 51
Desobry, Davy, Doncarli (b15) 2005; 53
Lecoeuche, Lurette (b23) 2004; 13
Kuh, A. (2001). Adaptive kernel methods for CDMA systems. In
Vapnik (b32) 1999; 10
Zhang, Xing (b33) 2003; 37
Schölkopf, Smola, Williamson, Bartlett (b26) 2000; 12
Burges (10.1016/j.neunet.2008.03.016_b10) 1998; 2
Gretton (10.1016/j.neunet.2008.03.016_b18) 2003; vol. 2
Lecoeuche (10.1016/j.neunet.2008.03.016_b24) 2003
Schölkopf (10.1016/j.neunet.2008.03.016_b26) 2000; 12
Bishop (10.1016/j.neunet.2008.03.016_b5) 1995
10.1016/j.neunet.2008.03.016_b22
Vapnik (10.1016/j.neunet.2008.03.016_b32) 1999; 10
Simpson (10.1016/j.neunet.2008.03.016_b28) 1993; 11
Lecoeuche (10.1016/j.neunet.2008.03.016_b23) 2004; 13
Desobry (10.1016/j.neunet.2008.03.016_b15) 2005; 53
Eltoft (10.1016/j.neunet.2008.03.016_b16) 1998; 9
Bordes (10.1016/j.neunet.2008.03.016_b7) 2005; Vol. 3720
Cauwenberghs (10.1016/j.neunet.2008.03.016_b11) 2000; Vol. 13
Tax (10.1016/j.neunet.2008.03.016_b29) 2003
Cheong (10.1016/j.neunet.2008.03.016_b12) 2004; 2
Bennett (10.1016/j.neunet.2008.03.016_b4) 2000; 2
Zhang (10.1016/j.neunet.2008.03.016_b33) 2003; 37
Gentile (10.1016/j.neunet.2008.03.016_b17) 2001; 2
Csato (10.1016/j.neunet.2008.03.016_b13) 2002; 14
10.1016/j.neunet.2008.03.016_b30
Kriegel (10.1016/j.neunet.2008.03.016_b21) 1997; 2
Schölkopf (10.1016/j.neunet.2008.03.016_b25) 2001; 13
Kivinen (10.1016/j.neunet.2008.03.016_b20) 2004; 52
10.1016/j.neunet.2008.03.016_b6
Ben-Hur (10.1016/j.neunet.2008.03.016_b3) 2001; 2
10.1016/j.neunet.2008.03.016_b9
10.1016/j.neunet.2008.03.016_b2
Deng (10.1016/j.neunet.2008.03.016_b14) 2003; 51
Schölkopf (10.1016/j.neunet.2008.03.016_b27) 2002
Vapnik (10.1016/j.neunet.2008.03.016_b31) 1998
10.1016/j.neunet.2008.03.016_b1
Kasabov (10.1016/j.neunet.2008.03.016_b19) 2001; 31
Bordes (10.1016/j.neunet.2008.03.016_b8) 2005; 6
References_xml – reference: . TU Deft, Netherlands
– volume: 37
  start-page: 131
  year: 2003
  end-page: 144
  ident: b33
  article-title: Competitive EM algorithm for finite mixture models
  publication-title: Pattern Recognition
– volume: 2
  start-page: 47
  year: 2004
  end-page: 51
  ident: b12
  article-title: Support vector machines with binary tree architecture for multi-class classification
  publication-title: Neural Information Processing
– volume: 31
  start-page: 902
  year: 2001
  end-page: 918
  ident: b19
  article-title: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
  publication-title: IEEE Transactions of Systems, Man and Cybernetics, Part B–Cybernetics
– volume: 2
  start-page: 169
  year: 1997
  end-page: 194
  ident: b21
  article-title: Density-based clustering in spatial databases: The algorithm gdbscan and its applications
  publication-title: Data Mining and Knowledge Discovery
– reference: Amadou-Boubacar, H. (2006). Classification Dynamique de données non-stationnaires: Apprentissage et Suivi de classes évolutives.
– volume: 52
  start-page: 2165
  year: 2004
  end-page: 2176
  ident: b20
  article-title: Online Learning with Kernels
  publication-title: IEEE Transactions on Signal Processing
– volume: 12
  start-page: 1207
  year: 2000
  end-page: 1245
  ident: b26
  article-title: New support vector algorithms
  publication-title: Neural Computation
– volume: Vol. 13
  start-page: 409
  year: 2000
  end-page: 415
  ident: b11
  publication-title: Incremental and decremental support vector machine learning
– reference: . Laboratoire LAGIS. Université de Sciences et Technologies de Lille 1 (USTL)
– volume: 14
  start-page: 641
  year: 2002
  end-page: 668
  ident: b13
  article-title: Sparse online gaussian processes
  publication-title: Neural Computation
– volume: 2
  year: 2001
  ident: b17
  article-title: A new approximation maximal margin classification algorithm
  publication-title: Journal of Machine Learning Research
– year: 1998
  ident: b31
  article-title: Statistical learning theory
– volume: vol. 2
  start-page: 709
  year: 2003
  end-page: 712
  ident: b18
  article-title: Online one-class nu-svm, an application to signal segmentation
  publication-title: IEEE ICASSP03 proceedings
– volume: 2
  start-page: 1
  year: 2000
  end-page: 13
  ident: b4
  article-title: Support vector machines: Hype or hallelujah?
  publication-title: SIGKDD Exploration
– reference: Borer, S. (2003). New support vector algorithms for multi-categorical data: Applied to real-time object recognition.
– reference: Kuh, A. (2001). Adaptive kernel methods for CDMA systems. In
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: b25
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Computation
– volume: 2
  start-page: 125
  year: 2001
  end-page: 137
  ident: b3
  article-title: Support vector clustering
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 323
  year: 2004
  end-page: 338
  ident: b23
  article-title: New supervision architecture based on on line modelization of non stationary data
  publication-title: Neural Computing and Applications
– reference: (pp. 2404–2409).
– volume: 51
  start-page: 87
  year: 2003
  end-page: 103
  ident: b14
  article-title: On-line pattern analysis by evolving self organizing maps
  publication-title: Neurocomputing
– volume: 9
  start-page: 1021
  year: 1998
  end-page: 1035
  ident: b16
  article-title: A new neural network for cluster-detection-and-labeling
  publication-title: IEEE Transactions on Neural Networks
– reference: Amadou, B. H., Lecoeuche, S., & Maouche, S. (2005). Self-adaptive kernel machine: Online clustering in RKHS. In
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: b10
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
– volume: Vol. 3720
  start-page: 505
  year: 2005
  end-page: 512
  ident: b7
  article-title: The Huller: A simple and efficient online SVM
  publication-title: Machine learning: ECML 2005
– reference: Blake, C., & Merz, C. (1998). UCI Repository of machine learning databases.
– volume: 53
  start-page: 2961
  year: 2005
  end-page: 2974
  ident: b15
  article-title: An online Kernel change detection algorithm
  publication-title: IEEE Transactions on Signal Processing
– start-page: 499
  year: 2003
  end-page: 508
  ident: b29
  article-title: Online SVM learning: From classification to data description and back
  publication-title: Proceedings of the Neural Network and Signal Processing
– volume: 11
  start-page: 32
  year: 1993
  end-page: 45
  ident: b28
  article-title: Fuzzy min–max neural networks — Part2: Classification
  publication-title: IEEE Transactions on Fuzzy systems
– volume: 6
  start-page: 1579
  year: 2005
  end-page: 1619
  ident: b8
  article-title: Fast Kernel classifiers with online and active learning
  publication-title: Journal of Machine Learning Research
– start-page: 350
  year: 2003
  end-page: 358
  ident: b24
  article-title: Auto-adaptive and dynamical clustering neural network
  publication-title: ICANN03
– year: 1995
  ident: b5
  article-title: Neural networks for pattern recognition
– reference: Tax, D. (2001). One-class classification.
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: b32
  article-title: An overview of statistical learning theory
  publication-title: IEEE Transactions on Neural Networks
– reference: . Lausanne Swiss EPFL
– year: 2002
  ident: b27
  article-title: Learning with Kernels
– ident: 10.1016/j.neunet.2008.03.016_b2
– volume: 2
  year: 2001
  ident: 10.1016/j.neunet.2008.03.016_b17
  article-title: A new approximation maximal margin classification algorithm
  publication-title: Journal of Machine Learning Research
– volume: 2
  start-page: 47
  issue: 3
  year: 2004
  ident: 10.1016/j.neunet.2008.03.016_b12
  article-title: Support vector machines with binary tree architecture for multi-class classification
  publication-title: Neural Information Processing
– volume: 14
  start-page: 641
  year: 2002
  ident: 10.1016/j.neunet.2008.03.016_b13
  article-title: Sparse online gaussian processes
  publication-title: Neural Computation
  doi: 10.1162/089976602317250933
– volume: 52
  start-page: 2165
  issue: 8
  year: 2004
  ident: 10.1016/j.neunet.2008.03.016_b20
  article-title: Online Learning with Kernels
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2004.830991
– year: 1995
  ident: 10.1016/j.neunet.2008.03.016_b5
– volume: 2
  start-page: 125
  year: 2001
  ident: 10.1016/j.neunet.2008.03.016_b3
  article-title: Support vector clustering
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 902
  issue: 6
  year: 2001
  ident: 10.1016/j.neunet.2008.03.016_b19
  article-title: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
  publication-title: IEEE Transactions of Systems, Man and Cybernetics, Part B–Cybernetics
  doi: 10.1109/3477.969494
– ident: 10.1016/j.neunet.2008.03.016_b6
– volume: 2
  start-page: 1
  issue: 2
  year: 2000
  ident: 10.1016/j.neunet.2008.03.016_b4
  article-title: Support vector machines: Hype or hallelujah?
  publication-title: SIGKDD Exploration
  doi: 10.1145/380995.380999
– volume: Vol. 3720
  start-page: 505
  year: 2005
  ident: 10.1016/j.neunet.2008.03.016_b7
  article-title: The Huller: A simple and efficient online SVM
– volume: 9
  start-page: 1021
  issue: 5
  year: 1998
  ident: 10.1016/j.neunet.2008.03.016_b16
  article-title: A new neural network for cluster-detection-and-labeling
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.712183
– volume: 12
  start-page: 1207
  year: 2000
  ident: 10.1016/j.neunet.2008.03.016_b26
  article-title: New support vector algorithms
  publication-title: Neural Computation
  doi: 10.1162/089976600300015565
– volume: 13
  start-page: 323
  issue: 4
  year: 2004
  ident: 10.1016/j.neunet.2008.03.016_b23
  article-title: New supervision architecture based on on line modelization of non stationary data
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-004-0427-y
– start-page: 499
  year: 2003
  ident: 10.1016/j.neunet.2008.03.016_b29
  article-title: Online SVM learning: From classification to data description and back
  publication-title: Proceedings of the Neural Network and Signal Processing
– volume: vol. 2
  start-page: 709
  year: 2003
  ident: 10.1016/j.neunet.2008.03.016_b18
  article-title: Online one-class nu-svm, an application to signal segmentation
– ident: 10.1016/j.neunet.2008.03.016_b30
– volume: 11
  start-page: 32
  year: 1993
  ident: 10.1016/j.neunet.2008.03.016_b28
  article-title: Fuzzy min–max neural networks — Part2: Classification
  publication-title: IEEE Transactions on Fuzzy systems
  doi: 10.1109/TFUZZ.1993.390282
– ident: 10.1016/j.neunet.2008.03.016_b1
– volume: Vol. 13
  start-page: 409
  year: 2000
  ident: 10.1016/j.neunet.2008.03.016_b11
– start-page: 350
  year: 2003
  ident: 10.1016/j.neunet.2008.03.016_b24
  article-title: Auto-adaptive and dynamical clustering neural network
– volume: 51
  start-page: 87
  year: 2003
  ident: 10.1016/j.neunet.2008.03.016_b14
  article-title: On-line pattern analysis by evolving self organizing maps
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00599-4
– volume: 13
  start-page: 1443
  year: 2001
  ident: 10.1016/j.neunet.2008.03.016_b25
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Computation
  doi: 10.1162/089976601750264965
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 10.1016/j.neunet.2008.03.016_b32
  article-title: An overview of statistical learning theory
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.788640
– ident: 10.1016/j.neunet.2008.03.016_b9
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.neunet.2008.03.016_b10
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 53
  start-page: 2961
  issue: 8
  year: 2005
  ident: 10.1016/j.neunet.2008.03.016_b15
  article-title: An online Kernel change detection algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2005.851098
– volume: 6
  start-page: 1579
  year: 2005
  ident: 10.1016/j.neunet.2008.03.016_b8
  article-title: Fast Kernel classifiers with online and active learning
  publication-title: Journal of Machine Learning Research
– year: 1998
  ident: 10.1016/j.neunet.2008.03.016_b31
– ident: 10.1016/j.neunet.2008.03.016_b22
  doi: 10.1109/IJCNN.2001.938743
– year: 2002
  ident: 10.1016/j.neunet.2008.03.016_b27
– volume: 37
  start-page: 131
  year: 2003
  ident: 10.1016/j.neunet.2008.03.016_b33
  article-title: Competitive EM algorithm for finite mixture models
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(03)00140-7
– volume: 2
  start-page: 169
  issue: 2
  year: 1997
  ident: 10.1016/j.neunet.2008.03.016_b21
  article-title: Density-based clustering in spatial databases: The algorithm gdbscan and its applications
  publication-title: Data Mining and Knowledge Discovery
SSID ssj0006843
Score 1.9682572
Snippet This paper presents a new online clustering algorithm called SAKM (Self-Adaptive Kernel Machine) which is developed to learn continuously evolving clusters...
This paper presents a new online clustering algorithm called SAKM (Self- Adaptive Kernel Machine) which is developed to learn continuously evolving clusters...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1287
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Cluster Analysis
Evolving models
Exact sciences and technology
Flows in networks. Combinatorial problems
Information, signal and communications theory
Models, Statistical
Multi-class problems
Non-stationary data
Online clustering
Online Systems
Operational research and scientific management
Operational research. Management science
Risk
RKHS
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Stochastic Processes
Telecommunications and information theory
Title SAKM: Self-adaptive kernel machine A kernel-based algorithm for online clustering
URI https://dx.doi.org/10.1016/j.neunet.2008.03.016
https://www.ncbi.nlm.nih.gov/pubmed/18835695
https://www.proquest.com/docview/19405710
https://www.proquest.com/docview/69762654
Volume 21
WOSCitedRecordID wos000261550100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9owFLYYpodKVfeFLtSH3pBHMVkc98ZQKrrMUHVA4hY5idOBZgJiGU3v_eF9ju3AtINoD71E6OFgmff5LfZbEHqTCg5mKqUkBeFPvDAISJxyRjKHJ5kI_NThutkEOz0Nx2P-pVb7aXNhLnNWFOHVFZ__V1YDDZitUmf_gd3VjwIBPgPT4Qlsh-dfMf6s8-mkdPTPZJ4RkYp5GR30XS4KmbcuyuBJCfJAE4hSY2lL5N9mi8nq_KIMO9TlM1pJvlZlFKxym9pCT2WljkLHj1cmOQjvd4NR63gwOgb2luEVfRFP4tk6Fz8q9HzudQe9Ubff0xFm-pp-fi42l_snnUH1vcjNabU9lghNfl51VmYU-7Y44y4JHN23ycpenR1tMMa3BCmoTballEHT0hsFvj57mB4Vcg3rNrGx7pFDb6iv_Zveq6IR20rSgpl1gA7bzOdhHR12PvTGHyuNHoQ6-tKuwKZglnGCf868y8S5MxdL2HiZ7piy26UpTZvhfXTX-CS4o7H0ANVk8RDdM_4JNtJ_CSTbAsTSHqGvCm34Lb6GNayhhQ3WcAdvYw1XWMOANayxhjdYe4yG73vDbp-YNh0k8dp0RThLwGeXjPltX4SZL9MY7CKVzMdTyYUXCCfNVKWykCaxZF5ME8GEI5OYUhm77hNUL2aFfIZw6koBvFC1sxNPiABGMxicMSlZzGLaQK79Y6PElLBXnVTyyMYqTiPNDtNd1Y2A2ECkemuuS7jsGc8szyJjhmrzMgLQ7XmzeY3F1XQWYQ302vI8AjGu7uZgg83Wy4hy5TlRZ_eIAByHduB7DfRUg2WzmBDcqID7z_dN_wLd3mzVl6i-WqzlK3QruVxNlosmOmDjsGmw_wsAXs9T
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAKM+%3A+Self-adaptive+kernel+machine+A+kernel-based+algorithm+for+online+clustering&rft.jtitle=Neural+networks&rft.au=AMADOU+BOUBACAR%2C+Habiboulaye&rft.au=LECOEUCHE%2C+St%C3%A9phane&rft.au=MAOUCHE%2C+Salah&rft.date=2008-11-01&rft.pub=Elsevier&rft.issn=0893-6080&rft.volume=21&rft.issue=9&rft.spage=1287&rft.epage=1301&rft_id=info:doi/10.1016%2Fj.neunet.2008.03.016&rft.externalDBID=n%2Fa&rft.externalDocID=20887283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon