Ethnicity- and Gender-based Subject Retrieval Using 3-D Face-Recognition Techniques

While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 89; číslo 2-3; s. 382 - 391
Hlavní autoři: Toderici, George, O’Malley, Sean M., Passalis, George, Theoharis, Theoharis, Kakadiaris, Ioannis A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.09.2010
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art face-recognition algorithm. Once trained, our system is capable of classifying the gender and ethnicity of any such model of interest. Experiments are conducted on 4007 facial meshes from the benchmark Face Recognition Grand Challenge v2 dataset.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-009-0300-7