Accurate image reconstruction from few-view and limited-angle data in diffraction tomography

We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Optical Society of America. A, Optics, image science, and vision Vol. 25; no. 7; p. 1772
Main Authors: LaRoque, Samuel J, Sidky, Emil Y, Pan, Xiaochuan
Format: Journal Article
Language:English
Published: United States 01.07.2008
Subjects:
ISSN:1084-7529
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance.
AbstractList We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance.We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance.
We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for reconstruction from few-view and limited-angle data, as this can greatly reduce required scan times in DT. Our method does this by minimizing the total variation (TV) of the estimated image, subject to the constraint that the Fourier transform of the estimated image matches the measured Fourier data samples. Using simulation studies, we show that the TV-minimization algorithm allows accurate reconstruction in a variety of few-view and limited-angle situations in DT. Accurate image reconstruction is obtained from far fewer data samples than are required by common algorithms such as the filtered-backpropagation algorithm. Overall our results indicate that the TV-minimization algorithm can be successfully applied to DT image reconstruction under a variety of scan configurations and data conditions of practical significance.
Author LaRoque, Samuel J
Sidky, Emil Y
Pan, Xiaochuan
Author_xml – sequence: 1
  givenname: Samuel J
  surname: LaRoque
  fullname: LaRoque, Samuel J
  organization: University of Chicago, Department of Radiology, Chicago, Illinois 60637, USA
– sequence: 2
  givenname: Emil Y
  surname: Sidky
  fullname: Sidky, Emil Y
– sequence: 3
  givenname: Xiaochuan
  surname: Pan
  fullname: Pan, Xiaochuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18594635$$D View this record in MEDLINE/PubMed
BookMark eNo1kD1PwzAYhD0U0Q-Y2ZAnthTbcWJnjCo-VakDsCFFrv26GCV2cRyq_nsitUy3PHe6uzma-OABoRtKljQv-f3r5q2ul6xYEkKFYBM0o0TyTBSsmqJ5338TQngpxSWaUllUvMyLGfqstR6iSoBdp3aAI-jg-xQHnVzw2MbQYQuH7NfBAStvcOs6l8Bkyu9awEYlhZ3Hxlkb1cmTQhd2Ue2_jlfowqq2h-uzLtDH48P76jlbb55eVvU605zRlLFKGkot5FxIa5miOYzlTGVKTaWWhBdKVaLijOicEiKMVSCJMYpux0HasAW6O-XuY_gZoE9N53oNbas8hKFvyooJySQdwdszOGw7MM0-jqvjsfn_g_0BxadjOw
CitedBy_id crossref_primary_10_1016_j_optcom_2017_11_008
crossref_primary_10_1002_ima_22097
crossref_primary_10_1364_AO_54_000859
crossref_primary_10_1088_1674_1056_23_7_078703
crossref_primary_10_1038_s41598_019_51363_x
crossref_primary_10_1109_TBME_2015_2422135
crossref_primary_10_1088_2040_8978_16_6_065401
crossref_primary_10_1088_1361_6560_acc2ab
crossref_primary_10_1088_0957_0233_24_12_125403
crossref_primary_10_1088_1361_6420_ac8ac6
crossref_primary_10_1109_TRPMS_2020_2991887
crossref_primary_10_1007_s12204_015_1608_9
crossref_primary_10_1088_1674_1056_19_8_088106
crossref_primary_10_1016_j_mri_2021_10_015
crossref_primary_10_1063_1_4967790
crossref_primary_10_1088_0031_9155_53_17_021
crossref_primary_10_1364_AO_49_000E67
crossref_primary_10_3389_fphy_2021_632869
crossref_primary_10_4218_etrij_2018_0505
crossref_primary_10_1118_1_4928603
crossref_primary_10_1007_s10489_021_02192_x
crossref_primary_10_1088_0266_5611_25_12_123009
crossref_primary_10_1016_j_optlastec_2024_111124
crossref_primary_10_3233_XST_160550
crossref_primary_10_1016_j_chemer_2017_01_006
crossref_primary_10_1118_1_4937934
crossref_primary_10_1016_j_ultras_2012_08_012
crossref_primary_10_1016_j_ultramic_2018_04_011
crossref_primary_10_1515_jiip_2020_0003
crossref_primary_10_1049_iet_ipr_2017_0639
crossref_primary_10_3233_XST_210906
crossref_primary_10_1109_TNS_2014_2364637
crossref_primary_10_1016_j_jsb_2021_107770
crossref_primary_10_1080_10556788_2018_1560442
crossref_primary_10_1109_TCI_2024_3507645
crossref_primary_10_1118_1_3505851
crossref_primary_10_1137_20M1326635
crossref_primary_10_1155_2014_329350
crossref_primary_10_1002_ima_22035
crossref_primary_10_1186_s12859_015_0764_0
crossref_primary_10_1118_1_3514130
crossref_primary_10_1053_j_sodo_2015_07_001
crossref_primary_10_1007_s13246_025_01603_4
crossref_primary_10_1088_1361_6420_add61a
crossref_primary_10_1118_1_4831970
crossref_primary_10_3390_photonics9030186
crossref_primary_10_1118_1_3481510
crossref_primary_10_1016_j_petrol_2020_107271
crossref_primary_10_1109_TUFFC_2013_2602
crossref_primary_10_1038_s43586_024_00327_1
crossref_primary_10_1088_1361_6501_ab3c72
crossref_primary_10_1016_j_ijengsci_2018_09_005
crossref_primary_10_3934_ipi_2017043
crossref_primary_10_1002_mp_12916
crossref_primary_10_1016_j_jmr_2012_03_022
crossref_primary_10_1088_1402_4896_acfacd
crossref_primary_10_1088_1674_1056_26_6_060701
crossref_primary_10_1016_j_ejmp_2020_04_020
crossref_primary_10_1007_s11432_014_5235_0
crossref_primary_10_1109_ACCESS_2021_3088746
crossref_primary_10_1002_jbio_201200022
crossref_primary_10_3934_ipi_2014_8_223
crossref_primary_10_1016_j_cam_2016_09_019
crossref_primary_10_1109_ACCESS_2021_3104154
crossref_primary_10_1080_09500340_2014_923539
crossref_primary_10_1088_1361_6560_ac5fe1
crossref_primary_10_1088_0031_9155_57_15_4969
crossref_primary_10_1088_1742_6596_1047_1_012007
crossref_primary_10_1109_ACCESS_2020_3016332
crossref_primary_10_1364_AO_56_009247
crossref_primary_10_2528_PIER16111501
crossref_primary_10_1016_j_ejmp_2011_12_001
crossref_primary_10_1109_TNS_2019_2951448
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1364/JOSAA.25.001772
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 18594635
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB000225
– fundername: NIBIB NIH HHS
  grantid: K01 EB003913
– fundername: NCI NIH HHS
  grantid: CA120540
– fundername: NCI NIH HHS
  grantid: R01 CA120540
– fundername: NIBIB NIH HHS
  grantid: R01 EB00225
GroupedDBID ---
-DZ
-~X
.55
29L
3O-
4.4
53G
5GY
6TJ
8WZ
A6W
AAWJZ
AEDJG
AI.
AKGWG
ALMA_UNASSIGNED_HOLDINGS
AMMXN
ATHME
AYPRP
AZSQR
AZYMN
CGR
CS3
CUY
CVF
DSZJF
EBS
ECM
EIF
EJD
F5P
H~9
MVM
NPM
ODPQJ
OFLFD
OPJBK
OPLUZ
PZZ
RNS
ROL
ROS
S10
TR6
VH1
WH7
WHG
X7M
XJT
XSW
ZCG
ZE2
7X8
ID FETCH-LOGICAL-c421t-298d11fe3478ff2a13e463d9d6c18c8045aa979420c31007dfae80dda1b046cd2
IEDL.DBID 7X8
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257928000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1084-7529
IngestDate Wed Oct 01 13:47:23 EDT 2025
Fri May 30 11:01:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-298d11fe3478ff2a13e463d9d6c18c8045aa979420c31007dfae80dda1b046cd2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2834797
PMID 18594635
PQID 69278281
PQPubID 23479
ParticipantIDs proquest_miscellaneous_69278281
pubmed_primary_18594635
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the Optical Society of America. A, Optics, image science, and vision
PublicationTitleAlternate J Opt Soc Am A Opt Image Sci Vis
PublicationYear 2008
SSID ssj0004687
Score 2.2981942
Snippet We present a method for obtaining accurate image reconstruction from highly sparse data in diffraction tomography (DT). A practical need exists for...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1772
SubjectTerms Algorithms
Computer Simulation
Equipment Design
Fourier Analysis
Humans
Image Processing, Computer-Assisted - methods
Models, Statistical
Models, Theoretical
Phantoms, Imaging
Radiographic Image Enhancement
Reproducibility of Results
Tomography, X-Ray Computed - methods
X-Ray Diffraction
Title Accurate image reconstruction from few-view and limited-angle data in diffraction tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/18594635
https://www.proquest.com/docview/69278281
Volume 25
WOSCitedRecordID wos000257928000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7VKnjx_ajPHLzGNo_dJCBIEYsHLT0o9CAsaR5SaXdrt9W_b7IP8SIevOS2JAwzk28zM98HwKWJNJMq4j7E-ShImCk0IkwhZmLHDQ2FpWJQ-IH3-2I4lIMGuK5nYUJbZZ0Ti0RtMh3eyNuxJP4yE_hm9o6CZlSorVYCGiugST2QCT7Nhz-4wuNCHg93BEM8IrIi9qExa79luVJXJDynYF6QA_-CLotbprf1v_Ntg80KXcJu6Q47oGHTXbBedHnqfA-8dLVeBm4IOJ76PAKLv-FvBlkYRk2gs58obAVVauCkHH9CKn2dWBi6SeE4hUFUZV4ORMBFNq1Ir_fBc-_u6fYeVfIKSDOCF4hIYTB2ljIunCMKU8tiaqSJNRZaeKynlPThSjo6VAG4ccqKjjEKj7xttSEHYDXNUnsEIKPcdRTBVFPGNPGwQmmPPCNjI2pppFrgojZa4t031CRUarNlntRma4HD0u7JrGTZSDyQkP480fGf356AjbKLIzTRnoKm84Frz8Ca_liM8_l54RV-7Q8evwDpDMLj
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+image+reconstruction+from+few-view+and+limited-angle+data+in+diffraction+tomography&rft.jtitle=Journal+of+the+Optical+Society+of+America.+A%2C+Optics%2C+image+science%2C+and+vision&rft.au=LaRoque%2C+Samuel+J&rft.au=Sidky%2C+Emil+Y&rft.au=Pan%2C+Xiaochuan&rft.date=2008-07-01&rft.issn=1084-7529&rft.volume=25&rft.issue=7&rft.spage=1772&rft_id=info:doi/10.1364%2Fjosaa.25.001772&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-7529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-7529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-7529&client=summon