A systematic method for integrating product attributes within molecular synthesis

The complete and efficient solution to the enumeration of candidate compounds and mixtures that meet specified consumer attributes is often a difficult mathematical programming problem. Most approaches to this problem involve the solution of a mixed integer non-linear program (MINLP) which may achie...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering Vol. 33; no. 5; pp. 977 - 991
Main Authors: Solvason, Charles C., Chemmangattuvalappil, Nishanth G., Eden, Mario R.
Format: Journal Article
Language:English
Published: Elsevier Ltd 21.05.2009
Subjects:
ISSN:0098-1354, 1873-4375
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The complete and efficient solution to the enumeration of candidate compounds and mixtures that meet specified consumer attributes is often a difficult mathematical programming problem. Most approaches to this problem involve the solution of a mixed integer non-linear program (MINLP) which may achieve only local optima solutions. In this paper a proof-of-concept study is presented to show that empirical models can be used in a reverse problem formulation to ensure a complete set of candidate compounds and mixtures are found subject to the predictive power of the model. The method utilizes a transformation of consumer attributes to properties described by the group contribution method and solves the reverse problem formulation using the property clustering technique. A case study in refrigerant design is used to highlight the method.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2008.11.001