Estimation of grassland biomass and nitrogen using MERIS data
This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index)...
Saved in:
| Published in: | ITC journal Vol. 19; no. 1 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.10.2012
|
| Subjects: | |
| ISSN: | 0303-2434 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m-2 (using an independent validation dataset, n = 30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m-2). Nitrogen density was also best predicted by NBDI and yielded a calibration R2 of 0.51 and a RMSE of 4.2 g m-2 compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m-2). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P > 0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale. |
|---|---|
| AbstractList | This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m-2 (using an independent validation dataset, n = 30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m-2). Nitrogen density was also best predicted by NBDI and yielded a calibration R2 of 0.51 and a RMSE of 4.2 g m-2 compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m-2). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P > 0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale. |
| Author | Ullah, G Skidmore, A.K Schlerf, M Shafique, M Si, Y Iqbal, I.A |
| Author_xml | – sequence: 1 fullname: Ullah, G – sequence: 2 fullname: Si, Y – sequence: 3 fullname: Schlerf, M – sequence: 4 fullname: Skidmore, A.K – sequence: 5 fullname: Shafique, M – sequence: 6 fullname: Iqbal, I.A |
| BookMark | eNotjs1Kw0AURmdRwVr7AO7mBRLv3JlJUsGFlGoLFcGfdbiTzIQJ6UQyCcW3N0W_zTmrj3PDFqEPlrE7AakAkd23aUtNiiAwBZ0CFAu2BAkyQSXVNVvH2MI8tUHIsyV73MXRn2j0feC9481AMXYUam58f5qdXzz4cegbG_gUfWj46-798MFrGumWXTnqol3_c8W-nnef231yfHs5bJ-OSaVQjIkEp1HYirQVBjRaSdrhJqt1brFGRZUTrpYKHSEVgqxyNgNrDWbOFNrJFXv4-z3TnDE32FAGGiofy5582Xkz0PBTnqehDN0F35OJpVK50oX8BYCnVh4 |
| CitedBy_id | crossref_primary_10_1016_j_biombioe_2019_02_002 crossref_primary_10_1016_j_eja_2016_08_001 crossref_primary_10_1038_s41598_017_07197_6 crossref_primary_10_1080_01431161_2018_1541110 crossref_primary_10_1051_itmconf_20171202003 crossref_primary_10_1016_j_isprsjprs_2014_04_005 crossref_primary_10_1080_00103624_2025_2509589 crossref_primary_10_5194_bg_15_2723_2018 crossref_primary_10_1109_JSTARS_2016_2574360 crossref_primary_10_1016_j_jag_2024_104211 crossref_primary_10_1080_01431161_2016_1259678 crossref_primary_10_1016_j_scitotenv_2012_08_025 crossref_primary_10_1016_j_ecolind_2020_107215 crossref_primary_10_1016_j_isprsjprs_2014_12_017 crossref_primary_10_1016_j_compag_2024_109134 crossref_primary_10_1016_j_ecolind_2020_106883 crossref_primary_10_1016_j_jag_2014_06_004 crossref_primary_10_1080_10106049_2018_1474274 crossref_primary_10_1111_oik_01370 crossref_primary_10_1016_j_jenvman_2019_03_010 crossref_primary_10_1080_01431161_2020_1820618 crossref_primary_10_1093_jpe_rtw005 crossref_primary_10_1016_j_ecolind_2024_111554 crossref_primary_10_1109_JSTARS_2016_2561618 crossref_primary_10_1002_rse2_337 crossref_primary_10_1016_j_ecolind_2021_107450 crossref_primary_10_1016_j_isprsjprs_2019_06_007 crossref_primary_10_1080_21580103_2018_1452797 crossref_primary_10_1186_s40462_024_00521_6 crossref_primary_10_1016_j_biosystemseng_2014_08_014 crossref_primary_10_1016_j_isprsjprs_2015_10_005 crossref_primary_10_1016_j_jag_2017_01_016 crossref_primary_10_1016_j_ecolind_2020_107227 crossref_primary_10_1016_j_jaridenv_2014_09_003 crossref_primary_10_1016_j_asr_2021_10_048 crossref_primary_10_1371_journal_pone_0315329 crossref_primary_10_3390_rs15164033 crossref_primary_10_1109_JSTARS_2015_2432075 crossref_primary_10_1109_JSTARS_2014_2320601 |
| ContentType | Journal Article |
| Copyright | Wageningen University & Research |
| Copyright_xml | – notice: Wageningen University & Research |
| DBID | QVL |
| DOI | 10.1016/j.jag.2012.05.008 |
| DatabaseName | NARCIS:Publications |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_library_wur_nl_wurpubs_447458 |
| GroupedDBID | 8RP ALMA_UNASSIGNED_HOLDINGS QVL VH1 |
| ID | FETCH-LOGICAL-c421t-30f521eca5e1b052e3a5f296d57e2d24acf1fd342fa2a81ae4fe60eeb26fb85f3 |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309028500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0303-2434 |
| IngestDate | Tue Jan 05 18:10:36 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c421t-30f521eca5e1b052e3a5f296d57e2d24acf1fd342fa2a81ae4fe60eeb26fb85f3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S030324341200116X |
| ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_447458 |
| ProviderPackageCode | QVL |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-01 |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | ITC journal |
| PublicationYear | 2012 |
| SSID | ssj0000492076 |
| Score | 2.3153393 |
| Snippet | This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI,... |
| SourceID | wageningen |
| SourceType | Open Access Repository |
| SubjectTerms | aboveground biomass band-depth analysis branta-leucopsis broad-band canopy hyperspectral data quality red edge position terrestrial chlorophyll index vegetation indexes |
| Title | Estimation of grassland biomass and nitrogen using MERIS data |
| URI | http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F447458 |
| Volume | 19 |
| WOSCitedRecordID | wos000309028500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0303-2434 databaseCode: AIEXJ dateStart: 19990101 customDbUrl: isFulltext: true dateEnd: 20191130 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000492076 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbapEMyFOkLfQYcuhkKJL4kjkHgokmKoICdwptAimTgpJUL2W7y83ukaVpxhz6ALhJBQBSljzwev7vjIfTeurJhhjUZJdZkICV1phk3mdCVoJoo2oQI7y-fyouLajKRn2NaxXlIJ1C2bXV3J7__V6ihDsD2obN_AXdqFCqgDKDDFWCH6x8BP4RJ-y0pglcdaMfee3HgA-2hHKwFMI-7GbQwWAaqwGd-HA1imFrSVU_HJ4P-GwGWSxg0gYdJGblG040QD_Ycn03Z3aNZRzdTk9x5j877PENBksdaiq_KaUZYpB7XslNuj5FfRPKKHbg-ulZX3pOOhINS82qz_qxt7lvL0r0DsCOlVd8uu7r96m8wWuc1YyXj1UO0S0ouQabtHp8OJ2eJY4PdD8nLlbk6dn5t2A4ufltd2kd7tyDE2xDV1tMyxgfocdwe4OMVrE_QA9s-Rfu9QyOfoR7AeOZwAhhHgLEvrwHGAWAcAMYe4Ofo8sNwfPIxi0kwsoaRYpHR3IGGZRvFbaFzTixV3BEpDC8tMYSpxhXOUEacIqoqlGXOitxaTYTTFXf0BdppZ619ibDhrDDWCWFEwyqitZRcScK14lSXUrxCdPP9detzWc3r3_791__01Bu0txlkb9HOolvad-hR82MxnXeHEcifmrlZ0Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+grassland+biomass+and+nitrogen+using+MERIS+data&rft.jtitle=ITC+journal&rft.au=Ullah%2C+G&rft.au=Si%2C+Y&rft.au=Schlerf%2C+M&rft.au=Skidmore%2C+A.K&rft.date=2012-10-01&rft.issn=0303-2434&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jag.2012.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_447458 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-2434&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-2434&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-2434&client=summon |