Accurate image reconstruction from few-view and limited-angle data in diffraction tomography
We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total...
Saved in:
| Published in: | Journal of the Optical Society of America. A, Optics, image science, and vision Vol. 25; no. 7; p. 1772 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.07.2008
|
| Subjects: | |
| ISSN: | 1084-7529 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance. |
|---|---|
| AbstractList | We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance.We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance. We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance. |
| Author | LaRoque, Samuel J Sidky, Emil Y Pan, Xiaochuan |
| Author_xml | – sequence: 1 givenname: Samuel J surname: LaRoque fullname: LaRoque, Samuel J organization: University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA – sequence: 2 givenname: Emil Y surname: Sidky fullname: Sidky, Emil Y – sequence: 3 givenname: Xiaochuan surname: Pan fullname: Pan, Xiaochuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18594635$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kD1PwzAYhD0U0Q-Y2ZAnthTbcWJnjCo-VakDsCFFrv26GCV2cRyq_nsitUy3PHe6uzma-OABoRtKljQv-f3r5q2ul6xYEkKFYBM0o0TyTBSsmqJ5338TQngpxSWaUllUvMyLGfqstR6iSoBdp3aAI-jg-xQHnVzw2MbQYQuH7NfBAStvcOs6l8Bkyu9awEYlhZ3Hxlkb1cmTQhd2Ue2_jlfowqq2h-uzLtDH48P76jlbb55eVvU605zRlLFKGkot5FxIa5miOYzlTGVKTaWWhBdKVaLijOicEiKMVSCJMYpux0HasAW6O-XuY_gZoE9N53oNbas8hKFvyooJySQdwdszOGw7MM0-jqvjsfn_g_0BxadjOw |
| CitedBy_id | crossref_primary_10_1016_j_optcom_2017_11_008 crossref_primary_10_1002_ima_22097 crossref_primary_10_1364_AO_54_000859 crossref_primary_10_1088_1674_1056_23_7_078703 crossref_primary_10_1038_s41598_019_51363_x crossref_primary_10_1109_TBME_2015_2422135 crossref_primary_10_1088_2040_8978_16_6_065401 crossref_primary_10_1088_1361_6560_acc2ab crossref_primary_10_1088_0957_0233_24_12_125403 crossref_primary_10_1088_1361_6420_ac8ac6 crossref_primary_10_1109_TRPMS_2020_2991887 crossref_primary_10_1007_s12204_015_1608_9 crossref_primary_10_1088_1674_1056_19_8_088106 crossref_primary_10_1016_j_mri_2021_10_015 crossref_primary_10_1063_1_4967790 crossref_primary_10_1088_0031_9155_53_17_021 crossref_primary_10_1364_AO_49_000E67 crossref_primary_10_3389_fphy_2021_632869 crossref_primary_10_4218_etrij_2018_0505 crossref_primary_10_1118_1_4928603 crossref_primary_10_1007_s10489_021_02192_x crossref_primary_10_1088_0266_5611_25_12_123009 crossref_primary_10_1016_j_optlastec_2024_111124 crossref_primary_10_3233_XST_160550 crossref_primary_10_1016_j_chemer_2017_01_006 crossref_primary_10_1118_1_4937934 crossref_primary_10_1016_j_ultras_2012_08_012 crossref_primary_10_1016_j_ultramic_2018_04_011 crossref_primary_10_1515_jiip_2020_0003 crossref_primary_10_1049_iet_ipr_2017_0639 crossref_primary_10_3233_XST_210906 crossref_primary_10_1109_TNS_2014_2364637 crossref_primary_10_1016_j_jsb_2021_107770 crossref_primary_10_1080_10556788_2018_1560442 crossref_primary_10_1109_TCI_2024_3507645 crossref_primary_10_1118_1_3505851 crossref_primary_10_1137_20M1326635 crossref_primary_10_1155_2014_329350 crossref_primary_10_1002_ima_22035 crossref_primary_10_1186_s12859_015_0764_0 crossref_primary_10_1118_1_3514130 crossref_primary_10_1053_j_sodo_2015_07_001 crossref_primary_10_1007_s13246_025_01603_4 crossref_primary_10_1088_1361_6420_add61a crossref_primary_10_1118_1_4831970 crossref_primary_10_3390_photonics9030186 crossref_primary_10_1118_1_3481510 crossref_primary_10_1016_j_petrol_2020_107271 crossref_primary_10_1109_TUFFC_2013_2602 crossref_primary_10_1038_s43586_024_00327_1 crossref_primary_10_1088_1361_6501_ab3c72 crossref_primary_10_1016_j_ijengsci_2018_09_005 crossref_primary_10_3934_ipi_2017043 crossref_primary_10_1002_mp_12916 crossref_primary_10_1016_j_jmr_2012_03_022 crossref_primary_10_1088_1402_4896_acfacd crossref_primary_10_1088_1674_1056_26_6_060701 crossref_primary_10_1016_j_ejmp_2020_04_020 crossref_primary_10_1007_s11432_014_5235_0 crossref_primary_10_1109_ACCESS_2021_3088746 crossref_primary_10_1002_jbio_201200022 crossref_primary_10_3934_ipi_2014_8_223 crossref_primary_10_1016_j_cam_2016_09_019 crossref_primary_10_1109_ACCESS_2021_3104154 crossref_primary_10_1080_09500340_2014_923539 crossref_primary_10_1088_1361_6560_ac5fe1 crossref_primary_10_1088_0031_9155_57_15_4969 crossref_primary_10_1088_1742_6596_1047_1_012007 crossref_primary_10_1109_ACCESS_2020_3016332 crossref_primary_10_1364_AO_56_009247 crossref_primary_10_2528_PIER16111501 crossref_primary_10_1016_j_ejmp_2011_12_001 crossref_primary_10_1109_TNS_2019_2951448 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1364/JOSAA.25.001772 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 18594635 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB000225 – fundername: NIBIB NIH HHS grantid: K01 EB003913 – fundername: NCI NIH HHS grantid: CA120540 – fundername: NCI NIH HHS grantid: R01 CA120540 – fundername: NIBIB NIH HHS grantid: R01 EB00225 |
| GroupedDBID | --- -DZ -~X .55 29L 3O- 4.4 53G 5GY 6TJ 8WZ A6W AAWJZ AEDJG AI. AKGWG ALMA_UNASSIGNED_HOLDINGS AMMXN ATHME AYPRP AZSQR AZYMN CGR CS3 CUY CVF DSZJF EBS ECM EIF EJD F5P H~9 MVM NPM ODPQJ OFLFD OPJBK OPLUZ PZZ RNS ROL ROS S10 TR6 VH1 WH7 WHG X7M XJT XSW ZCG ZE2 7X8 |
| ID | FETCH-LOGICAL-c421t-298d11fe3478ff2a13e463d9d6c18c8045aa979420c31007dfae80dda1b046cd2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257928000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1084-7529 |
| IngestDate | Wed Oct 01 13:47:23 EDT 2025 Fri May 30 11:01:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-298d11fe3478ff2a13e463d9d6c18c8045aa979420c31007dfae80dda1b046cd2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2834797 |
| PMID | 18594635 |
| PQID | 69278281 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_69278281 pubmed_primary_18594635 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-07-01 |
| PublicationDateYYYYMMDD | 2008-07-01 |
| PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the Optical Society of America. A, Optics, image science, and vision |
| PublicationTitleAlternate | J Opt Soc Am A Opt Image Sci Vis |
| PublicationYear | 2008 |
| SSID | ssj0004687 |
| Score | 2.2981942 |
| Snippet | We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1772 |
| SubjectTerms | Algorithms Computer Simulation Equipment Design Fourier Analysis Humans Image Processing, Computer-Assisted - methods Models, Statistical Models, Theoretical Phantoms, Imaging Radiographic Image Enhancement Reproducibility of Results Tomography, X-Ray Computed - methods X-Ray Diffraction |
| Title | Accurate image reconstruction from few-view and limited-angle data in diffraction tomography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18594635 https://www.proquest.com/docview/69278281 |
| Volume | 25 |
| WOSCitedRecordID | wos000257928000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7VKnjx_ajPHLzGNo_dJCBIEYsHLT0o9CAsaR5SaXdrt9W_b7IP8SIevOS2JAwzk28zM98HwKWJNJMq4j7E-ShImCk0IkwhZmLHDQ2FpWJQ-IH3-2I4lIMGuK5nYUJbZZ0Ti0RtMh3eyNuxJP4yE_hm9o6CZlSorVYCGiugST2QCT7Nhz-4wuNCHg93BEM8IrIi9qExa79luVJXJDynYF6QA_-CLotbprf1v_Ntg80KXcJu6Q47oGHTXbBedHnqfA-8dLVeBm4IOJ76PAKLv-FvBlkYRk2gs58obAVVauCkHH9CKn2dWBi6SeE4hUFUZV4ORMBFNq1Ir_fBc-_u6fYeVfIKSDOCF4hIYTB2ljIunCMKU8tiaqSJNRZaeKynlPThSjo6VAG4ccqKjjEKj7xttSEHYDXNUnsEIKPcdRTBVFPGNPGwQmmPPCNjI2pppFrgojZa4t031CRUarNlntRma4HD0u7JrGTZSDyQkP480fGf356AjbKLIzTRnoKm84Frz8Ca_liM8_l54RV-7Q8evwDpDMLj |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+image+reconstruction+from+few-view+and+limited-angle+data+in+diffraction+tomography&rft.jtitle=Journal+of+the+Optical+Society+of+America.+A%2C+Optics%2C+image+science%2C+and+vision&rft.au=LaRoque%2C+Samuel+J&rft.au=Sidky%2C+Emil+Y&rft.au=Pan%2C+Xiaochuan&rft.date=2008-07-01&rft.issn=1084-7529&rft.volume=25&rft.issue=7&rft.spage=1772&rft_id=info:doi/10.1364%2Fjosaa.25.001772&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-7529&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-7529&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-7529&client=summon |