On the simplex, interior-point and objective space approaches to multiobjective linear programming

Most Multiple Objective Linear Programming (MOLP) algorithms working in the decision variable space, are based on the simplex algorithm or interior-point method of Linear Programming. However, objective space based methods are becoming more and more prominent. This paper investigates three algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms & computational technology Jg. 15
Hauptverfasser: Nyiam, Paschal B, Salhi, Abdellah
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London, England SAGE Publications 01.10.2021
Sage Publications Ltd
SAGE Publishing
Schlagworte:
ISSN:1748-3018, 1748-3026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most Multiple Objective Linear Programming (MOLP) algorithms working in the decision variable space, are based on the simplex algorithm or interior-point method of Linear Programming. However, objective space based methods are becoming more and more prominent. This paper investigates three algorithms namely the Extended Multiobjective Simplex Algorithm (EMSA), Arbel’s Affine Scaling Interior-point (ASIMOLP) algorithm and Benson’s objective space Outer Approximation (BOA) algorithm. An extensive review of these algorithms is also included. Numerical results on non-trivial MOLP problems show that EMSA and BOA are at par and superior in terms of the quality of a most preferred nondominated point to ASIMOLP. However, ASIMOLP more than holds its own in terms of computing efficiency.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1748-3018
1748-3026
DOI:10.1177/17483026211008414