Performance of a Distributed Stochastic Approximation Algorithm
In this paper, a distributed stochastic approximation algorithm is studied. Applications of such algorithms include decentralized estimation, optimization, control or computing. The algorithm consists in two steps: a local step, where each node in a network updates a local estimate using a stochasti...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 59; no. 11; pp. 7405 - 7418 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.11.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, a distributed stochastic approximation algorithm is studied. Applications of such algorithms include decentralized estimation, optimization, control or computing. The algorithm consists in two steps: a local step, where each node in a network updates a local estimate using a stochastic approximation algorithm with decreasing step size, and a gossip step, where a node computes a local weighted average between its estimates and those of its neighbors. Convergence of the estimates toward a consensus is established under weak assumptions. The approach relies on two main ingredients: the existence of a Lyapunov function for the mean field in the agreement subspace, and a contraction property of the random matrices of weights in the subspace orthogonal to the agreement subspace. A second-order analysis of the algorithm is also performed under the form of a central limit Theorem. The Polyak-averaged version of the algorithm is also considered. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2013.2275131 |