Estimation of grassland biomass and nitrogen using MERIS data

This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index)...

Full description

Saved in:
Bibliographic Details
Published in:ITC journal Vol. 19; no. 1
Main Authors: Ullah, G, Si, Y, Schlerf, M, Skidmore, A.K, Shafique, M, Iqbal, I.A
Format: Journal Article
Language:English
Published: 01.10.2012
Subjects:
ISSN:0303-2434
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m-2 (using an independent validation dataset, n = 30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m-2). Nitrogen density was also best predicted by NBDI and yielded a calibration R2 of 0.51 and a RMSE of 4.2 g m-2 compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m-2). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P > 0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale.
AbstractList This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m-2 (using an independent validation dataset, n = 30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m-2). Nitrogen density was also best predicted by NBDI and yielded a calibration R2 of 0.51 and a RMSE of 4.2 g m-2 compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m-2). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P > 0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale.
Author Ullah, G
Skidmore, A.K
Schlerf, M
Shafique, M
Si, Y
Iqbal, I.A
Author_xml – sequence: 1
  fullname: Ullah, G
– sequence: 2
  fullname: Si, Y
– sequence: 3
  fullname: Schlerf, M
– sequence: 4
  fullname: Skidmore, A.K
– sequence: 5
  fullname: Shafique, M
– sequence: 6
  fullname: Iqbal, I.A
BookMark eNotjs1Kw0AURmdRwVr7AO7mBRLv3JlJUsGFlGoLFcGfdbiTzIQJ6UQyCcW3N0W_zTmrj3PDFqEPlrE7AakAkd23aUtNiiAwBZ0CFAu2BAkyQSXVNVvH2MI8tUHIsyV73MXRn2j0feC9481AMXYUam58f5qdXzz4cegbG_gUfWj46-798MFrGumWXTnqol3_c8W-nnef231yfHs5bJ-OSaVQjIkEp1HYirQVBjRaSdrhJqt1brFGRZUTrpYKHSEVgqxyNgNrDWbOFNrJFXv4-z3TnDE32FAGGiofy5582Xkz0PBTnqehDN0F35OJpVK50oX8BYCnVh4
CitedBy_id crossref_primary_10_1016_j_biombioe_2019_02_002
crossref_primary_10_1016_j_eja_2016_08_001
crossref_primary_10_1038_s41598_017_07197_6
crossref_primary_10_1080_01431161_2018_1541110
crossref_primary_10_1051_itmconf_20171202003
crossref_primary_10_1016_j_isprsjprs_2014_04_005
crossref_primary_10_1080_00103624_2025_2509589
crossref_primary_10_5194_bg_15_2723_2018
crossref_primary_10_1109_JSTARS_2016_2574360
crossref_primary_10_1016_j_jag_2024_104211
crossref_primary_10_1080_01431161_2016_1259678
crossref_primary_10_1016_j_scitotenv_2012_08_025
crossref_primary_10_1016_j_ecolind_2020_107215
crossref_primary_10_1016_j_isprsjprs_2014_12_017
crossref_primary_10_1016_j_compag_2024_109134
crossref_primary_10_1016_j_ecolind_2020_106883
crossref_primary_10_1016_j_jag_2014_06_004
crossref_primary_10_1080_10106049_2018_1474274
crossref_primary_10_1111_oik_01370
crossref_primary_10_1016_j_jenvman_2019_03_010
crossref_primary_10_1080_01431161_2020_1820618
crossref_primary_10_1093_jpe_rtw005
crossref_primary_10_1016_j_ecolind_2024_111554
crossref_primary_10_1109_JSTARS_2016_2561618
crossref_primary_10_1002_rse2_337
crossref_primary_10_1016_j_ecolind_2021_107450
crossref_primary_10_1016_j_isprsjprs_2019_06_007
crossref_primary_10_1080_21580103_2018_1452797
crossref_primary_10_1186_s40462_024_00521_6
crossref_primary_10_1016_j_biosystemseng_2014_08_014
crossref_primary_10_1016_j_isprsjprs_2015_10_005
crossref_primary_10_1016_j_jag_2017_01_016
crossref_primary_10_1016_j_ecolind_2020_107227
crossref_primary_10_1016_j_jaridenv_2014_09_003
crossref_primary_10_1016_j_asr_2021_10_048
crossref_primary_10_1371_journal_pone_0315329
crossref_primary_10_3390_rs15164033
crossref_primary_10_1109_JSTARS_2015_2432075
crossref_primary_10_1109_JSTARS_2014_2320601
ContentType Journal Article
Copyright Wageningen University & Research
Copyright_xml – notice: Wageningen University & Research
DBID QVL
DOI 10.1016/j.jag.2012.05.008
DatabaseName NARCIS:Publications
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_library_wur_nl_wurpubs_447458
GroupedDBID 8RP
ALMA_UNASSIGNED_HOLDINGS
QVL
VH1
ID FETCH-LOGICAL-c421t-30f521eca5e1b052e3a5f296d57e2d24acf1fd342fa2a81ae4fe60eeb26fb85f3
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309028500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0303-2434
IngestDate Tue Jan 05 18:10:36 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-30f521eca5e1b052e3a5f296d57e2d24acf1fd342fa2a81ae4fe60eeb26fb85f3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S030324341200116X
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_447458
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationTitle ITC journal
PublicationYear 2012
SSID ssj0000492076
Score 2.3153393
Snippet This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI,...
SourceID wageningen
SourceType Open Access Repository
SubjectTerms aboveground biomass
band-depth analysis
branta-leucopsis
broad-band
canopy
hyperspectral data
quality
red edge position
terrestrial chlorophyll index
vegetation indexes
Title Estimation of grassland biomass and nitrogen using MERIS data
URI http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F447458
Volume 19
WOSCitedRecordID wos000309028500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0303-2434
  databaseCode: AIEXJ
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  dateEnd: 20191130
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000492076
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbapEMyFOkLfQYcuhkKJL4kjkHgokmKoICdwptAimTgpJUL2W7y83ukaVpxhz6ALhJBQBSljzwev7vjIfTeurJhhjUZJdZkICV1phk3mdCVoJoo2oQI7y-fyouLajKRn2NaxXlIJ1C2bXV3J7__V6ihDsD2obN_AXdqFCqgDKDDFWCH6x8BP4RJ-y0pglcdaMfee3HgA-2hHKwFMI-7GbQwWAaqwGd-HA1imFrSVU_HJ4P-GwGWSxg0gYdJGblG040QD_Ycn03Z3aNZRzdTk9x5j877PENBksdaiq_KaUZYpB7XslNuj5FfRPKKHbg-ulZX3pOOhINS82qz_qxt7lvL0r0DsCOlVd8uu7r96m8wWuc1YyXj1UO0S0ouQabtHp8OJ2eJY4PdD8nLlbk6dn5t2A4ufltd2kd7tyDE2xDV1tMyxgfocdwe4OMVrE_QA9s-Rfu9QyOfoR7AeOZwAhhHgLEvrwHGAWAcAMYe4Ofo8sNwfPIxi0kwsoaRYpHR3IGGZRvFbaFzTixV3BEpDC8tMYSpxhXOUEacIqoqlGXOitxaTYTTFXf0BdppZ619ibDhrDDWCWFEwyqitZRcScK14lSXUrxCdPP9detzWc3r3_791__01Bu0txlkb9HOolvad-hR82MxnXeHEcifmrlZ0Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+grassland+biomass+and+nitrogen+using+MERIS+data&rft.jtitle=ITC+journal&rft.au=Ullah%2C+G&rft.au=Si%2C+Y&rft.au=Schlerf%2C+M&rft.au=Skidmore%2C+A.K&rft.date=2012-10-01&rft.issn=0303-2434&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jag.2012.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_447458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-2434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-2434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-2434&client=summon