Population-Based Algorithm Portfolios for Numerical Optimization

In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented within a given time budget. Although a wide range of population-based algorithms, such as evolutionary algorithms, particle swarm optimizers,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 14; číslo 5; s. 782 - 800
Hlavní autoři: Peng, Fei, Tang, Ke, Chen, Guoliang, Yao, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.10.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented within a given time budget. Although a wide range of population-based algorithms, such as evolutionary algorithms, particle swarm optimizers, and differential evolution, have been developed and studied under this scenario, the performance of an algorithm may vary significantly from problem to problem. This implies that there is an inherent risk associated with the selection of algorithms. We propose that, instead of choosing an existing algorithm and investing the entire time budget in it, it would be less risky to distribute the time among multiple different algorithms. A new approach named population-based algorithm portfolio (PAP), which takes multiple algorithms as its constituent algorithms, is proposed based upon this idea. PAP runs each constituent algorithm with a part of the given time budget and encourages interaction among the constituent algorithms with a migration scheme. As a general framework rather than a specific algorithm, PAP is easy to implement and can accommodate any existing population-based search algorithms. In addition, a metric is also proposed to compare the risks of any two algorithms on a problem set. We have comprehensively evaluated PAP via investigating 11 instantiations of it on 27 benchmark functions. Empirical results have shown that PAP outperforms its constituent algorithms in terms of solution quality, risk, and probability of finding the global optimum. Further analyses have revealed that the advantages of PAP are mostly credited to the synergy between constituent algorithms, which should complement each other either over a set of problems, or during different stages of an optimization process.
AbstractList In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented within a given time budget. Although a wide range of population-based algorithms, such as evolutionary algorithms, particle swarm optimizers, and differential evolution, have been developed and studied under this scenario, the performance of an algorithm may vary significantly from problem to problem. This implies that there is an inherent risk associated with the selection of algorithms. We propose that, instead of choosing an existing algorithm and investing the entire time budget in it, it would be less risky to distribute the time among multiple different algorithms. A new approach named population-based algorithm portfolio (PAP), which takes multiple algorithms as its constituent algorithms, is proposed based upon this idea. PAP runs each constituent algorithm with a part of the given time budget and encourages interaction among the constituent algorithms with a migration scheme. As a general framework rather than a specific algorithm, PAP is easy to implement and can accommodate any existing population-based search algorithms. In addition, a metric is also proposed to compare the risks of any two algorithms on a problem set. We have comprehensively evaluated PAP via investigating 11 instantiations of it on 27 benchmark functions. Empirical results have shown that PAP outperforms its constituent algorithms in terms of solution quality, risk, and probability of finding the global optimum. Further analyses have revealed that the advantages of PAP are mostly credited to the synergy between constituent algorithms, which should complement each other either over a set of problems, or during different stages of an optimization process.
Author Guoliang Chen
Fei Peng
Ke Tang
Xin Yao
Author_xml – sequence: 1
  givenname: Fei
  surname: Peng
  fullname: Peng, Fei
– sequence: 2
  givenname: Ke
  surname: Tang
  fullname: Tang, Ke
– sequence: 3
  givenname: Guoliang
  surname: Chen
  fullname: Chen, Guoliang
– sequence: 4
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23329047$$DView record in Pascal Francis
BookMark eNp9kL1OwzAURi1UJNrCAyCWSAgxBXztJE42SlV-pIp2qBCb5To2uEriYCcDPD1JWxg6MPlaOufTvd8IDSpbKYTOAd8A4Ox2NXud3hDcfQmOMKT0CA0hiyDEmCSDbsZpFjKWvp2gkfcbjCGKIRuiu6Wt20I0xlbhvfAqDybFu3Wm-SiDpXWNtoWxPtDWBS9tqZyRoggWdWNK8721TtGxFoVXZ_t3jFYPs9X0KZwvHp-nk3koIwJNCETQJEmTBIhmUkEeaUbXTEEicZ4rTaOcComB5FqsNY4lzaVSsZQZTUUi6Bhd72JrZz9b5RteGi9VUYhK2dbzlALEFBjryMsDcmNbV3W7ccAUA2QkSTvqak8J352knaik8bx2phTuixNKSYajPo3tOOms905pLk2zPbxxwhRdJO_7533_vO-f7_vvTDgwf8P_cy52jlFK_fFxRLOUMPoDWv6SkA
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2013_03_026
crossref_primary_10_1016_j_ins_2014_03_105
crossref_primary_10_1016_j_ins_2021_03_002
crossref_primary_10_1007_s12293_022_00367_8
crossref_primary_10_1007_s00521_022_07878_y
crossref_primary_10_1016_j_amc_2013_12_130
crossref_primary_10_3390_e26030262
crossref_primary_10_1016_j_ins_2013_03_060
crossref_primary_10_1016_j_ins_2014_11_026
crossref_primary_10_1016_j_swevo_2018_07_001
crossref_primary_10_1016_j_ins_2017_09_053
crossref_primary_10_1109_TASE_2012_2204980
crossref_primary_10_1109_TEVC_2023_3259067
crossref_primary_10_1016_j_ins_2012_07_002
crossref_primary_10_1162_EVCO_a_00087
crossref_primary_10_1007_s40747_023_01113_4
crossref_primary_10_1016_j_eswa_2021_116049
crossref_primary_10_1007_s00521_017_2881_3
crossref_primary_10_1007_s11432_015_5372_0
crossref_primary_10_1016_j_swevo_2018_08_015
crossref_primary_10_1007_s11390_012_1283_3
crossref_primary_10_1016_j_swevo_2016_05_003
crossref_primary_10_3390_electronics12224639
crossref_primary_10_1016_j_ins_2018_12_065
crossref_primary_10_1016_j_ins_2018_10_013
crossref_primary_10_1109_TEVC_2015_2449293
crossref_primary_10_1016_j_cor_2023_106290
crossref_primary_10_1109_MCI_2011_2176995
crossref_primary_10_1007_s00500_018_3302_y
crossref_primary_10_1016_j_ins_2014_11_035
crossref_primary_10_1016_j_eswa_2015_09_042
crossref_primary_10_1109_JIOT_2024_3381187
crossref_primary_10_1145_2369296_2369298
crossref_primary_10_1016_j_asoc_2020_106609
crossref_primary_10_1007_s12293_015_0159_9
crossref_primary_10_3233_HIS_160230
crossref_primary_10_1016_j_trit_2016_11_002
crossref_primary_10_1162_evco_a_00203
crossref_primary_10_1016_j_engappai_2024_108263
crossref_primary_10_1016_j_ins_2011_11_025
crossref_primary_10_1016_j_asoc_2019_105800
crossref_primary_10_1016_j_swevo_2017_12_002
crossref_primary_10_1109_TEVC_2021_3059661
crossref_primary_10_1109_TITS_2015_2446985
crossref_primary_10_1016_j_asoc_2015_12_021
crossref_primary_10_1016_j_ins_2015_05_010
crossref_primary_10_1109_TEVC_2012_2182773
crossref_primary_10_1109_ACCESS_2020_3040479
crossref_primary_10_1080_1206212X_2016_1218242
crossref_primary_10_1016_j_asoc_2018_08_030
crossref_primary_10_1155_2015_474805
crossref_primary_10_1016_j_ins_2022_06_036
crossref_primary_10_1155_2013_384125
crossref_primary_10_4018_jcini_2011010101
crossref_primary_10_1016_j_neucom_2014_04_071
crossref_primary_10_1007_s11590_015_0927_y
crossref_primary_10_1007_s12293_013_0120_8
crossref_primary_10_1016_j_ins_2018_09_034
crossref_primary_10_1016_j_neucom_2017_03_061
crossref_primary_10_1007_s10489_012_0393_5
crossref_primary_10_1007_s00500_013_1106_7
crossref_primary_10_1016_j_swevo_2018_03_012
crossref_primary_10_1016_j_ins_2013_12_044
crossref_primary_10_1109_TCYB_2017_2772849
crossref_primary_10_1016_j_ins_2018_10_033
crossref_primary_10_1016_j_ins_2017_08_023
crossref_primary_10_1109_TNSE_2018_2856522
crossref_primary_10_1002_cpe_4488
crossref_primary_10_1016_j_ins_2014_11_012
crossref_primary_10_1016_j_swevo_2025_102163
crossref_primary_10_1016_j_asoc_2017_05_052
crossref_primary_10_1109_TCYB_2013_2256892
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1109_TCYB_2018_2802912
crossref_primary_10_1109_TCYB_2020_2984546
crossref_primary_10_1007_s11227_019_02871_0
crossref_primary_10_1016_j_swevo_2019_04_008
crossref_primary_10_1029_2019WR026541
crossref_primary_10_1016_j_swevo_2018_11_007
crossref_primary_10_1007_s11390_012_1274_4
crossref_primary_10_1007_s10898_022_01162_y
crossref_primary_10_1016_j_ref_2024_100577
crossref_primary_10_3390_en12132616
crossref_primary_10_1016_j_ejor_2017_10_013
crossref_primary_10_1080_10556788_2018_1484123
crossref_primary_10_1109_TSMCC_2011_2160941
crossref_primary_10_1007_s10710_017_9302_3
crossref_primary_10_3390_math11071666
Cites_doi 10.1145/1068009.1068251
10.1109/TEVC.2002.800880
10.1016/j.ins.2008.02.017
10.1016/S0004-3702(00)00081-3
10.1109/TEVC.2005.857610
10.1109/TEVC.2008.927706
10.1109/CEC.2005.1554903
10.1145/1143997.1144206
10.1109/ICEC.1998.699146
10.1126/science.275.5296.51
10.1109/4235.771163
10.1016/j.ins.2006.07.014
10.1145/162754.162902
10.1109/4235.843494
10.1109/CEC.2004.1331145
10.1109/TEVC.2008.924428
10.1023/A:1009669824615
10.1109/CEC.2005.1554902
10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
10.1007/3-540-49057-4_17
10.1109/MHS.1995.494215
10.1162/106365602760972767
10.1007/3-540-58484-6_264
10.1109/TEVC.2009.2033582
10.1109/TSMCB.2007.904019
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2010.2040183
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 800
ExternalDocumentID 2723831421
23329047
10_1109_TEVC_2010_2040183
5439827
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c421t-12a36686612f7ce1d4f73b7e16c0ddef34d3ac012dfabf05c3dcee5cc938a6a3
IEDL.DBID RIE
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283371400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 28 10:07:54 EDT 2025
Sun Nov 09 08:50:20 EST 2025
Mon Jul 21 09:14:15 EDT 2025
Tue Nov 18 22:43:33 EST 2025
Sat Nov 29 03:13:45 EST 2025
Tue Aug 26 17:07:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Algorithm portfolios
Script
Probabilistic approach
Evolutionary algorithm
Algorithmics
Global optimum
numerical optimization
Optimization
global optimization
Credit
Heuristic method
Population
Budget
Population dynamics
Swarm intelligence
Metric
Portfolio management
Metamodel
metaheuristic algorithms
population-based algorithms
Mathematical programming
Execution time
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-12a36686612f7ce1d4f73b7e16c0ddef34d3ac012dfabf05c3dcee5cc938a6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://ieeexplore.ieee.org/document/5439827
PQID 1030119268
PQPubID 85418
PageCount 19
ParticipantIDs crossref_primary_10_1109_TEVC_2010_2040183
proquest_miscellaneous_831153177
crossref_citationtrail_10_1109_TEVC_2010_2040183
ieee_primary_5439827
pascalfrancis_primary_23329047
proquest_journals_1030119268
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
hansen (ref14) 2006
ref33
ref11
ref10
suganthan (ref12) 2005
ref2
ref39
ref17
ref38
ref16
rachlin (ref23) 1999
schlierkamp-voosen (ref32) 1994; 3
ref18
cantu-paz (ref25) 2000
tanese (ref30) 1987
yang (ref7) 2008
lin (ref31) 1994
arnold (ref35) 2006
ref24
ref26
dacosta (ref19) 2008
huberman (ref5) 1997; 275
ref20
siegel (ref41) 1956
ref22
ref21
tongchim (ref28) 2004
larraaga (ref36) 2001
ref27
price (ref3) 2005
ref29
ref8
ref9
ref6
herdy (ref34) 1992; 2
hansen (ref37) 2005
ref40
de jong (ref1) 2006
fukunaga (ref4) 2000
References_xml – ident: ref18
  doi: 10.1145/1068009.1068251
– ident: ref26
  doi: 10.1109/TEVC.2002.800880
– start-page: 913
  year: 2008
  ident: ref19
  article-title: adaptive operator selection with dynamic multiarmed bandits
  publication-title: Proc 10th Annu Conf Genetic Evol Comput (GECCO)
– start-page: 1362
  year: 2004
  ident: ref28
  article-title: parallel evolutionary programming
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref40
  doi: 10.1016/j.ins.2008.02.017
– ident: ref6
  doi: 10.1016/S0004-3702(00)00081-3
– ident: ref38
  doi: 10.1109/TEVC.2005.857610
– start-page: 28
  year: 1994
  ident: ref31
  article-title: coarse-grain parallel genetic algorithms: categorization and a new approach
  publication-title: Proc 6th IEEE Symp Parallel Distributed Process (SPDP)
– year: 2005
  ident: ref12
  publication-title: Problem Definitions and Evaluation Criteria For the CEC-2005 Special Session on Real-Parameter Optimization
– year: 2001
  ident: ref36
  publication-title: Estimation of Distribution Algorithms A New Tool for Evolutionary Computation
– ident: ref16
  doi: 10.1109/TEVC.2008.927706
– start-page: 177
  year: 1987
  ident: ref30
  article-title: parallel genetic algorithms for a hypercube
  publication-title: Proc 2nd Int Conf Genetic Algorithms (ICGA)
– ident: ref10
  doi: 10.1109/CEC.2005.1554903
– ident: ref17
  doi: 10.1145/1143997.1144206
– volume: 2
  start-page: 207
  year: 1992
  ident: ref34
  publication-title: Parallel Problem Solving from Nature
– ident: ref8
  doi: 10.1109/ICEC.1998.699146
– volume: 275
  start-page: 51
  year: 1997
  ident: ref5
  article-title: an economics approach to hard computational problems
  publication-title: Science
  doi: 10.1126/science.275.5296.51
– ident: ref11
  doi: 10.1109/4235.771163
– ident: ref15
  doi: 10.1016/j.ins.2006.07.014
– year: 2005
  ident: ref3
  publication-title: Differential Evolution A Practical Approach to Global Optimization
– year: 2006
  ident: ref14
  publication-title: Compilation of results on the 2005 CEC benchmark function set
– ident: ref21
  doi: 10.1145/162754.162902
– year: 2005
  ident: ref37
  publication-title: The CMA evolution strategy A tutorial
– ident: ref33
  doi: 10.1109/4235.843494
– ident: ref29
  doi: 10.1109/CEC.2004.1331145
– ident: ref20
  doi: 10.1109/TEVC.2008.924428
– start-page: 16
  year: 2000
  ident: ref4
  article-title: genetic algorithm portfolios
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– start-page: 437
  year: 2006
  ident: ref35
  article-title: hierarchically organized evolution strategies on the parabolic ridge
  publication-title: Proc 8th Ann Conf Genetic Evol Comput (GECCO)
– ident: ref22
  doi: 10.1023/A:1009669824615
– ident: ref13
  doi: 10.1109/CEC.2005.1554902
– ident: ref27
  doi: 10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
– start-page: 261
  year: 1999
  ident: ref23
  article-title: a-teams: an agent architecture for optimization and decision-support
  publication-title: Intell Agents V Agent Theories Architectures Languages Proc 5th Int Workshop
  doi: 10.1007/3-540-49057-4_17
– ident: ref2
  doi: 10.1109/MHS.1995.494215
– ident: ref9
  doi: 10.1162/106365602760972767
– year: 2006
  ident: ref1
  publication-title: Evolutionary Computation A Unified Approach
– volume: 3
  start-page: 199
  year: 1994
  ident: ref32
  publication-title: Parallel Problem Solving from Nature
  doi: 10.1007/3-540-58484-6_264
– ident: ref24
  doi: 10.1109/TEVC.2009.2033582
– year: 2000
  ident: ref25
  publication-title: Efficient and Accurate Parallel Genetic Algorithms
– ident: ref39
  doi: 10.1109/TSMCB.2007.904019
– year: 1956
  ident: ref41
  publication-title: Nonparametric Statistics for the Behavioral Sciences
– start-page: 1110
  year: 2008
  ident: ref7
  article-title: self-adaptive differential evolution with neighborhood search
  publication-title: Proc IEEE Congr Evol Comput (CEC)
SSID ssj0014519
Score 2.411088
Snippet In this paper, we consider the scenario that a population-based algorithm is applied to a numerical optimization problem and a solution needs to be presented...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 782
SubjectTerms Algorithm design and analysis
Algorithm portfolios
Algorithmics. Computability. Computer arithmetics
Algorithms
Application software
Applied sciences
Artificial intelligence
Budgeting
Budgets
Computer applications
Computer science
Computer science; control theory; systems
Constituents
Councils
Education
Evolution
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
global optimization
Laboratories
Mathematical models
metaheuristic algorithms
Migration
numerical optimization
Optimization
Particle swarm optimization
population-based algorithms
Portfolios
Risk
Studies
Theoretical computing
Title Population-Based Algorithm Portfolios for Numerical Optimization
URI https://ieeexplore.ieee.org/document/5439827
https://www.proquest.com/docview/1030119268
https://www.proquest.com/docview/831153177
Volume 14
WOSCitedRecordID wos000283371400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeeCytWF7yoSfUlMRO_LgVEIjTwmFV7S3y-tGutGzQZre_v2PHG4FaVeIWybYSeWx_48w38wF8KYVh3PIqC3LGWek9zZQ1gWAjAppL4fw0ik2I0UhOJuppC772uTDOuUg-c9_CY4zl28asw6-yqwrRU1KxDdtC8C5Xq48YhDIpHZleoccoJymCWeTqanz347YjcVFcsoVkbzAoiqoESqRucVZ8J2fx18kc4eZ-_30fegB7ya0k1906OIQttxjA_kaygaQdPAgizYnQMYCPr2oRHsH3p17KK7tBaLPkev6zWc5Wv55JoJv6Zj5rWoI-LhmtuzDPnDzigfOcMjk_wfj-bnz7kCV5hcyUtFhlBdWMc4kATb0wrrClF2wqXMFNjoeeZ6Vl2iCAWa-nPq8Ms4iolTGKSc01-ww7i2bhjoFwr5VzVFcGHZxCTrXDi5Gx6DyEYjPMDiHfzHdtUunxoIAxr-MVJFd1MFEdTFQnEw3hsh_y0tXd-F_no2CDvmOa_iFcvDFq304ZoyovscPZxsp12rptXcRLoqJcDoH0zbjpQiRFL1yzbmsZahSh5yVO_v3mU_gQWQaR9HcGO6vl2p3Drvm9mrXLi7hw_wAOMurY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aAwk4bNCB1jGGD5wQYYmdxPaNMW0aYpQdKtSb5frHqNQ1U9Py9-_ZcaNNICRukWwrkZ_t7znve-8DeF9yw2pbV1mQM85K72kmrQkEGx7QXHDnp1Fsgo9GYjKRV1vwsc-Fcc5F8pn7FB5jLN82Zh1-lR1XiJ6C8kfwuCpLmnfZWn3MIBRK6ej0En1GMUkxzCKXx-Ozn6cdjYvioi0Ee4BCUVYlkCJ1i_PiO0GLP87mCDjnu__3qS9gJzmW5KRbCS9hyy0GsLsRbSBpDw-CTHOidAzg-b1qhHvw-aoX88q-ILhZcjK_bpaz1a8bEginvpnPmpagl0tG6y7QMyc_8Mi5Sbmcr2B8fjY-vciSwEJmSlqssoJqVtcCIZp6blxhS8_ZlLuiNjkee56VlmmDEGa9nvq8MswiplbGSCZ0rdlr2F40C7cPpPZaOkd1ZdDFKcRUO7waGYvuQyg3w-wQ8s18K5OKjwcNjLmKl5BcqmAiFUykkomG8KEfcttV3vhX571gg75jmv4hHD0wat9OGaMyL7HD4cbKKm3eVhXxmihpLYZA-mbcdiGWoheuWbdKhCpF6Hvxg7-_-R08vRh_v1SXX0ff3sCzyDmIFMBD2F4t1-4tPDG_V7N2eRQX8R1n1-4f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population-Based+Algorithm+Portfolios+for+Numerical+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Peng%2C+Fei&rft.au=Tang%2C+Ke&rft.au=Chen%2C+Guoliang&rft.au=Yao%2C+Xin&rft.date=2010-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=14&rft.issue=5&rft.spage=782&rft_id=info:doi/10.1109%2FTEVC.2010.2040183&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2723831421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon