Population-Based Algorithm Portfolios for Numerical Optimization
In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented within a given time budget. Although a wide range of population-based algorithms, such as evolutionary algorithms, particle swarm optimizers,...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 14; H. 5; S. 782 - 800 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.10.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented within a given time budget. Although a wide range of population-based algorithms, such as evolutionary algorithms, particle swarm optimizers, and differential evolution, have been developed and studied under this scenario, the performance of an algorithm may vary significantly from problem to problem. This implies that there is an inherent risk associated with the selection of algorithms. We propose that, instead of choosing an existing algorithm and investing the entire time budget in it, it would be less risky to distribute the time among multiple different algorithms. A new approach named population-based algorithm portfolio (PAP), which takes multiple algorithms as its constituent algorithms, is proposed based upon this idea. PAP runs each constituent algorithm with a part of the given time budget and encourages interaction among the constituent algorithms with a migration scheme. As a general framework rather than a specific algorithm, PAP is easy to implement and can accommodate any existing population-based search algorithms. In addition, a metric is also proposed to compare the risks of any two algorithms on a problem set. We have comprehensively evaluated PAP via investigating 11 instantiations of it on 27 benchmark functions. Empirical results have shown that PAP outperforms its constituent algorithms in terms of solution quality, risk, and probability of finding the global optimum. Further analyses have revealed that the advantages of PAP are mostly credited to the synergy between constituent algorithms, which should complement each other either over a set of problems, or during different stages of an optimization process. |
|---|---|
| AbstractList | In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented within a given time budget. Although a wide range of population-based algorithms, such as evolutionary algorithms, particle swarm optimizers, and differential evolution, have been developed and studied under this scenario, the performance of an algorithm may vary significantly from problem to problem. This implies that there is an inherent risk associated with the selection of algorithms. We propose that, instead of choosing an existing algorithm and investing the entire time budget in it, it would be less risky to distribute the time among multiple different algorithms. A new approach named population-based algorithm portfolio (PAP), which takes multiple algorithms as its constituent algorithms, is proposed based upon this idea. PAP runs each constituent algorithm with a part of the given time budget and encourages interaction among the constituent algorithms with a migration scheme. As a general framework rather than a specific algorithm, PAP is easy to implement and can accommodate any existing population-based search algorithms. In addition, a metric is also proposed to compare the risks of any two algorithms on a problem set. We have comprehensively evaluated PAP via investigating 11 instantiations of it on 27 benchmark functions. Empirical results have shown that PAP outperforms its constituent algorithms in terms of solution quality, risk, and probability of finding the global optimum. Further analyses have revealed that the advantages of PAP are mostly credited to the synergy between constituent algorithms, which should complement each other either over a set of problems, or during different stages of an optimization process. |
| Author | Guoliang Chen Fei Peng Ke Tang Xin Yao |
| Author_xml | – sequence: 1 givenname: Fei surname: Peng fullname: Peng, Fei – sequence: 2 givenname: Ke surname: Tang fullname: Tang, Ke – sequence: 3 givenname: Guoliang surname: Chen fullname: Chen, Guoliang – sequence: 4 givenname: Xin surname: Yao fullname: Yao, Xin |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23329047$$DView record in Pascal Francis |
| BookMark | eNp9kL1OwzAURi1UJNrCAyCWSAgxBXztJE42SlV-pIp2qBCb5To2uEriYCcDPD1JWxg6MPlaOufTvd8IDSpbKYTOAd8A4Ox2NXud3hDcfQmOMKT0CA0hiyDEmCSDbsZpFjKWvp2gkfcbjCGKIRuiu6Wt20I0xlbhvfAqDybFu3Wm-SiDpXWNtoWxPtDWBS9tqZyRoggWdWNK8721TtGxFoVXZ_t3jFYPs9X0KZwvHp-nk3koIwJNCETQJEmTBIhmUkEeaUbXTEEicZ4rTaOcComB5FqsNY4lzaVSsZQZTUUi6Bhd72JrZz9b5RteGi9VUYhK2dbzlALEFBjryMsDcmNbV3W7ccAUA2QkSTvqak8J352knaik8bx2phTuixNKSYajPo3tOOms905pLk2zPbxxwhRdJO_7533_vO-f7_vvTDgwf8P_cy52jlFK_fFxRLOUMPoDWv6SkA |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2013_03_026 crossref_primary_10_1016_j_ins_2014_03_105 crossref_primary_10_1016_j_ins_2021_03_002 crossref_primary_10_1007_s12293_022_00367_8 crossref_primary_10_1007_s00521_022_07878_y crossref_primary_10_1016_j_amc_2013_12_130 crossref_primary_10_3390_e26030262 crossref_primary_10_1016_j_ins_2013_03_060 crossref_primary_10_1016_j_ins_2014_11_026 crossref_primary_10_1016_j_swevo_2018_07_001 crossref_primary_10_1016_j_ins_2017_09_053 crossref_primary_10_1109_TASE_2012_2204980 crossref_primary_10_1109_TEVC_2023_3259067 crossref_primary_10_1016_j_ins_2012_07_002 crossref_primary_10_1162_EVCO_a_00087 crossref_primary_10_1007_s40747_023_01113_4 crossref_primary_10_1016_j_eswa_2021_116049 crossref_primary_10_1007_s00521_017_2881_3 crossref_primary_10_1007_s11432_015_5372_0 crossref_primary_10_1016_j_swevo_2018_08_015 crossref_primary_10_1007_s11390_012_1283_3 crossref_primary_10_1016_j_swevo_2016_05_003 crossref_primary_10_3390_electronics12224639 crossref_primary_10_1016_j_ins_2018_12_065 crossref_primary_10_1016_j_ins_2018_10_013 crossref_primary_10_1109_TEVC_2015_2449293 crossref_primary_10_1016_j_cor_2023_106290 crossref_primary_10_1109_MCI_2011_2176995 crossref_primary_10_1007_s00500_018_3302_y crossref_primary_10_1016_j_ins_2014_11_035 crossref_primary_10_1016_j_eswa_2015_09_042 crossref_primary_10_1109_JIOT_2024_3381187 crossref_primary_10_1145_2369296_2369298 crossref_primary_10_1016_j_asoc_2020_106609 crossref_primary_10_1007_s12293_015_0159_9 crossref_primary_10_3233_HIS_160230 crossref_primary_10_1016_j_trit_2016_11_002 crossref_primary_10_1162_evco_a_00203 crossref_primary_10_1016_j_engappai_2024_108263 crossref_primary_10_1016_j_ins_2011_11_025 crossref_primary_10_1016_j_asoc_2019_105800 crossref_primary_10_1016_j_swevo_2017_12_002 crossref_primary_10_1109_TEVC_2021_3059661 crossref_primary_10_1109_TITS_2015_2446985 crossref_primary_10_1016_j_asoc_2015_12_021 crossref_primary_10_1016_j_ins_2015_05_010 crossref_primary_10_1109_TEVC_2012_2182773 crossref_primary_10_1109_ACCESS_2020_3040479 crossref_primary_10_1080_1206212X_2016_1218242 crossref_primary_10_1016_j_asoc_2018_08_030 crossref_primary_10_1155_2015_474805 crossref_primary_10_1016_j_ins_2022_06_036 crossref_primary_10_1155_2013_384125 crossref_primary_10_4018_jcini_2011010101 crossref_primary_10_1016_j_neucom_2014_04_071 crossref_primary_10_1007_s11590_015_0927_y crossref_primary_10_1007_s12293_013_0120_8 crossref_primary_10_1016_j_ins_2018_09_034 crossref_primary_10_1016_j_neucom_2017_03_061 crossref_primary_10_1007_s10489_012_0393_5 crossref_primary_10_1007_s00500_013_1106_7 crossref_primary_10_1016_j_swevo_2018_03_012 crossref_primary_10_1016_j_ins_2013_12_044 crossref_primary_10_1109_TCYB_2017_2772849 crossref_primary_10_1016_j_ins_2018_10_033 crossref_primary_10_1016_j_ins_2017_08_023 crossref_primary_10_1109_TNSE_2018_2856522 crossref_primary_10_1002_cpe_4488 crossref_primary_10_1016_j_ins_2014_11_012 crossref_primary_10_1016_j_swevo_2025_102163 crossref_primary_10_1016_j_asoc_2017_05_052 crossref_primary_10_1109_TCYB_2013_2256892 crossref_primary_10_1007_s00500_015_1955_3 crossref_primary_10_1109_TCYB_2018_2802912 crossref_primary_10_1109_TCYB_2020_2984546 crossref_primary_10_1007_s11227_019_02871_0 crossref_primary_10_1016_j_swevo_2019_04_008 crossref_primary_10_1029_2019WR026541 crossref_primary_10_1016_j_swevo_2018_11_007 crossref_primary_10_1007_s11390_012_1274_4 crossref_primary_10_1007_s10898_022_01162_y crossref_primary_10_1016_j_ref_2024_100577 crossref_primary_10_3390_en12132616 crossref_primary_10_1016_j_ejor_2017_10_013 crossref_primary_10_1080_10556788_2018_1484123 crossref_primary_10_1109_TSMCC_2011_2160941 crossref_primary_10_1007_s10710_017_9302_3 crossref_primary_10_3390_math11071666 |
| Cites_doi | 10.1145/1068009.1068251 10.1109/TEVC.2002.800880 10.1016/j.ins.2008.02.017 10.1016/S0004-3702(00)00081-3 10.1109/TEVC.2005.857610 10.1109/TEVC.2008.927706 10.1109/CEC.2005.1554903 10.1145/1143997.1144206 10.1109/ICEC.1998.699146 10.1126/science.275.5296.51 10.1109/4235.771163 10.1016/j.ins.2006.07.014 10.1145/162754.162902 10.1109/4235.843494 10.1109/CEC.2004.1331145 10.1109/TEVC.2008.924428 10.1023/A:1009669824615 10.1109/CEC.2005.1554902 10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4 10.1007/3-540-49057-4_17 10.1109/MHS.1995.494215 10.1162/106365602760972767 10.1007/3-540-58484-6_264 10.1109/TEVC.2009.2033582 10.1109/TSMCB.2007.904019 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TEVC.2010.2040183 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education Computer Science Applied Sciences |
| EISSN | 1941-0026 |
| EndPage | 800 |
| ExternalDocumentID | 2723831421 23329047 10_1109_TEVC_2010_2040183 5439827 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c421t-12a36686612f7ce1d4f73b7e16c0ddef34d3ac012dfabf05c3dcee5cc938a6a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283371400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Sep 28 10:07:54 EDT 2025 Sun Nov 09 08:50:20 EST 2025 Mon Jul 21 09:14:15 EDT 2025 Tue Nov 18 22:43:33 EST 2025 Sat Nov 29 03:13:45 EST 2025 Tue Aug 26 17:07:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Algorithm portfolios Script Probabilistic approach Evolutionary algorithm Algorithmics Global optimum numerical optimization Optimization global optimization Credit Heuristic method Population Budget Population dynamics Swarm intelligence Metric Portfolio management Metamodel metaheuristic algorithms population-based algorithms Mathematical programming Execution time |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-12a36686612f7ce1d4f73b7e16c0ddef34d3ac012dfabf05c3dcee5cc938a6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/5439827 |
| PQID | 1030119268 |
| PQPubID | 85418 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2010_2040183 proquest_miscellaneous_831153177 crossref_citationtrail_10_1109_TEVC_2010_2040183 ieee_primary_5439827 pascalfrancis_primary_23329047 proquest_journals_1030119268 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-10-01 |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2010 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 hansen (ref14) 2006 ref33 ref11 ref10 suganthan (ref12) 2005 ref2 ref39 ref17 ref38 ref16 rachlin (ref23) 1999 schlierkamp-voosen (ref32) 1994; 3 ref18 cantu-paz (ref25) 2000 tanese (ref30) 1987 yang (ref7) 2008 lin (ref31) 1994 arnold (ref35) 2006 ref24 ref26 dacosta (ref19) 2008 huberman (ref5) 1997; 275 ref20 siegel (ref41) 1956 ref22 ref21 tongchim (ref28) 2004 larraaga (ref36) 2001 ref27 price (ref3) 2005 ref29 ref8 ref9 ref6 herdy (ref34) 1992; 2 hansen (ref37) 2005 ref40 de jong (ref1) 2006 fukunaga (ref4) 2000 |
| References_xml | – ident: ref18 doi: 10.1145/1068009.1068251 – ident: ref26 doi: 10.1109/TEVC.2002.800880 – start-page: 913 year: 2008 ident: ref19 article-title: adaptive operator selection with dynamic multiarmed bandits publication-title: Proc 10th Annu Conf Genetic Evol Comput (GECCO) – start-page: 1362 year: 2004 ident: ref28 article-title: parallel evolutionary programming publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref40 doi: 10.1016/j.ins.2008.02.017 – ident: ref6 doi: 10.1016/S0004-3702(00)00081-3 – ident: ref38 doi: 10.1109/TEVC.2005.857610 – start-page: 28 year: 1994 ident: ref31 article-title: coarse-grain parallel genetic algorithms: categorization and a new approach publication-title: Proc 6th IEEE Symp Parallel Distributed Process (SPDP) – year: 2005 ident: ref12 publication-title: Problem Definitions and Evaluation Criteria For the CEC-2005 Special Session on Real-Parameter Optimization – year: 2001 ident: ref36 publication-title: Estimation of Distribution Algorithms A New Tool for Evolutionary Computation – ident: ref16 doi: 10.1109/TEVC.2008.927706 – start-page: 177 year: 1987 ident: ref30 article-title: parallel genetic algorithms for a hypercube publication-title: Proc 2nd Int Conf Genetic Algorithms (ICGA) – ident: ref10 doi: 10.1109/CEC.2005.1554903 – ident: ref17 doi: 10.1145/1143997.1144206 – volume: 2 start-page: 207 year: 1992 ident: ref34 publication-title: Parallel Problem Solving from Nature – ident: ref8 doi: 10.1109/ICEC.1998.699146 – volume: 275 start-page: 51 year: 1997 ident: ref5 article-title: an economics approach to hard computational problems publication-title: Science doi: 10.1126/science.275.5296.51 – ident: ref11 doi: 10.1109/4235.771163 – ident: ref15 doi: 10.1016/j.ins.2006.07.014 – year: 2005 ident: ref3 publication-title: Differential Evolution A Practical Approach to Global Optimization – year: 2006 ident: ref14 publication-title: Compilation of results on the 2005 CEC benchmark function set – ident: ref21 doi: 10.1145/162754.162902 – year: 2005 ident: ref37 publication-title: The CMA evolution strategy A tutorial – ident: ref33 doi: 10.1109/4235.843494 – ident: ref29 doi: 10.1109/CEC.2004.1331145 – ident: ref20 doi: 10.1109/TEVC.2008.924428 – start-page: 16 year: 2000 ident: ref4 article-title: genetic algorithm portfolios publication-title: Proc IEEE Congr Evol Comput (CEC) – start-page: 437 year: 2006 ident: ref35 article-title: hierarchically organized evolution strategies on the parabolic ridge publication-title: Proc 8th Ann Conf Genetic Evol Comput (GECCO) – ident: ref22 doi: 10.1023/A:1009669824615 – ident: ref13 doi: 10.1109/CEC.2005.1554902 – ident: ref27 doi: 10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4 – start-page: 261 year: 1999 ident: ref23 article-title: a-teams: an agent architecture for optimization and decision-support publication-title: Intell Agents V Agent Theories Architectures Languages Proc 5th Int Workshop doi: 10.1007/3-540-49057-4_17 – ident: ref2 doi: 10.1109/MHS.1995.494215 – ident: ref9 doi: 10.1162/106365602760972767 – year: 2006 ident: ref1 publication-title: Evolutionary Computation A Unified Approach – volume: 3 start-page: 199 year: 1994 ident: ref32 publication-title: Parallel Problem Solving from Nature doi: 10.1007/3-540-58484-6_264 – ident: ref24 doi: 10.1109/TEVC.2009.2033582 – year: 2000 ident: ref25 publication-title: Efficient and Accurate Parallel Genetic Algorithms – ident: ref39 doi: 10.1109/TSMCB.2007.904019 – year: 1956 ident: ref41 publication-title: Nonparametric Statistics for the Behavioral Sciences – start-page: 1110 year: 2008 ident: ref7 article-title: self-adaptive differential evolution with neighborhood search publication-title: Proc IEEE Congr Evol Comput (CEC) |
| SSID | ssj0014519 |
| Score | 2.411088 |
| Snippet | In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 782 |
| SubjectTerms | Algorithm design and analysis Algorithm portfolios Algorithmics. Computability. Computer arithmetics Algorithms Application software Applied sciences Artificial intelligence Budgeting Budgets Computer applications Computer science Computer science; control theory; systems Constituents Councils Education Evolution Evolutionary algorithms Evolutionary computation Exact sciences and technology global optimization Laboratories Mathematical models metaheuristic algorithms Migration numerical optimization Optimization Particle swarm optimization population-based algorithms Portfolios Risk Studies Theoretical computing |
| Title | Population-Based Algorithm Portfolios for Numerical Optimization |
| URI | https://ieeexplore.ieee.org/document/5439827 https://www.proquest.com/docview/1030119268 https://www.proquest.com/docview/831153177 |
| Volume | 14 |
| WOSCitedRecordID | wos000283371400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4B4rB74NHuivKSD3tCmyW2E8e-URCIU-mhWvUWOX7sVioNalp-P7bjRlSsVuIWyY4SeTz-Jplv5gP4wTC3OpcqwTYnScZlmgjF8sRoU6lc68pyHcQmitGIT6divAM_u1oYY0wgn5lf_jLk8nWt1v5X2XXu0JOTYhd2i4K1tVpdxsC3SWnJ9MJFjHwaM5g4FdeT-993LYmLuC2LOd3CoCCq4imRsnGrYls5iw8nc4Cbh8PPvegRHMSwEg3bfXAMO2bRg8ONZAOKHtzzIs2R0NGDr-96EfbhZtxJeSW3Dto0Gs7_1MvZ6u8z8nRTW89ndYNcjItG6zbNM0dP7sB5jpWc32DycD-5e0yivEKiMoJXCSaSMsYdQBNbKIN1ZgtaFQYzlbpDz9JMU6kcgGkrK5vmimqHqLlSgnLJJP0Oe4t6YU4AMWGxJpU0ytc4CyyUCwyMUJVzQU2IHEC6We9SxdbjXgFjXoZPkFSU3kSlN1EZTTSAq-6Wl7bvxv8m970Nuolx-QdwuWXUbpxQSkSauQnnGyuX0XWbEoePREEYHwDqhp3T-UyKXJh63ZTc9yhykVdx-u8nn8GXwDIIpL9z2Fst1-YC9tXratYsL8PGfQONAOxJ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BrQQcgC5FLKXgQ08VYWM7H_atFIGoSrccVtXeLMcfdKVlgza7_H5sxxuBWlXqLZIdJfJ4_CaZN_MAPhWYWZ1LlWCbkyRjMk24KvLEaFOpXOvKMh3EJsrhkI3H_G4NzrpaGGNMIJ-Zc38Zcvm6Vkv_q2yQO_RkpFyHN3mWkbSt1upyBr5RSkun5y5mZOOYw8QpH4yufl22NC7iNi1m9BUKBVkVT4qUjVsX2wpa_HE2B8C53v2_V92DnRhYoot2J7yDNTPrwe5KtAFFH-55meZI6ejB9otuhPvw5a4T80q-OnDT6GJ6X88ni98PyBNObT2d1A1yUS4aLttEzxT9dEfOQ6zlfA-j66vR5U0SBRYSlRG8SDCRtCiYg2hiS2WwzmxJq9LgQqXu2LM001QqB2HaysqmuaLaYWquFKdMFpIewMasnplDQAW3WJNKGuWrnDnmyoUGhqvKOaEmRPYhXa23ULH5uNfAmIrwEZJy4U0kvIlENFEfPne3PLadN_41ed_boJsYl78PJ6-M2o0TSglPMzfheGVlEZ23ETh8JnJSsD6gbti5nc-lyJmpl41gvkuRi73Ko78_-RQ2b0Y_bsXtt-H3D7AVOAeBAngMG4v50nyEt-ppMWnmJ2ETPwP67--Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population-Based+Algorithm+Portfolios+for+Numerical+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=FEI+PENG&rft.au=KE+TANG&rft.au=GUOLIANG+CHEN&rft.au=XIN+YAO&rft.date=2010-10-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1089-778X&rft.volume=14&rft.issue=5&rft.spage=782&rft.epage=800&rft_id=info:doi/10.1109%2FTEVC.2010.2040183&rft.externalDBID=n%2Fa&rft.externalDocID=23329047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |