A systematic method for integrating product attributes within molecular synthesis
The complete and efficient solution to the enumeration of candidate compounds and mixtures that meet specified consumer attributes is often a difficult mathematical programming problem. Most approaches to this problem involve the solution of a mixed integer non-linear program (MINLP) which may achie...
Saved in:
| Published in: | Computers & chemical engineering Vol. 33; no. 5; pp. 977 - 991 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
21.05.2009
|
| Subjects: | |
| ISSN: | 0098-1354, 1873-4375 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The complete and efficient solution to the enumeration of candidate compounds and mixtures that meet specified consumer attributes is often a difficult mathematical programming problem. Most approaches to this problem involve the solution of a mixed integer non-linear program (MINLP) which may achieve only local optima solutions. In this paper a proof-of-concept study is presented to show that empirical models can be used in a reverse problem formulation to ensure a complete set of candidate compounds and mixtures are found subject to the predictive power of the model. The method utilizes a transformation of consumer attributes to properties described by the group contribution method and solves the reverse problem formulation using the property clustering technique. A case study in refrigerant design is used to highlight the method. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0098-1354 1873-4375 |
| DOI: | 10.1016/j.compchemeng.2008.11.001 |