A Deep learning method for accurate and fast identification of coral reef fishes in underwater images

Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine biodiversity, yet it remains difficult and time-consuming. In this paper, we present a method to assist the identification of fish species on underwater images, and we compare our mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological informatics Jg. 48; S. 238 - 244
Hauptverfasser: Villon, Sébastien, Mouillot, David, Chaumont, Marc, Darling, Emily S., Subsol, Gérard, Claverie, Thomas, Villéger, Sébastien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.2018
Elsevier
Schlagworte:
ISSN:1574-9541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine biodiversity, yet it remains difficult and time-consuming. In this paper, we present a method to assist the identification of fish species on underwater images, and we compare our model performances to human ability in terms of speed and accuracy. We first tested the performance of a convolutional neural network (CNN) trained with different photographic databases while accounting for different post-processing decision rules to identify 20 fish species. Finally, we compared the performance of species identification of our best CNN model with that of humans on a test database of 1197 fish images representing nine species. The best CNN was the one trained with 900,000 images including (i) whole fish bodies, (ii) partial fish bodies and (iii) the environment (e.g. reef bottom or water). The rate of correct identification was 94.9%, greater than the rate of correct identification by humans (89.3%). The CNN was also able to identify fish individuals partially hidden behind corals or behind other fish and was more effective than humans to identify fish on smallest or blurry images while humans were better to identify fish individuals in unusual positions (e.g. twisted body). On average, each identification by our best CNN using a common hardware took 0.06 s. Deep Learning methods can thus perform efficient fish identification on underwater images and offer promises to build-up new video-based protocols for monitoring fish biodiversity cheaply and effectively. •Comparison between human experts and Deep Learning based method•Assessing the importance of post treatment with DL based methods•Importance of database adjustements•Real-life use cases for applied DL methods for fish identification
AbstractList Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine biodiversity, yet it remains difficult and time-consuming. In this paper, we present a method to assist the identification of fish species on underwater images, and we compare our model performances to human ability in terms of speed and accuracy. We first tested the performance of a convolutional neural network (CNN) trained with different photographic databases while accounting for different post-processing decision rules to identify 20 fish species. Finally, we compared the performance of species identification of our best CNN model with that of humans on a test database of 1197 fish images representing nine species. The best CNN was the one trained with 900,000 images including (i) whole fish bodies, (ii) partial fish bodies and (iii) the environment (e.g. reef bottom or water). The rate of correct identification was 94.9%, greater than the rate of correct identification by humans (89.3%). The CNN was also able to identify fish individuals partially hidden behind corals or behind other fish and was more effective than humans to identify fish on smallest or blurry images while humans were better to identify fish individuals in unusual positions (e.g. twisted body). On average, each identification by our best CNN using a common hardware took 0.06 s. Deep Learning methods can thus perform efficient fish identification on underwater images and offer promises to build-up new video-based protocols for monitoring fish biodiversity cheaply and effectively. •Comparison between human experts and Deep Learning based method•Assessing the importance of post treatment with DL based methods•Importance of database adjustements•Real-life use cases for applied DL methods for fish identification
Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine biodiversity, yet it remains difficult and time-consuming. In this paper, we present a method to assist the identification of fish species on underwater images, and we compare our model performances to human ability in terms of speed and accuracy. We first tested the performance of a convolutional neural network (CNN) trained with different photographic databases while accounting for different post-processing decision rules to identify 20 fish species. Finally, we compared the performance of species identification of our best CNN model with that of humans on a test database of 1197 fish images representing nine species. The best CNN was the one trained with 900 000 images including (i) whole fish bodies, (ii) partial fish bodies and (iii) the environment (e.g. reef bottom or water). The rate of correct identification was 94.9%, greater than the rate of correct identification by humans (89.3%). The CNN was also able to identify fish individuals partially hidden behind corals or behind other fish and was more effective than humans to identify fish on smallest or blurry images while humans were better to identify fish individuals in unusual positions (e.g. twisted body). On average, each identification by our best CNN using a common hardware took 0.06 seconds. Deep Learning methods can thus perform efficient fish identification on underwater images and offer promises to build-up new video-based protocols for monitoring fish biodiversity cheaply and effectively.
Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine biodiversity, yet it remains difficult and time-consuming. In this paper, we present a method to assist the identification of fish species on underwater images, and we compare our model performances to human ability in terms of speed and accuracy. We first tested the performance of a convolutional neural network (CNN) trained with different photographic databases while accounting for different post-processing decision rules to identify 20 fish species. Finally, we compared the performance of species identification of our best CNN model with that of humans on a test database of 1197 fish images representing nine species. The best CNN was the one trained with 900,000 images including (i) whole fish bodies, (ii) partial fish bodies and (iii) the environment (e.g. reef bottom or water). The rate of correct identification was 94.9%, greater than the rate of correct identification by humans (89.3%). The CNN was also able to identify fish individuals partially hidden behind corals or behind other fish and was more effective than humans to identify fish on smallest or blurry images while humans were better to identify fish individuals in unusual positions (e.g. twisted body). On average, each identification by our best CNN using a common hardware took 0.06 s. Deep Learning methods can thus perform efficient fish identification on underwater images and offer promises to build-up new video-based protocols for monitoring fish biodiversity cheaply and effectively.
Author Darling, Emily S.
Claverie, Thomas
Chaumont, Marc
Mouillot, David
Villon, Sébastien
Subsol, Gérard
Villéger, Sébastien
Author_xml – sequence: 1
  givenname: Sébastien
  surname: Villon
  fullname: Villon, Sébastien
  email: villon@lirmm.fr
  organization: MARBEC, University of Montpellier, CNRS, IRD, Ifremer, Montpellier, France
– sequence: 2
  givenname: David
  surname: Mouillot
  fullname: Mouillot, David
  organization: MARBEC, University of Montpellier, CNRS, IRD, Ifremer, Montpellier, France
– sequence: 3
  givenname: Marc
  orcidid: 0000-0002-4095-4410
  surname: Chaumont
  fullname: Chaumont, Marc
  organization: LIRMM, University of Montpellier/CNRS, France
– sequence: 4
  givenname: Emily S.
  surname: Darling
  fullname: Darling, Emily S.
  organization: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
– sequence: 5
  givenname: Gérard
  surname: Subsol
  fullname: Subsol, Gérard
  organization: LIRMM, University of Montpellier/CNRS, France
– sequence: 6
  givenname: Thomas
  orcidid: 0000-0002-6258-4991
  surname: Claverie
  fullname: Claverie, Thomas
  organization: MARBEC, University of Montpellier, CNRS, IRD, Ifremer, Montpellier, France
– sequence: 7
  givenname: Sébastien
  surname: Villéger
  fullname: Villéger, Sébastien
  organization: MARBEC, University of Montpellier, CNRS, IRD, Ifremer, Montpellier, France
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01884005$$DView record in HAL
BookMark eNqFkDtrHDEQgFU4EL_-gQuVgXAbabXPFIHDeThwkMauxaw08s2xK10knYP_feRs0qRIKsHwfaPhu2BnPnhk7EaKSgrZvTtUaAJ5V9VCDpUYKyH6M3Yu277ZjG0jX7OLlA5CNGoY6nOGW_4R8chnhOjJP_IF8z5Y7kLkYMwpQkYOvgwgZU4WfSZHBjIFz4PjJkSYeUR03FHaY-Lk-clbjD-KGTkt8Ijpir1yMCe8_v1esofPn-5v7za7b1--3m53G9PUMpf76knItnZGNbLtADo5guprB0NvR9s3rh3bEYyq7TQZZadhNAr7abB26ERn1SV7u-7dw6yPsXwen3UA0nfbnZ4pLosuVYZGiPZJFvrNSh9j-H7ClPVCyeA8g8dwSrqWrepUX-CCvl9RE0NKEZ02lH9FyBFo1lLol_r6oNf6-qW-FqMu9Yvc_CX_Oe0_2odVw1LsiTDqZAi9QUsRTdY20L8X_AT3_aVb
CitedBy_id crossref_primary_10_1002_ece3_72091
crossref_primary_10_1016_j_ecoinf_2025_103065
crossref_primary_10_1111_1365_2664_14725
crossref_primary_10_3390_s25061846
crossref_primary_10_1007_s11042_022_13437_3
crossref_primary_10_1016_j_dsp_2025_105131
crossref_primary_10_1016_j_ecoinf_2024_102499
crossref_primary_10_1007_s10462_021_10025_z
crossref_primary_10_1016_j_microb_2025_100299
crossref_primary_10_1016_j_ecoinf_2024_102535
crossref_primary_10_1098_rsos_231678
crossref_primary_10_1007_s11042_022_12535_6
crossref_primary_10_3390_jmse12122326
crossref_primary_10_1016_j_fishres_2023_106916
crossref_primary_10_3389_fmars_2021_649123
crossref_primary_10_1002_cbdv_202201123
crossref_primary_10_1111_mms_13137
crossref_primary_10_3390_fishes8040182
crossref_primary_10_1007_s00227_023_04300_6
crossref_primary_10_1007_s10452_022_09988_0
crossref_primary_10_3390_su13116037
crossref_primary_10_3390_agriculture12121972
crossref_primary_10_1016_j_eswa_2025_128585
crossref_primary_10_1371_journal_pone_0263377
crossref_primary_10_1111_rec_13806
crossref_primary_10_1016_j_atech_2023_100289
crossref_primary_10_3390_electronics14152954
crossref_primary_10_1111_jfb_15793
crossref_primary_10_1371_journal_pbio_3001640
crossref_primary_10_1016_j_aquaculture_2022_738334
crossref_primary_10_1007_s10499_025_02069_7
crossref_primary_10_1371_journal_pone_0249593
crossref_primary_10_3389_fmars_2025_1476616
crossref_primary_10_3389_fmars_2021_658135
crossref_primary_10_1016_j_ecolind_2025_114025
crossref_primary_10_1111_geb_13025
crossref_primary_10_1016_j_eswa_2023_121841
crossref_primary_10_1016_j_ecoinf_2023_102371
crossref_primary_10_1111_faf_12666
crossref_primary_10_1016_j_envsoft_2024_106170
crossref_primary_10_1038_s41597_024_04267_z
crossref_primary_10_1371_journal_pone_0324067
crossref_primary_10_1109_TNNLS_2022_3143887
crossref_primary_10_3389_fmars_2022_918504
crossref_primary_10_1002_rse2_205
crossref_primary_10_1016_j_procs_2025_03_104
crossref_primary_10_1007_s11831_020_09486_2
crossref_primary_10_3354_meps14631
crossref_primary_10_7717_peerj_13396
crossref_primary_10_3390_app142210122
crossref_primary_10_1016_j_ecoinf_2023_102108
crossref_primary_10_1109_ACCESS_2024_3468438
crossref_primary_10_7717_peerj_cs_2618
crossref_primary_10_1016_j_ecoinf_2025_103409
crossref_primary_10_21303_2461_4262_2022_002345
crossref_primary_10_1016_j_inffus_2022_12_012
crossref_primary_10_1002_rse2_209
crossref_primary_10_1016_j_atech_2022_100087
crossref_primary_10_1145_3575801
crossref_primary_10_3389_fevo_2024_1359201
crossref_primary_10_1093_icesjms_fsae194
crossref_primary_10_1111_eth_13143
crossref_primary_10_3389_fmars_2023_1151758
crossref_primary_10_1371_journal_pone_0284992
crossref_primary_10_3390_electronics10222882
crossref_primary_10_3354_meps14003
crossref_primary_10_1016_j_aquaeng_2020_102117
crossref_primary_10_1111_ele_14311
crossref_primary_10_1002_ece3_7656
crossref_primary_10_1002_2688_8319_12099
crossref_primary_10_1016_j_biocon_2022_109494
crossref_primary_10_1111_2041_210X_13901
crossref_primary_10_3390_su14127154
crossref_primary_10_1002_aqc_3432
crossref_primary_10_1016_j_anbehav_2021_04_018
crossref_primary_10_3389_fmars_2022_944582
crossref_primary_10_1016_j_ocecoaman_2025_107762
crossref_primary_10_1016_j_jenvman_2019_07_024
crossref_primary_10_3390_jmse8110924
crossref_primary_10_1016_j_dsr_2025_104517
crossref_primary_10_3390_app13063812
crossref_primary_10_1016_j_greeac_2023_100049
crossref_primary_10_1002_lom3_10557
crossref_primary_10_1007_s10115_023_01987_3
crossref_primary_10_1186_s13634_022_00950_8
crossref_primary_10_1016_j_aquaeng_2025_102570
crossref_primary_10_1016_j_fishres_2021_106033
crossref_primary_10_3390_s20030726
crossref_primary_10_1007_s11042_022_14318_5
crossref_primary_10_3390_electronics11213459
crossref_primary_10_1016_j_ecoinf_2022_101873
crossref_primary_10_3390_electronics11172701
crossref_primary_10_1007_s10452_022_09967_5
crossref_primary_10_3390_ani14030499
crossref_primary_10_1111_raq_12464
crossref_primary_10_1016_j_ecoinf_2022_101593
crossref_primary_10_1371_journal_pntd_0008904
crossref_primary_10_1007_s11042_024_18951_0
crossref_primary_10_1016_j_ecoinf_2023_102165
crossref_primary_10_1371_journal_pone_0267759
crossref_primary_10_1016_j_ecoinf_2023_102163
crossref_primary_10_1007_s11042_020_09371_x
crossref_primary_10_1016_j_marpolbul_2024_116273
crossref_primary_10_3389_fmars_2020_00429
crossref_primary_10_3390_info15080437
crossref_primary_10_1002_lom3_10607
crossref_primary_10_3390_rs17152707
crossref_primary_10_1109_ACCESS_2023_3343120
crossref_primary_10_3390_s22020497
crossref_primary_10_3389_fmars_2021_640619
crossref_primary_10_1002_aqc_3254
crossref_primary_10_1002_ece3_11070
crossref_primary_10_3390_fishes7060335
crossref_primary_10_1088_2632_2153_ad65b5
crossref_primary_10_3389_fmars_2024_1356356
crossref_primary_10_1007_s11694_024_02381_5
crossref_primary_10_1371_journal_pone_0216030
crossref_primary_10_1016_j_aquaculture_2021_736724
crossref_primary_10_1016_j_marpol_2022_105015
crossref_primary_10_1007_s10661_020_08653_z
crossref_primary_10_1111_raq_12726
crossref_primary_10_1155_2023_3224064
crossref_primary_10_3389_fmars_2021_823173
crossref_primary_10_1007_s10499_021_00684_8
crossref_primary_10_4173_mic_2021_1_1
crossref_primary_10_1016_j_eti_2022_102865
crossref_primary_10_1016_j_ecoinf_2024_102959
crossref_primary_10_3389_fmars_2023_1157370
crossref_primary_10_1111_2041_210X_13256
crossref_primary_10_1016_j_heliyon_2023_e16761
crossref_primary_10_3390_app12063158
crossref_primary_10_1007_s10462_021_10102_3
crossref_primary_10_1016_j_fishres_2021_106166
crossref_primary_10_1007_s00371_024_03630_w
crossref_primary_10_1038_s41598_020_67573_7
crossref_primary_10_3390_jmse10121841
crossref_primary_10_1002_aqc_4040
crossref_primary_10_1007_s10462_025_11180_3
crossref_primary_10_1016_j_ecolind_2021_107957
crossref_primary_10_1016_j_quascirev_2022_107877
crossref_primary_10_1016_j_ecoinf_2021_101269
crossref_primary_10_1007_s10462_024_11074_w
crossref_primary_10_3390_app12115401
crossref_primary_10_3390_d14100824
crossref_primary_10_1109_ACCESS_2022_3227046
crossref_primary_10_1016_j_fishres_2023_106924
crossref_primary_10_1111_cobi_13798
crossref_primary_10_3389_fmars_2023_1126301
Cites_doi 10.1145/2647868.2654889
10.1016/j.fishres.2010.10.011
10.1071/MF03130
10.1126/science.1059199
10.1007/BF00001740
10.1007/s00227-005-0090-6
10.2307/3797016
10.1016/j.visres.2007.12.009
10.1073/pnas.1708001115
10.1126/science.1085706
10.3354/meps07192
10.1371/journal.pbio.2000537
10.1080/10236240701393263
10.1111/mec.14350
10.1371/journal.pone.0081847
10.1098/rspb.2015.2694
10.1145/1877868.1877881
10.1109/ICCV.1999.790410
10.1111/2041-210X.12320
10.3844/jcssp.2010.1088.1094
10.1071/MF00010
10.1111/j.1095-8649.2001.tb00202.x
10.1038/nature18607
10.1038/nature22901
10.1038/nature14539
10.1126/science.1149345
10.4031/MTSJ.50.1.1
10.1016/j.fishres.2014.01.019
10.1111/gcb.13482
10.1007/BF00304730
10.1111/j.1461-0248.2011.01592.x
10.3354/ab00235
10.1016/j.neunet.2014.09.003
10.1016/j.ecoinf.2016.11.003
10.1111/1365-2664.13051
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.ecoinf.2018.09.007
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Computer Science
Environmental Sciences
EndPage 244
ExternalDocumentID oai:HAL:lirmm-01884005v1
10_1016_j_ecoinf_2018_09_007
S1574954118300694
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
M~E
~HD
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c421t-952b0152fc34156aa619a372fa87d9d74f5959ac32dbbc3db89c3e7b8dd8606d3
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453641900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1574-9541
IngestDate Tue Oct 14 20:06:52 EDT 2025
Sun Sep 28 09:23:02 EDT 2025
Sat Nov 29 03:11:31 EST 2025
Tue Nov 18 22:37:52 EST 2025
Fri Feb 23 02:26:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Automated identification
Marine fishes
Underwater pictures
Convolutional neural network
Machine learning
Underwater images
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-952b0152fc34156aa619a372fa87d9d74f5959ac32dbbc3db89c3e7b8dd8606d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4095-4410
0000-0002-6258-4991
0000-0003-0402-2605
0000-0002-1048-2838
0000-0002-7461-4932
0000-0002-2362-7178
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01884005
PQID 2153637005
PQPubID 24069
PageCount 7
ParticipantIDs hal_primary_oai_HAL_lirmm_01884005v1
proquest_miscellaneous_2153637005
crossref_citationtrail_10_1016_j_ecoinf_2018_09_007
crossref_primary_10_1016_j_ecoinf_2018_09_007
elsevier_sciencedirect_doi_10_1016_j_ecoinf_2018_09_007
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Ecological informatics
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lecun, Bengio, Hinton (bb0125) 2015; 521
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (bb0225) 2015
Shortis, Ravanbakhsh, Shafait, Mian (bb0205) 2016; 50
Kulbicki, Parravicini, Bellwood, Arias-Gonzàlez, Chabanet, Floeter, Mouillot (bb0115) 2013; 8
Deiner, Bik, Mächler, Seymour, Lacoursière-Roussel, Altermatt, Pfrender (bb0040) 2017; 26
Rogers, Blanchard, Mumby (bb0185) 2017; 55
Willis (bb0260) 2001; 59
Joly, Goëau, Glotin, Spampinato, Bonnet, Vellinga, Müller (bb0100) 2016, September
Pelletier, Leleu, Mou-Tham, Guillemot, Chabanet (bb0170) 2011; 107
Matabos, Hoeberechts, Doya, Aguzzi, Nephin, Reimchen, Fernandez-Arcaya (bb0150) 2017
Graham, Chabanet, Evans, Jennings, Letourneur, Aaron MacNeil, Wilson (bb0055) 2011; 14
National Academy of Sciences, 201708001.
Alsmadi, Omar, Noah, Almarashdeh (bb0005) 2010; 6
Hughes, Barnes, Bellwood, Cinner, Cumming, Jackson, Palumbi (bb0080) 2017; 546
Willis, Babcock (bb0265) 2000; 51
Langlois, Harvey, Fitzpatrick, Meeuwig, Shedrawi, Watson (bb0120) 2010; 9
(
Siddiqui, Salman, Malik, Shafait, Mian, Shortis, Harvey (bb0210) 2017
Froese, Pauly (bb0050) 2000
Thresher, Gunn (bb0235) 1986; 17
Krizhevsky, Sutskever, Hinton (bb0105) 2012
Mouillot, Villéger, Parravicini, Kulbicki, Arias-González, Bender, Bellwood (bb0155) 2014; 111(38)
Chapman, Atkinson (bb0025) 1986; 11
Harvey, Fletcher, Shortis, Kendrick (bb0065) 2004; 55
Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150–1157). Ieee.
Li, X., Shang, M., Qin, H., & Chen, L. (2015, October). Fast accurate fish detection and recognition of underwater images with fast r-cnn. In (pp. 1–5). IEEE.
Scott, Dixson (bb0200) 2016; 283
Cinner, J. E., Maire, E., Huchery, C., MacNeil, M. A., Graham, N. A., Mora, C., ... & D'Agata, S. (2018). Gravity of Human Impacts Mediates Coral Reef Conservation Gains.
Robinson, Williams, Edwards, McPherson, Yeager, Vigliola, Baum (bb0180) 2017; 23
Cinner, Huchery, MacNeil, Graham, McClanahan, Maina, Allison (bb0030) 2016; 535
(pp. 675–678). ACM.
Schmidhuber (bb0195) 2015; 61
Harvey, Cappo, Butler, Hall, Kendrick (bb0070) 2007; 350
Francour, Liret, Harvey (bb0045) 1999; 23
2018).
Sale, Sharp (bb0190) 1983; 2
Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y. H. J., Fisher, R. B., & Nadarajan, G. (2010, October). Automatic fish classification for underwater species behavior understanding. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 45–50). ACM.
Taquet, Diringer (bb0230) 2007
Mallet, Pelletier (bb0145) 2014; 154
Norman, Holmberg, Arzoumanian, Reynolds, Wilson, Rob, Pierce, Gleiss, de la Parra, Galvan, Ramirez-Macias, Robinson, Fox, Graham, Rowat, Potenski, Levine, Mckinney, Hoffmayer, Dove, Hueter, Ponzo, Araujo, Aca, David, Rees, Duncan, Rohner, Prebble, Hearn, Acuna, Berumen, Vázquez, Green, Bach, Schmidt, Beatty, Morgan (bb0160) 2017; 10
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In
Villon, Chaumont, Subsol, Villéger, Claverie, Mouillot (bb0240) 2016, October
Watson, Harvey (bb0245) 2007; 40
Weinstein (bb0255) 2015; 6
Krueck, Ahmadia, Possingham, Riginos, Treml, Mumby (bb0110) 2017; 15
Jackson, Kirby, Berger, Bjorndal, Botsford, Bourque, Hughes (bb0085) 2001; 293
Watson, Harvey, Anderson, Kendrick (bb0250) 2005; 148
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0220) 2014; 15
Brock (bb0015) 1954; 18
Price Tack (bb0175) 2016; 36
Blanc, Lingrand, Precioso (bb0010) 2014, November
Pandolfi, Bradbury, Sala, Hughes, Bjorndal, Cooke, Warner (bb0165) 2003; 301
Levi (bb0130) 2008; 48
Cappo, Harvey, Malcolm, Speare (bb0020) 2003
Halpern, Walbridge, Selkoe, Kappel, Micheli, D'Agrosa, Fujita (bb0060) 2008; 319
Francour (10.1016/j.ecoinf.2018.09.007_bb0045) 1999; 23
Shortis (10.1016/j.ecoinf.2018.09.007_bb0205) 2016; 50
10.1016/j.ecoinf.2018.09.007_bb0035
Pelletier (10.1016/j.ecoinf.2018.09.007_bb0170) 2011; 107
10.1016/j.ecoinf.2018.09.007_bb0075
Villon (10.1016/j.ecoinf.2018.09.007_bb0240) 2016
Taquet (10.1016/j.ecoinf.2018.09.007_bb0230) 2007
Mouillot (10.1016/j.ecoinf.2018.09.007_bb0155) 2014; 111(38)
Jackson (10.1016/j.ecoinf.2018.09.007_bb0085) 2001; 293
Willis (10.1016/j.ecoinf.2018.09.007_bb0265) 2000; 51
Levi (10.1016/j.ecoinf.2018.09.007_bb0130) 2008; 48
Halpern (10.1016/j.ecoinf.2018.09.007_bb0060) 2008; 319
Sale (10.1016/j.ecoinf.2018.09.007_bb0190) 1983; 2
Joly (10.1016/j.ecoinf.2018.09.007_bb0100) 2016
Hughes (10.1016/j.ecoinf.2018.09.007_bb0080) 2017; 546
Harvey (10.1016/j.ecoinf.2018.09.007_bb0070) 2007; 350
Krueck (10.1016/j.ecoinf.2018.09.007_bb0110) 2017; 15
Mallet (10.1016/j.ecoinf.2018.09.007_bb0145) 2014; 154
Pandolfi (10.1016/j.ecoinf.2018.09.007_bb0165) 2003; 301
Weinstein (10.1016/j.ecoinf.2018.09.007_bb0255) 2015; 6
Langlois (10.1016/j.ecoinf.2018.09.007_bb0120) 2010; 9
Alsmadi (10.1016/j.ecoinf.2018.09.007_bb0005) 2010; 6
10.1016/j.ecoinf.2018.09.007_bb0095
Harvey (10.1016/j.ecoinf.2018.09.007_bb0065) 2004; 55
Watson (10.1016/j.ecoinf.2018.09.007_bb0250) 2005; 148
Rogers (10.1016/j.ecoinf.2018.09.007_bb0185) 2017; 55
Blanc (10.1016/j.ecoinf.2018.09.007_bb0010) 2014
10.1016/j.ecoinf.2018.09.007_bb0135
Kulbicki (10.1016/j.ecoinf.2018.09.007_bb0115) 2013; 8
Graham (10.1016/j.ecoinf.2018.09.007_bb0055) 2011; 14
Cinner (10.1016/j.ecoinf.2018.09.007_bb0030) 2016; 535
Willis (10.1016/j.ecoinf.2018.09.007_bb0260) 2001; 59
10.1016/j.ecoinf.2018.09.007_bb0215
Froese (10.1016/j.ecoinf.2018.09.007_bb0050) 2000
Siddiqui (10.1016/j.ecoinf.2018.09.007_bb0210) 2017
Krizhevsky (10.1016/j.ecoinf.2018.09.007_bb0105) 2012
Srivastava (10.1016/j.ecoinf.2018.09.007_bb0220) 2014; 15
Brock (10.1016/j.ecoinf.2018.09.007_bb0015) 1954; 18
10.1016/j.ecoinf.2018.09.007_bb0140
Robinson (10.1016/j.ecoinf.2018.09.007_bb0180) 2017; 23
Lecun (10.1016/j.ecoinf.2018.09.007_bb0125) 2015; 521
Price Tack (10.1016/j.ecoinf.2018.09.007_bb0175) 2016; 36
Deiner (10.1016/j.ecoinf.2018.09.007_bb0040) 2017; 26
Schmidhuber (10.1016/j.ecoinf.2018.09.007_bb0195) 2015; 61
Norman (10.1016/j.ecoinf.2018.09.007_bb0160) 2017; 10
Cappo (10.1016/j.ecoinf.2018.09.007_bb0020) 2003
Scott (10.1016/j.ecoinf.2018.09.007_bb0200) 2016; 283
Thresher (10.1016/j.ecoinf.2018.09.007_bb0235) 1986; 17
Matabos (10.1016/j.ecoinf.2018.09.007_bb0150) 2017
Watson (10.1016/j.ecoinf.2018.09.007_bb0245) 2007; 40
Szegedy (10.1016/j.ecoinf.2018.09.007_bb0225) 2015
Chapman (10.1016/j.ecoinf.2018.09.007_bb0025) 1986; 11
References_xml – volume: 293
  start-page: 629
  year: 2001
  end-page: 637
  ident: bb0085
  article-title: Historical overfishing and the recent collapse of coastal ecosystems
  publication-title: Science
– volume: 10
  start-page: 298
  year: 2017
  end-page: 304
  ident: bb0160
  article-title: Undersea Constellations: the Global Biology of an Endangered Marine Megavertebrate further Informed through Citizen Science
  publication-title: Bioscience
– volume: 350
  start-page: 245
  year: 2007
  end-page: 254
  ident: bb0070
  article-title: Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure
  publication-title: Mar. Ecol. Prog. Ser.
– reference: (pp. 675–678). ACM.
– volume: 55
  start-page: 1041
  year: 2017
  end-page: 1049
  ident: bb0185
  article-title: Fisheries productivity under progressive coral reef degradation
  publication-title: J. Appl. Ecol.
– reference: (
– reference: Cinner, J. E., Maire, E., Huchery, C., MacNeil, M. A., Graham, N. A., Mora, C., ... & D'Agata, S. (2018). Gravity of Human Impacts Mediates Coral Reef Conservation Gains.
– volume: 51
  start-page: 755
  year: 2000
  end-page: 763
  ident: bb0265
  article-title: A baited underwater video system for the determination of relative density of carnivorous reef fish
  publication-title: Mar. Freshw. Res.
– volume: 18
  start-page: 297
  year: 1954
  end-page: 308
  ident: bb0015
  article-title: A preliminary report on a method of estimating reef fish populations
  publication-title: J. Wildl. Manag.
– volume: 23
  start-page: 155
  year: 1999
  end-page: 168
  ident: bb0045
  article-title: Comparison of fish abundance estimates made by remote underwater video and visual census
  publication-title: Naturalista sicil
– volume: 535
  start-page: 416
  year: 2016
  ident: bb0030
  article-title: Bright spots among the world's coral reefs
  publication-title: Nature
– reference: Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150–1157). Ieee.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0220
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– year: 2007
  ident: bb0230
  article-title: Poissons de l'océan Indien et de la mer Rouge
– year: 2016, October
  ident: bb0240
  article-title: Coral reef fish detection and recognition in underwater videos by supervised machine learning: Comparison between Deep Learning and HOG+ SVM methods
  publication-title: International Conference on Advanced Concepts for Intelligent Vision Systems (pp. 160–171)
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0105
  article-title: Imagenet Classification with Deep Convolutional Neural Networks. InAdvances in Neural Information Processing Systems
– volume: 111(38)
  start-page: 13757
  year: 2014
  end-page: 13762
  ident: bb0155
  article-title: Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
  publication-title: Proceedings of the National Academy of Sciences
– volume: 48
  start-page: 635
  year: 2008
  end-page: 654
  ident: bb0130
  article-title: Crowding—an essential bottleneck for object recognition: a mini-review
  publication-title: Vis. Res.
– volume: 55
  start-page: 573
  year: 2004
  end-page: 580
  ident: bb0065
  article-title: A comparison of underwater visual distance estimates made by scuba divers and a stereo-video system: implications for underwater visual census of reef fish abundance
  publication-title: Mar. Freshw. Res.
– reference: Li, X., Shang, M., Qin, H., & Chen, L. (2015, October). Fast accurate fish detection and recognition of underwater images with fast r-cnn. In (pp. 1–5). IEEE.
– start-page: 286
  year: 2016, September
  end-page: 310
  ident: bb0100
  article-title: LifeCLEF 2016: multimedia life species identification challenges
  publication-title: International Conference of the Cross-Language Evaluation Forum for European Languages
– volume: 26
  start-page: 5872
  year: 2017
  end-page: 5895
  ident: bb0040
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Mol. Ecol.
– start-page: fsx109
  year: 2017
  ident: bb0210
  article-title: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data
  publication-title: ICES J. Mar. Sci.
– volume: 2
  start-page: 37
  year: 1983
  end-page: 42
  ident: bb0190
  article-title: Correction for bias in visual transect censuses of coral reef fishes
  publication-title: Coral Reefs
– volume: 9
  start-page: 155
  year: 2010
  end-page: 168
  ident: bb0120
  article-title: Cost-efficient sampling of fish assemblages: comparison of baited video sta=tions and diver video transects
  publication-title: Aquat. Biol.
– reference: 2018).
– reference: Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In
– volume: 17
  start-page: 93
  year: 1986
  end-page: 116
  ident: bb0235
  article-title: Comparative analysis of visual census techniques for highly mobile, reef-associated piscivores (Carangidae)
  publication-title: Environ. Biol. Fish
– start-page: 1
  year: 2014, November
  end-page: 6
  ident: bb0010
  article-title: Fish species recognition from video using SVM classifier. In Proceedings of the 3rd ACM International Workshop on Multimedia Analysis for Ecological Data
– volume: 6
  start-page: 1088
  year: 2010
  ident: bb0005
  article-title: Fish recognition based on robust features extraction from size and shape measurements using neural network
  publication-title: J. Comput. Sci.
– volume: 8
  year: 2013
  ident: bb0115
  article-title: Global biogeography of reef fishes: a hierarchical quantitative delineation of regions
  publication-title: PLoS One
– start-page: 1
  year: 2015
  end-page: 9
  ident: bb0225
  article-title: Going Deeper with Convolutions. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 455
  year: 2003
  end-page: 464
  ident: bb0020
  article-title: Potential of Video Techniques to Monitor Diversity, Abundance and Size of Fish in Studies of Marine Protected Areas. Aquatic Protected Areas-What Works Best and how Do we Know
– volume: 40
  start-page: 85
  year: 2007
  end-page: 103
  ident: bb0245
  article-title: Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver
  publication-title: Mar. Freshw. Behav. Physiol.
– volume: 6
  start-page: 357
  year: 2015
  end-page: 362
  ident: bb0255
  article-title: MotionMeerkat: Integrating motion video detection and ecological monitoring (S Dray, Ed.)
  publication-title: Methods Ecol. Evol.
– volume: 107
  start-page: 84
  year: 2011
  end-page: 93
  ident: bb0170
  article-title: Comparison of visual census and high definition video transects for monitoring coral reef fish assemblages
  publication-title: Fish. Res.
– volume: 301
  start-page: 955
  year: 2003
  end-page: 958
  ident: bb0165
  article-title: Global trajectories of the long-term decline of coral reef ecosystems
  publication-title: Science
– volume: 319
  start-page: 948
  year: 2008
  end-page: 952
  ident: bb0060
  article-title: A global map of human impact on marine ecosystems
  publication-title: Science
– year: 2000
  ident: bb0050
  article-title: FishBase 2000: Concepts Designs and Data Sources(Vol. 1594)
– volume: 283
  year: 2016
  ident: bb0200
  article-title: Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection
  publication-title: Proc. R. Soc. B
– volume: 546
  start-page: 82
  year: 2017
  ident: bb0080
  article-title: Coral reefs in the Anthropocene
  publication-title: Nature
– volume: 23
  start-page: 1009
  year: 2017
  end-page: 1022
  ident: bb0180
  article-title: Fishing degrades size structure of coral reef fish communities
  publication-title: Glob. Chang. Biol.
– year: 2017
  ident: bb0150
  article-title: Expert, Crowd
  publication-title: Students or Algorithm: Who Holds the Key to Deep-Sea Imagery ‘Big data'processing?.Methods in Ecology and Evolution
– reference: Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y. H. J., Fisher, R. B., & Nadarajan, G. (2010, October). Automatic fish classification for underwater species behavior understanding. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 45–50). ACM.
– volume: 11
  start-page: l
  year: 1986
  end-page: 14
  ident: bb0025
  article-title: Fish behaviour in relation to divers
  publication-title: Prog Underw Sci
– volume: 36
  start-page: 145
  year: 2016
  end-page: 151
  ident: bb0175
  article-title: AnimalFinder: a semi-automated system for animal detection in time-lapse camera trap images
  publication-title: Ecol. Inform.
– volume: 154
  start-page: 44
  year: 2014
  end-page: 62
  ident: bb0145
  article-title: Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012)
  publication-title: Fish. Res.
– volume: 148
  start-page: 415
  year: 2005
  end-page: 425
  ident: bb0250
  article-title: A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques
  publication-title: Mar. Biol.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bb0195
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– volume: 50
  start-page: 4
  year: 2016
  end-page: 16
  ident: bb0205
  article-title: Progress in the automated identification, measurement, and counting of fish in underwater image sequences
  publication-title: Mar. Technol. Soc. J.
– reference: National Academy of Sciences, 201708001.
– volume: 15
  year: 2017
  ident: bb0110
  article-title: Marine reserve targets to sustain and rebuild unregulated fisheries
  publication-title: PLoS Biol.
– volume: 59
  start-page: 1408
  year: 2001
  end-page: 1411
  ident: bb0260
  article-title: Visual census methods underestimate density and diversity of cryptic reef fishes
  publication-title: J. Fish Biol.
– volume: 521
  start-page: 436
  year: 2015
  ident: bb0125
  article-title: Deep learning
  publication-title: Nature
– volume: 14
  start-page: 341
  year: 2011
  end-page: 348
  ident: bb0055
  article-title: Extinction vulnerability of coral reef fishes
  publication-title: Ecol. Lett.
– ident: 10.1016/j.ecoinf.2018.09.007_bb0095
  doi: 10.1145/2647868.2654889
– volume: 107
  start-page: 84
  issue: 1
  year: 2011
  ident: 10.1016/j.ecoinf.2018.09.007_bb0170
  article-title: Comparison of visual census and high definition video transects for monitoring coral reef fish assemblages
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2010.10.011
– volume: 55
  start-page: 573
  issue: 6
  year: 2004
  ident: 10.1016/j.ecoinf.2018.09.007_bb0065
  article-title: A comparison of underwater visual distance estimates made by scuba divers and a stereo-video system: implications for underwater visual census of reef fish abundance
  publication-title: Mar. Freshw. Res.
  doi: 10.1071/MF03130
– volume: 293
  start-page: 629
  issue: 5530
  year: 2001
  ident: 10.1016/j.ecoinf.2018.09.007_bb0085
  article-title: Historical overfishing and the recent collapse of coastal ecosystems
  publication-title: Science
  doi: 10.1126/science.1059199
– volume: 17
  start-page: 93
  issue: 2
  year: 1986
  ident: 10.1016/j.ecoinf.2018.09.007_bb0235
  article-title: Comparative analysis of visual census techniques for highly mobile, reef-associated piscivores (Carangidae)
  publication-title: Environ. Biol. Fish
  doi: 10.1007/BF00001740
– volume: 148
  start-page: 415
  year: 2005
  ident: 10.1016/j.ecoinf.2018.09.007_bb0250
  article-title: A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques
  publication-title: Mar. Biol.
  doi: 10.1007/s00227-005-0090-6
– start-page: 1
  year: 2015
  ident: 10.1016/j.ecoinf.2018.09.007_bb0225
– year: 2007
  ident: 10.1016/j.ecoinf.2018.09.007_bb0230
– volume: 18
  start-page: 297
  issue: 3
  year: 1954
  ident: 10.1016/j.ecoinf.2018.09.007_bb0015
  article-title: A preliminary report on a method of estimating reef fish populations
  publication-title: J. Wildl. Manag.
  doi: 10.2307/3797016
– volume: 48
  start-page: 635
  issue: 5
  year: 2008
  ident: 10.1016/j.ecoinf.2018.09.007_bb0130
  article-title: Crowding—an essential bottleneck for object recognition: a mini-review
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2007.12.009
– year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0150
  article-title: Expert, Crowd
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.ecoinf.2018.09.007_bb0220
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The Journal of Machine Learning Research
– start-page: 286
  year: 2016
  ident: 10.1016/j.ecoinf.2018.09.007_bb0100
  article-title: LifeCLEF 2016: multimedia life species identification challenges
– ident: 10.1016/j.ecoinf.2018.09.007_bb0035
  doi: 10.1073/pnas.1708001115
– start-page: fsx109
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0210
  article-title: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data
  publication-title: ICES J. Mar. Sci.
– start-page: 1097
  year: 2012
  ident: 10.1016/j.ecoinf.2018.09.007_bb0105
– volume: 10
  start-page: 298
  issue: 6
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0160
  article-title: Undersea Constellations: the Global Biology of an Endangered Marine Megavertebrate further Informed through Citizen Science
  publication-title: Bioscience
– volume: 301
  start-page: 955
  issue: 5635
  year: 2003
  ident: 10.1016/j.ecoinf.2018.09.007_bb0165
  article-title: Global trajectories of the long-term decline of coral reef ecosystems
  publication-title: Science
  doi: 10.1126/science.1085706
– volume: 350
  start-page: 245
  year: 2007
  ident: 10.1016/j.ecoinf.2018.09.007_bb0070
  article-title: Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps07192
– volume: 15
  issue: 1
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0110
  article-title: Marine reserve targets to sustain and rebuild unregulated fisheries
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2000537
– volume: 40
  start-page: 85
  year: 2007
  ident: 10.1016/j.ecoinf.2018.09.007_bb0245
  article-title: Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver
  publication-title: Mar. Freshw. Behav. Physiol.
  doi: 10.1080/10236240701393263
– volume: 26
  start-page: 5872
  issue: 21
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0040
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14350
– ident: 10.1016/j.ecoinf.2018.09.007_bb0075
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.ecoinf.2018.09.007_bb0115
  article-title: Global biogeography of reef fishes: a hierarchical quantitative delineation of regions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081847
– volume: 283
  issue: 1831
  year: 2016
  ident: 10.1016/j.ecoinf.2018.09.007_bb0200
  article-title: Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2015.2694
– volume: 11
  start-page: l
  year: 1986
  ident: 10.1016/j.ecoinf.2018.09.007_bb0025
  article-title: Fish behaviour in relation to divers
  publication-title: Prog Underw Sci
– ident: 10.1016/j.ecoinf.2018.09.007_bb0215
  doi: 10.1145/1877868.1877881
– ident: 10.1016/j.ecoinf.2018.09.007_bb0140
  doi: 10.1109/ICCV.1999.790410
– volume: 6
  start-page: 357
  year: 2015
  ident: 10.1016/j.ecoinf.2018.09.007_bb0255
  article-title: MotionMeerkat: Integrating motion video detection and ecological monitoring (S Dray, Ed.)
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12320
– year: 2000
  ident: 10.1016/j.ecoinf.2018.09.007_bb0050
– volume: 6
  start-page: 1088
  issue: 10
  year: 2010
  ident: 10.1016/j.ecoinf.2018.09.007_bb0005
  article-title: Fish recognition based on robust features extraction from size and shape measurements using neural network
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2010.1088.1094
– volume: 51
  start-page: 755
  issue: 8
  year: 2000
  ident: 10.1016/j.ecoinf.2018.09.007_bb0265
  article-title: A baited underwater video system for the determination of relative density of carnivorous reef fish
  publication-title: Mar. Freshw. Res.
  doi: 10.1071/MF00010
– volume: 23
  start-page: 155
  year: 1999
  ident: 10.1016/j.ecoinf.2018.09.007_bb0045
  article-title: Comparison of fish abundance estimates made by remote underwater video and visual census
  publication-title: Naturalista sicil
– ident: 10.1016/j.ecoinf.2018.09.007_bb0135
– volume: 59
  start-page: 1408
  issue: 5
  year: 2001
  ident: 10.1016/j.ecoinf.2018.09.007_bb0260
  article-title: Visual census methods underestimate density and diversity of cryptic reef fishes
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.2001.tb00202.x
– volume: 535
  start-page: 416
  issue: 7612
  year: 2016
  ident: 10.1016/j.ecoinf.2018.09.007_bb0030
  article-title: Bright spots among the world's coral reefs
  publication-title: Nature
  doi: 10.1038/nature18607
– volume: 546
  start-page: 82
  issue: 7656
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0080
  article-title: Coral reefs in the Anthropocene
  publication-title: Nature
  doi: 10.1038/nature22901
– start-page: 455
  year: 2003
  ident: 10.1016/j.ecoinf.2018.09.007_bb0020
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.ecoinf.2018.09.007_bb0125
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 319
  start-page: 948
  issue: 5865
  year: 2008
  ident: 10.1016/j.ecoinf.2018.09.007_bb0060
  article-title: A global map of human impact on marine ecosystems
  publication-title: Science
  doi: 10.1126/science.1149345
– volume: 50
  start-page: 4
  issue: 1
  year: 2016
  ident: 10.1016/j.ecoinf.2018.09.007_bb0205
  article-title: Progress in the automated identification, measurement, and counting of fish in underwater image sequences
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/MTSJ.50.1.1
– volume: 154
  start-page: 44
  year: 2014
  ident: 10.1016/j.ecoinf.2018.09.007_bb0145
  article-title: Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012)
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2014.01.019
– year: 2016
  ident: 10.1016/j.ecoinf.2018.09.007_bb0240
  article-title: Coral reef fish detection and recognition in underwater videos by supervised machine learning: Comparison between Deep Learning and HOG+ SVM methods
– volume: 23
  start-page: 1009
  issue: 3
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0180
  article-title: Fishing degrades size structure of coral reef fish communities
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13482
– volume: 111(38)
  start-page: 13757
  year: 2014
  ident: 10.1016/j.ecoinf.2018.09.007_bb0155
  article-title: Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
– volume: 2
  start-page: 37
  issue: 1
  year: 1983
  ident: 10.1016/j.ecoinf.2018.09.007_bb0190
  article-title: Correction for bias in visual transect censuses of coral reef fishes
  publication-title: Coral Reefs
  doi: 10.1007/BF00304730
– volume: 14
  start-page: 341
  issue: 4
  year: 2011
  ident: 10.1016/j.ecoinf.2018.09.007_bb0055
  article-title: Extinction vulnerability of coral reef fishes
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2011.01592.x
– volume: 9
  start-page: 155
  year: 2010
  ident: 10.1016/j.ecoinf.2018.09.007_bb0120
  article-title: Cost-efficient sampling of fish assemblages: comparison of baited video sta=tions and diver video transects
  publication-title: Aquat. Biol.
  doi: 10.3354/ab00235
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.ecoinf.2018.09.007_bb0195
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 36
  start-page: 145
  year: 2016
  ident: 10.1016/j.ecoinf.2018.09.007_bb0175
  article-title: AnimalFinder: a semi-automated system for animal detection in time-lapse camera trap images
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2016.11.003
– volume: 55
  start-page: 1041
  issue: 3
  year: 2017
  ident: 10.1016/j.ecoinf.2018.09.007_bb0185
  article-title: Fisheries productivity under progressive coral reef degradation
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13051
– start-page: 1
  year: 2014
  ident: 10.1016/j.ecoinf.2018.09.007_bb0010
SSID ssj0043882
Score 2.5704472
Snippet Identifying and counting fish individuals on photos and videos is a crucial task to cost-effectively monitor marine biodiversity, yet it remains difficult and...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 238
SubjectTerms Artificial Intelligence
Automated identification
biodiversity
Biodiversity and Ecology
Computer Science
Computer Vision and Pattern Recognition
Convolutional neural network
coral reefs
corals
Environmental Sciences
fish
humans
Image Processing
Machine Learning
Marine fishes
monitoring
Neural and Evolutionary Computing
protocols
species identification
Underwater pictures
Title A Deep learning method for accurate and fast identification of coral reef fishes in underwater images
URI https://dx.doi.org/10.1016/j.ecoinf.2018.09.007
https://www.proquest.com/docview/2153637005
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01884005
Volume 48
WOSCitedRecordID wos000453641900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1574-9541
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1574-9541
  databaseCode: M~E
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0043882
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FAhIXxKqGTYPUW-UqnvF6jFBQD1AhtaDeRuNZwFXiRIkdyoV_wn_lzeYmqaD0gBRZ0Wjs2H5f3jLz3vcQOkg5yU1yeyT1SEdJqlXEwRBGKeWUCPAAspGwzSbyk5Pi_Lz8NBj8CrUw62neNMXlZbn4r6KGMRC2KZ29hbj7i8IAfAehwxHEDsd_EvwYdIhahHYQX32PaJctKURnqCHsjoHmq_awlj5bqPcchS3ZXyqlD7XJl7f5sqbSbPmdG0LFegYaaLW1oC96BeppWNuNFPovddjZP3Wb8mA3DZVrL-l5Z2a0Own2NuGgg5cWKorExpr61DdimdjFmdOjzaWLuPA1fBvaFkBSpo75KqhjR7wZ9KmjfvGmmTiqyGta3y1AXBxBwA7jJl-vsOS1rp_uNsn2jvHrUxJDttsFc1dh5ipsVDLLVXCX5Glp9P7Hn5Ng6BNa2F5k_VOEykybPnj9Xv7k-dz5ZlJwdzwB696cPUIPfVyCxw5Pj9FANU_QfSfaH0-RGmODKhxQhR2qMIgbB1RhQBU2qMLbqMJzjS2qsEEVdqjCdYOvUIUdqp6hz-8nZ--OI9-hIxIJiVt4alKBP0m0oGYhgHMIxznNieZFLkuZJzot05ILSmRVCSqrohRU5VUhZQGRs6TP0V4zb9Q-wtxYmwwCDp1AhA5uZJxJnZFYES7hkw4RDW-PCU9fb7qoTNnfJDdEUX_WwtG33DA_D4Jh3gV1riUDrN1w5gHIsf8Rw9p-PP7ApvVyNmMwrQBjma7jIXobBM1AkZvdOd6oebdi4HvTjOYw68Utb_olenD173qF9tplp16je2Ld1qvlG4vZ33ZZwr0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+learning+method+for+accurate+and+fast+identification+of+coral+reef+fishes+in+underwater+images&rft.jtitle=Ecological+informatics&rft.au=Villon%2C+S%C3%A9bastien&rft.au=Mouillot%2C+David&rft.au=Chaumont%2C+Marc&rft.au=Darling%2C+Emily+S.&rft.date=2018-11-01&rft.issn=1574-9541&rft.volume=48&rft.spage=238&rft.epage=244&rft_id=info:doi/10.1016%2Fj.ecoinf.2018.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoinf_2018_09_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon