A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm

•A novel MO-WDO method to optimally size a standalone PV system is proposed.•LSTM model is proposed to predict the performance of a PV module.•An explicit battery model is utilized to express its dynamic behaviour.•Well formulated multi-objective functions are utilized.•Sizing ratios for the PV syst...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 238; p. 114179
Main Authors: Ibrahim, Ibrahim Anwar, Sabah, Slaiman, Abbas, Robert, Hossain, M.J., Fahed, Hani
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15.06.2021
Elsevier Science Ltd
Subjects:
ISSN:0196-8904, 1879-2227
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel MO-WDO method to optimally size a standalone PV system is proposed.•LSTM model is proposed to predict the performance of a PV module.•An explicit battery model is utilized to express its dynamic behaviour.•Well formulated multi-objective functions are utilized.•Sizing ratios for the PV system components for general MNBSs are derived. A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system’s components to meet the load demand for a mobile network base station at a 1% loss of load probability or less with a minimum annual total life cost. To improve the sized model’s accuracy, a long short-term memory deep learning model is utilized to forecast the hourly performance of a photovoltaic module. The long-term memory model’s performance is compared with those obtained by a linear photovoltaic model and an artificial neural network model. The comparison is carried out based on the values of normalized root mean square error, normalized mean bias error, mean absolute percentage error, and the training and testing time. Accordingly, on the values obtained for these statistical errors, the long short-term memory model outperforms better than the linear model and the artificial neural network model based. In addition, a dynamic battery model is utilized to characterize the dynamic charging and discharging process. The findings show that the optimal number of the photovoltaic array and the capacity of the storage battery required to cover the load demand of a mobile network base station are 5.4 kWp and 2640 Ah/48 V, respectively. Besides, the annual total life cycle cost for the sized photovoltaic/battery configuration is 4028.33 AUD/year. The simulation time for the proposed method is 421.25 s. To generalize the sizing results for the mobile network base stations based on Sydney weather conditions, the photovoltaic array and storage battery ratios are calculated as 0.324 and 0.223, respectively. In addition, the cost of an energy unit generated by the optimized system is 0.254 AUD/kWh. Here, the results of the proposed method have been compared with those obtained by developed and recent benchmark published methods. The comparison outcomes show the effectiveness of the proposed method in terms of providing a high availability sized system at minimum cost within less simulation time than the other considered methods.
AbstractList A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system’s components to meet the load demand for a mobile network base station at a 1% loss of load probability or less with a minimum annual total life cost. To improve the sized model’s accuracy, a long short-term memory deep learning model is utilized to forecast the hourly performance of a photovoltaic module. The long-term memory model’s performance is compared with those obtained by a linear photovoltaic model and an artificial neural network model. The comparison is carried out based on the values of normalized root mean square error, normalized mean bias error, mean absolute percentage error, and the training and testing time. Accordingly, on the values obtained for these statistical errors, the long short-term memory model outperforms better than the linear model and the artificial neural network model based. In addition, a dynamic battery model is utilized to characterize the dynamic charging and discharging process. The findings show that the optimal number of the photovoltaic array and the capacity of the storage battery required to cover the load demand of a mobile network base station are 5.4 kWp and 2640 Ah/48 V, respectively. Besides, the annual total life cycle cost for the sized photovoltaic/battery configuration is 4028.33 AUD/year. The simulation time for the proposed method is 421.25 s. To generalize the sizing results for the mobile network base stations based on Sydney weather conditions, the photovoltaic array and storage battery ratios are calculated as 0.324 and 0.223, respectively. In addition, the cost of an energy unit generated by the optimized system is 0.254 AUD/kWh. Here, the results of the proposed method have been compared with those obtained by developed and recent benchmark published methods. The comparison outcomes show the effectiveness of the proposed method in terms of providing a high availability sized system at minimum cost within less simulation time than the other considered methods.
•A novel MO-WDO method to optimally size a standalone PV system is proposed.•LSTM model is proposed to predict the performance of a PV module.•An explicit battery model is utilized to express its dynamic behaviour.•Well formulated multi-objective functions are utilized.•Sizing ratios for the PV system components for general MNBSs are derived. A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system’s components to meet the load demand for a mobile network base station at a 1% loss of load probability or less with a minimum annual total life cost. To improve the sized model’s accuracy, a long short-term memory deep learning model is utilized to forecast the hourly performance of a photovoltaic module. The long-term memory model’s performance is compared with those obtained by a linear photovoltaic model and an artificial neural network model. The comparison is carried out based on the values of normalized root mean square error, normalized mean bias error, mean absolute percentage error, and the training and testing time. Accordingly, on the values obtained for these statistical errors, the long short-term memory model outperforms better than the linear model and the artificial neural network model based. In addition, a dynamic battery model is utilized to characterize the dynamic charging and discharging process. The findings show that the optimal number of the photovoltaic array and the capacity of the storage battery required to cover the load demand of a mobile network base station are 5.4 kWp and 2640 Ah/48 V, respectively. Besides, the annual total life cycle cost for the sized photovoltaic/battery configuration is 4028.33 AUD/year. The simulation time for the proposed method is 421.25 s. To generalize the sizing results for the mobile network base stations based on Sydney weather conditions, the photovoltaic array and storage battery ratios are calculated as 0.324 and 0.223, respectively. In addition, the cost of an energy unit generated by the optimized system is 0.254 AUD/kWh. Here, the results of the proposed method have been compared with those obtained by developed and recent benchmark published methods. The comparison outcomes show the effectiveness of the proposed method in terms of providing a high availability sized system at minimum cost within less simulation time than the other considered methods.
ArticleNumber 114179
Author Ibrahim, Ibrahim Anwar
Sabah, Slaiman
Hossain, M.J.
Fahed, Hani
Abbas, Robert
Author_xml – sequence: 1
  givenname: Ibrahim Anwar
  surname: Ibrahim
  fullname: Ibrahim, Ibrahim Anwar
  email: ibrahim.a.ibrahim@hdr.mq.edu.au, ibrahim.ibrahim@csiro.au, ibrahim.a.ibrahim@ieee.org
  organization: School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
– sequence: 2
  givenname: Slaiman
  orcidid: 0000-0002-6613-5536
  surname: Sabah
  fullname: Sabah, Slaiman
  email: slaiman.sabah@students.mq.edu.au
  organization: School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
– sequence: 3
  givenname: Robert
  surname: Abbas
  fullname: Abbas, Robert
  email: robert.abbas@mq.edu.au
  organization: School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
– sequence: 4
  givenname: M.J.
  surname: Hossain
  fullname: Hossain, M.J.
  email: jahangir.hossain@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
– sequence: 5
  givenname: Hani
  orcidid: 0000-0001-5399-8546
  surname: Fahed
  fullname: Fahed, Hani
  email: hani.fahed@gmail.com
  organization: Bombardier Transportation, Melbourne, VIC 3000, Australia
BookMark eNqFkctq3DAUhkVJoZNpX6EIuunGU0m-aARdNIReAoFu2rWQpeOMXFvHlTQzJC_TV62Nk002AYG0-L6jw_9fkouAAQh5z9mOM9586ncQLIbRhJ1ggu84r7hUr8iG76UqhBDygmwYV02xV6x6Qy5T6hljZc2aDfl3RQOeYKDJP_hwR0fIB3QUO2poyiY4M8y_0emAGU84ZOMtTfcpw0g7jHTCM8TFM3TE1g9AA-Qzxj-0NQmWCdljoMf0yByH7Atse7DZn4CefXDUxfkZKE7Zj_5hFcxwh9Hnw_iWvO7MkODd470lv799_XX9o7j9-f3m-uq2sJXgueCsLIFbWVpb1bY2bu9a53gNjWo7JUQnuTKdrCrVNbJpudg7URqwSkFteC3LLfm4zp0i_j1Cynr0ycIwmAB4TFrUsiobuZwt-fAM7fEYw7zdTJVSMiYZn6lmpWzElCJ0eop-NPFec6aX3nSvn3rTS2967W0WPz8TrV9jzNH44WX9y6rDnNbJQ9TJ-pkE5-OcunboXxrxH4EPvpc
CitedBy_id crossref_primary_10_1109_TCOMM_2022_3199027
crossref_primary_10_1016_j_energy_2025_136305
crossref_primary_10_3390_app13053155
crossref_primary_10_1016_j_jclepro_2024_143957
crossref_primary_10_1109_ACCESS_2024_3449998
crossref_primary_10_1016_j_apenergy_2022_119680
crossref_primary_10_1016_j_renene_2023_118903
crossref_primary_10_1016_j_scs_2025_106145
crossref_primary_10_1109_TGCN_2022_3223622
crossref_primary_10_1016_j_trd_2024_104241
crossref_primary_10_3390_su162310762
crossref_primary_10_1093_ce_zkab041
crossref_primary_10_3390_drones5040138
Cites_doi 10.1080/03772063.2017.1351321
10.1016/j.renene.2018.01.058
10.1016/j.jare.2013.06.010
10.1162/neco.1997.9.8.1735
10.3390/su8090894
10.3390/pr8010041
10.1016/S0360-1285(03)00058-3
10.1016/j.measurement.2018.08.007
10.1016/j.asoc.2020.106579
10.1177/0144598717723648
10.1016/j.energy.2019.07.168
10.1016/j.enbuild.2013.02.011
10.1016/j.procs.2017.05.346
10.1109/TAP.2013.2238654
10.1016/j.enconman.2017.09.061
10.1016/j.rser.2016.07.018
10.1109/TSTE.2014.2313862
10.1016/j.rser.2014.01.035
10.1016/j.solener.2019.01.056
10.1016/j.rser.2015.12.228
10.1007/s00158-009-0460-7
10.1016/j.energy.2017.03.053
10.1016/j.rser.2020.110202
10.1016/j.energy.2019.03.046
10.1016/j.rser.2018.05.032
10.1016/j.renene.2020.02.016
10.1016/j.energy.2018.01.177
10.1016/0306-2619(84)90044-8
10.1016/j.energy.2020.118163
10.1109/JPHOTOV.2017.2769000
10.1109/MNET.2011.5730527
10.1016/0196-8904(94)00065-8
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Jun 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jun 15, 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2021.114179
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2021_114179
S0196890421003551
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c421t-1033e1c73cc45c5ad8dbdd15e69bf922f719af7449f676b128d23aec99e5a1573
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649673100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sat Sep 27 23:49:47 EDT 2025
Mon Sep 29 16:11:54 EDT 2025
Tue Nov 18 20:41:42 EST 2025
Sat Nov 29 07:19:05 EST 2025
Fri Feb 23 02:45:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Photovoltaic (PV)
Multi-objective optimization
Mobile network base station
Standalone PV system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-1033e1c73cc45c5ad8dbdd15e69bf922f719af7449f676b128d23aec99e5a1573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6613-5536
0000-0001-5399-8546
OpenAccessLink http://hdl.handle.net/10072/405563
PQID 2537700701
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2574367367
proquest_journals_2537700701
crossref_primary_10_1016_j_enconman_2021_114179
crossref_citationtrail_10_1016_j_enconman_2021_114179
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114179
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Ibrahim, Khatib, Mohamed (b0045) 2017; 126
Mathew, Rani, Rajesh Kumar, Wang, Binns, Busawon (b0160) 2018; 8
Wang (b0140) 2017
Muhsen, Nabil, Haider, Khatib (b0090) 2019; 174
Mohammed, Danapalasingam (b0125) 2018
Gao, Li, Hong, Long (b0110) 2019; 187
Anoune, Bouya, Astito, Ben Abdellah (b0060) 2018; 93
Mishra, Mohanty (b0075) 2018; 64
Ibrahim, Khatib, Mohamed, Elmenreich (b0020) 2018; 36
Kalogirou (b0070) 2003; 29
Humar, Ge, Xiang, Jo, Chen, Zhang (b0005) 2011; 25
Sharma, Colangelo, Spagna (b0050) 1995; 36
Bayraktar, Komurcu, Bossard, Werner (b0155) 2013; 61
Yang, Wang, Wang (b0105) 2020; 95
Rawat, Kaushik, Lamba (b0035) 2016; 57
Ridha, Gomes, Hazim, Ahmadipour (b0100) 2020; 207
2019.
Shi, Xu, Wang, Yin, Wang, Yong (b0115) 2019
Mohamed, Elarini, Othman (b0190) 2013; 5
Mohamed, Elarini, Othman (b0085) 2014; 5
Bartoli, Cuomo, Fontana, Serio, Silvestrini (b0055) 1984; 18
Ridha, Gomes, Hizam, Ahmadipour, Heidari, Chen (b0015) 2021; 135
Kazem, Khatib, Sopian (b0185) 2013; 61
Mohammed Ridha, Gomes, Hizam, Ahmadipour (b0195) 2020; 8
Masson G, Kaizuka I. Trends in PV Applications 2019.
Qing, Niu (b0130) 2018; 148
de Souza, Farias, Costa, Cardoso (b0010) 2017; 109
Hossain, Mahmood (b0120) 2020
Marler, Arora (b0175) 2010; 41
Su, Masoum, Wolfs (b0180) 2014; 5
Bayraktar, Komurcu, Werner (b0150) 2010
Hochreiter, Schmidhuber (b0135) 1997; 9
Kotte, Pullakura, Injeti (b0170) 2018; 130
Kamali (b0030) 2016; 65
Ramli, Bouchekara, Alghamdi (b0040) 2018; 121
Ridha, Gomes, Hizam, Mirjalili (b0095) 2020; 153
Abdalla, Rezk, Ahmed (b0165) 2019; 180
Sinha, Chandel (b0065) 2014; 32
Maleki, Pourfayaz, Hafeznia, Rosen (b0080) 2017; 153
Ibrahim, Khatib, Mohamed (b0145) 2016; 8
Bartoli (10.1016/j.enconman.2021.114179_b0055) 1984; 18
Ramli (10.1016/j.enconman.2021.114179_b0040) 2018; 121
Sharma (10.1016/j.enconman.2021.114179_b0050) 1995; 36
Yang (10.1016/j.enconman.2021.114179_b0105) 2020; 95
Muhsen (10.1016/j.enconman.2021.114179_b0090) 2019; 174
Ridha (10.1016/j.enconman.2021.114179_b0015) 2021; 135
10.1016/j.enconman.2021.114179_b0025
Ibrahim (10.1016/j.enconman.2021.114179_b0045) 2017; 126
Mohamed (10.1016/j.enconman.2021.114179_b0190) 2013; 5
Abdalla (10.1016/j.enconman.2021.114179_b0165) 2019; 180
de Souza (10.1016/j.enconman.2021.114179_b0010) 2017; 109
Ridha (10.1016/j.enconman.2021.114179_b0095) 2020; 153
Bayraktar (10.1016/j.enconman.2021.114179_b0155) 2013; 61
Shi (10.1016/j.enconman.2021.114179_b0115) 2019
Humar (10.1016/j.enconman.2021.114179_b0005) 2011; 25
Kazem (10.1016/j.enconman.2021.114179_b0185) 2013; 61
Mohammed Ridha (10.1016/j.enconman.2021.114179_b0195) 2020; 8
Kamali (10.1016/j.enconman.2021.114179_b0030) 2016; 65
Mohammed (10.1016/j.enconman.2021.114179_b0125) 2018
Ibrahim (10.1016/j.enconman.2021.114179_b0020) 2018; 36
Kalogirou (10.1016/j.enconman.2021.114179_b0070) 2003; 29
Kotte (10.1016/j.enconman.2021.114179_b0170) 2018; 130
Sinha (10.1016/j.enconman.2021.114179_b0065) 2014; 32
Marler (10.1016/j.enconman.2021.114179_b0175) 2010; 41
Mathew (10.1016/j.enconman.2021.114179_b0160) 2018; 8
Gao (10.1016/j.enconman.2021.114179_b0110) 2019; 187
Su (10.1016/j.enconman.2021.114179_b0180) 2014; 5
Anoune (10.1016/j.enconman.2021.114179_b0060) 2018; 93
Mishra (10.1016/j.enconman.2021.114179_b0075) 2018; 64
Maleki (10.1016/j.enconman.2021.114179_b0080) 2017; 153
Ibrahim (10.1016/j.enconman.2021.114179_b0145) 2016; 8
Hossain (10.1016/j.enconman.2021.114179_b0120) 2020
Wang (10.1016/j.enconman.2021.114179_b0140) 2017
Ridha (10.1016/j.enconman.2021.114179_b0100) 2020; 207
Bayraktar (10.1016/j.enconman.2021.114179_b0150) 2010
Mohamed (10.1016/j.enconman.2021.114179_b0085) 2014; 5
Qing (10.1016/j.enconman.2021.114179_b0130) 2018; 148
Rawat (10.1016/j.enconman.2021.114179_b0035) 2016; 57
Hochreiter (10.1016/j.enconman.2021.114179_b0135) 1997; 9
References_xml – volume: 29
  start-page: 515
  year: 2003
  end-page: 566
  ident: b0070
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog Energy Combust Sci
– volume: 121
  start-page: 400
  year: 2018
  end-page: 411
  ident: b0040
  article-title: Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm
  publication-title: Renewable Energy
– volume: 148
  start-page: 461
  year: 2018
  end-page: 468
  ident: b0130
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
– volume: 8
  start-page: 248
  year: 2018
  end-page: 256
  ident: b0160
  article-title: Wind-driven optimization technique for estimation of solar photovoltaic parameters
  publication-title: IEEE J Photovoltaics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0135
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 153
  start-page: 129
  year: 2017
  end-page: 143
  ident: b0080
  article-title: A novel framework for optimal photovoltaic size and location in remote areas using a hybrid method: a case study of eastern Iran
  publication-title: Energy Convers Manag
– volume: 8
  start-page: 41
  year: 2020
  ident: b0195
  article-title: Optimal design of standalone photovoltaic system based on multi-objective particle swarm optimization: a case study of Malaysia
  publication-title: Processes
– year: 2010
  ident: b0150
  article-title: Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics
  publication-title: 2010 IEEE Antennas Propag. Soc. Int. Symp.
– volume: 65
  start-page: 1279
  year: 2016
  end-page: 1284
  ident: b0030
  article-title: Feasibility analysis of standalone photovoltaic electrification system in a residential building in Cyprus
  publication-title: Renewable Sustainable Energy Rev
– reference: Masson G, Kaizuka I. Trends in PV Applications 2019. <
– volume: 130
  start-page: 340
  year: 2018
  end-page: 361
  ident: b0170
  article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization
  publication-title: Meas J Int Meas Confed
– volume: 36
  start-page: 161
  year: 1995
  end-page: 174
  ident: b0050
  article-title: Photovoltaic technology: basic concepts, sizing of a stand alone photovoltaic system for domestic applications and preliminary economic analysis
  publication-title: Energy Convers Manag
– volume: 153
  start-page: 1330
  year: 2020
  end-page: 1345
  ident: b0095
  article-title: Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system
  publication-title: Renewable Energy
– volume: 5
  start-page: 397
  year: 2013
  end-page: 408
  ident: b0190
  article-title: A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system
  publication-title: J Adv Res
– volume: 126
  start-page: 392
  year: 2017
  end-page: 403
  ident: b0045
  article-title: Optimal sizing of a standalone photovoltaic system for remote housing electrification using numerical algorithm and improved system models
  publication-title: Energy
– volume: 25
  start-page: 40
  year: 2011
  end-page: 49
  ident: b0005
  article-title: Rethinking energy efficiency models of cellular networks with embodied energy
  publication-title: IEEE Network
– volume: 57
  start-page: 1506
  year: 2016
  end-page: 1519
  ident: b0035
  article-title: A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system
  publication-title: Renewable Sustainable Energy Rev
– volume: 187
  year: 2019
  ident: b0110
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
– volume: 5
  start-page: 967
  year: 2014
  end-page: 977
  ident: b0180
  article-title: Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks
  publication-title: IEEE Trans Sustainable Energy
– volume: 109
  start-page: 825
  year: 2017
  end-page: 832
  ident: b0010
  article-title: Technical economic analysis of photovoltaic systems in heterogeneous mobile networks
  publication-title: Procedia Comput Sci
– start-page: 2110
  year: 2019
  end-page: 2116
  ident: b0115
  article-title: Short-term photovoltaic power forecast based on long short-term memory network
  publication-title: Proc. 2019 IEEE 3rd Int. Electr. Energy Conf. CIEEC 2019
– volume: 36
  start-page: 132
  year: 2018
  end-page: 148
  ident: b0020
  article-title: Modeling of the output current of a photovoltaic grid-connected system using random forests technique
  publication-title: Energy Explor Exploit
– volume: 41
  start-page: 853
  year: 2010
  end-page: 862
  ident: b0175
  article-title: The weighted sum method for multi-objective optimization: new insights
  publication-title: Struct Multidiscip Optim
– volume: 93
  start-page: 652
  year: 2018
  end-page: 673
  ident: b0060
  article-title: Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: a review
  publication-title: Renewable Sustainable Energy Rev
– volume: 174
  start-page: 1158
  year: 2019
  end-page: 1175
  ident: b0090
  article-title: A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods
  publication-title: Energy
– volume: 8
  start-page: 894
  year: 2016
  ident: b0145
  article-title: Impact of Battery’s Model accuracy on size optimization process of a standalone photovoltaic system
  publication-title: Sustainability
– start-page: 1
  year: 2020
  end-page: 5
  ident: b0120
  article-title: Short-term photovoltaic power forecasting using an LSTM neural network
  publication-title: 2020 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf.
– volume: 135
  year: 2021
  ident: b0015
  article-title: Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review
  publication-title: Renewable Sustainable Energy Rev
– reference: >; 2019.
– volume: 95
  year: 2020
  ident: b0105
  article-title: Prediction model of energy market by long short term memory with random system and complexity evaluation
  publication-title: Appl Soft Comput J
– start-page: 496
  year: 2018
  end-page: 504
  ident: b0125
  article-title: Design and control of online battery energy storage system using programmable logic controller
  publication-title: Int. Conf. Reliab. Inf. Commun. Technol.
– volume: 18
  start-page: 37
  year: 1984
  end-page: 47
  ident: b0055
  article-title: The design of photovoltaic plants: an optimization procedure
  publication-title: Appl Energy
– volume: 64
  start-page: 209
  year: 2018
  end-page: 230
  ident: b0075
  article-title: Design and implementation of a feedback linearization controlled IM drive via simplified neuro-Fuzzy approach
  publication-title: IETE J Res
– volume: 5
  start-page: 397
  year: 2014
  end-page: 408
  ident: b0085
  article-title: A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system
  publication-title: J Adv Res
– volume: 32
  start-page: 192
  year: 2014
  end-page: 205
  ident: b0065
  article-title: Review of software tools for hybrid renewable energy systems
  publication-title: Renewable Sustainable Energy Rev
– volume: 180
  start-page: 429
  year: 2019
  end-page: 444
  ident: b0165
  article-title: Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance
  publication-title: Sol Energy
– volume: 207
  year: 2020
  ident: b0100
  article-title: Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis
  publication-title: Energy
– volume: 61
  start-page: 2745
  year: 2013
  end-page: 2757
  ident: b0155
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Trans Antennas Propag
– start-page: 5324
  year: 2017
  end-page: 5329
  ident: b0140
  article-title: A new concept using LSTM Neural Networks for dynamic system identification
  publication-title: Proc. Am. Control Conf.
– volume: 61
  start-page: 108
  year: 2013
  end-page: 115
  ident: b0185
  article-title: Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman
  publication-title: Energy Build
– volume: 64
  start-page: 209
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0075
  article-title: Design and implementation of a feedback linearization controlled IM drive via simplified neuro-Fuzzy approach
  publication-title: IETE J Res
  doi: 10.1080/03772063.2017.1351321
– start-page: 2110
  year: 2019
  ident: 10.1016/j.enconman.2021.114179_b0115
  article-title: Short-term photovoltaic power forecast based on long short-term memory network
– year: 2010
  ident: 10.1016/j.enconman.2021.114179_b0150
  article-title: Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics
– volume: 121
  start-page: 400
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0040
  article-title: Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.01.058
– volume: 5
  start-page: 397
  year: 2014
  ident: 10.1016/j.enconman.2021.114179_b0085
  article-title: A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2013.06.010
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.enconman.2021.114179_b0135
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 894
  year: 2016
  ident: 10.1016/j.enconman.2021.114179_b0145
  article-title: Impact of Battery’s Model accuracy on size optimization process of a standalone photovoltaic system
  publication-title: Sustainability
  doi: 10.3390/su8090894
– volume: 8
  start-page: 41
  year: 2020
  ident: 10.1016/j.enconman.2021.114179_b0195
  article-title: Optimal design of standalone photovoltaic system based on multi-objective particle swarm optimization: a case study of Malaysia
  publication-title: Processes
  doi: 10.3390/pr8010041
– volume: 29
  start-page: 515
  year: 2003
  ident: 10.1016/j.enconman.2021.114179_b0070
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/S0360-1285(03)00058-3
– volume: 130
  start-page: 340
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0170
  article-title: Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2018.08.007
– start-page: 5324
  year: 2017
  ident: 10.1016/j.enconman.2021.114179_b0140
  article-title: A new concept using LSTM Neural Networks for dynamic system identification
– volume: 95
  year: 2020
  ident: 10.1016/j.enconman.2021.114179_b0105
  article-title: Prediction model of energy market by long short term memory with random system and complexity evaluation
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2020.106579
– start-page: 496
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0125
  article-title: Design and control of online battery energy storage system using programmable logic controller
– volume: 36
  start-page: 132
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0020
  article-title: Modeling of the output current of a photovoltaic grid-connected system using random forests technique
  publication-title: Energy Explor Exploit
  doi: 10.1177/0144598717723648
– volume: 187
  year: 2019
  ident: 10.1016/j.enconman.2021.114179_b0110
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.168
– volume: 61
  start-page: 108
  year: 2013
  ident: 10.1016/j.enconman.2021.114179_b0185
  article-title: Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.02.011
– volume: 109
  start-page: 825
  year: 2017
  ident: 10.1016/j.enconman.2021.114179_b0010
  article-title: Technical economic analysis of photovoltaic systems in heterogeneous mobile networks
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.05.346
– volume: 61
  start-page: 2745
  year: 2013
  ident: 10.1016/j.enconman.2021.114179_b0155
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.2013.2238654
– volume: 153
  start-page: 129
  year: 2017
  ident: 10.1016/j.enconman.2021.114179_b0080
  article-title: A novel framework for optimal photovoltaic size and location in remote areas using a hybrid method: a case study of eastern Iran
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.09.061
– volume: 5
  start-page: 397
  year: 2013
  ident: 10.1016/j.enconman.2021.114179_b0190
  article-title: A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2013.06.010
– volume: 65
  start-page: 1279
  year: 2016
  ident: 10.1016/j.enconman.2021.114179_b0030
  article-title: Feasibility analysis of standalone photovoltaic electrification system in a residential building in Cyprus
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2016.07.018
– volume: 5
  start-page: 967
  year: 2014
  ident: 10.1016/j.enconman.2021.114179_b0180
  article-title: Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2014.2313862
– ident: 10.1016/j.enconman.2021.114179_b0025
– volume: 32
  start-page: 192
  year: 2014
  ident: 10.1016/j.enconman.2021.114179_b0065
  article-title: Review of software tools for hybrid renewable energy systems
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.01.035
– volume: 180
  start-page: 429
  year: 2019
  ident: 10.1016/j.enconman.2021.114179_b0165
  article-title: Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.01.056
– volume: 57
  start-page: 1506
  year: 2016
  ident: 10.1016/j.enconman.2021.114179_b0035
  article-title: A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2015.12.228
– volume: 41
  start-page: 853
  year: 2010
  ident: 10.1016/j.enconman.2021.114179_b0175
  article-title: The weighted sum method for multi-objective optimization: new insights
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0460-7
– volume: 126
  start-page: 392
  year: 2017
  ident: 10.1016/j.enconman.2021.114179_b0045
  article-title: Optimal sizing of a standalone photovoltaic system for remote housing electrification using numerical algorithm and improved system models
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.053
– volume: 135
  year: 2021
  ident: 10.1016/j.enconman.2021.114179_b0015
  article-title: Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: a comprehensive review
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2020.110202
– volume: 174
  start-page: 1158
  year: 2019
  ident: 10.1016/j.enconman.2021.114179_b0090
  article-title: A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.046
– volume: 93
  start-page: 652
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0060
  article-title: Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: a review
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2018.05.032
– volume: 153
  start-page: 1330
  year: 2020
  ident: 10.1016/j.enconman.2021.114179_b0095
  article-title: Multiple scenarios multi-objective salp swarm optimization for sizing of standalone photovoltaic system
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.02.016
– volume: 148
  start-page: 461
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0130
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 18
  start-page: 37
  year: 1984
  ident: 10.1016/j.enconman.2021.114179_b0055
  article-title: The design of photovoltaic plants: an optimization procedure
  publication-title: Appl Energy
  doi: 10.1016/0306-2619(84)90044-8
– volume: 207
  year: 2020
  ident: 10.1016/j.enconman.2021.114179_b0100
  article-title: Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118163
– volume: 8
  start-page: 248
  year: 2018
  ident: 10.1016/j.enconman.2021.114179_b0160
  article-title: Wind-driven optimization technique for estimation of solar photovoltaic parameters
  publication-title: IEEE J Photovoltaics
  doi: 10.1109/JPHOTOV.2017.2769000
– volume: 25
  start-page: 40
  year: 2011
  ident: 10.1016/j.enconman.2021.114179_b0005
  article-title: Rethinking energy efficiency models of cellular networks with embodied energy
  publication-title: IEEE Network
  doi: 10.1109/MNET.2011.5730527
– start-page: 1
  year: 2020
  ident: 10.1016/j.enconman.2021.114179_b0120
  article-title: Short-term photovoltaic power forecasting using an LSTM neural network
– volume: 36
  start-page: 161
  year: 1995
  ident: 10.1016/j.enconman.2021.114179_b0050
  article-title: Photovoltaic technology: basic concepts, sizing of a stand alone photovoltaic system for domestic applications and preliminary economic analysis
  publication-title: Energy Convers Manag
  doi: 10.1016/0196-8904(94)00065-8
SSID ssj0003506
Score 2.4278727
Snippet •A novel MO-WDO method to optimally size a standalone PV system is proposed.•LSTM model is proposed to predict the performance of a PV module.•An explicit...
A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system's components to meet the load demand for a mobile...
A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system’s components to meet the load demand for a mobile...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114179
SubjectTerms administrative management
Algorithms
Arrays
Artificial neural networks
Batteries
Computer simulation
Deep learning
energy conversion
Errors
life cycle costing
Life cycle costs
Life cycles
linear models
Long short-term memory
Long term memory
Machine learning
memory
Minimum cost
Mobile network base station
Model accuracy
Multi-objective optimization
Multiple objective analysis
Neural networks
Optimization
Optimization algorithms
Photovoltaic (PV)
Photovoltaic cells
Photovoltaics
probability
Radio equipment
Sizing
solar collectors
Standalone PV system
Statistical analysis
Testing time
Weather
Wind
Title A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm
URI https://dx.doi.org/10.1016/j.enconman.2021.114179
https://www.proquest.com/docview/2537700701
https://www.proquest.com/docview/2574367367
Volume 238
WOSCitedRecordID wos000649673100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWLgc4IJ6isCAjIS5RSvOq42OFumLRakHaLuotcpxk26pNStt9iD_D3-NnMONx0i4sLBy4RFFqu0nmy3g8_maGsdc6h1kftwZF3EvdUAfaTWMRuoUMUj_MukXXsC0-H4qjo3g0kp92dr7XsTDnM1GW8eWlXPxXUcM1EDaGzv6DuJtB4QKcg9DhCGKH418Jvu-U1Xk-c1aTr-gGoBLRFAZJfoNZBYblYlytK1BNazXRNp2zYRwusGqaCVx05lUKKsMpiSju4HyHIxjAnK1sG-QjulU6Jb3pXMAS38mWqEKdCrTR3IZ5Omp2Wi0n6_H8ylYABR4a5rtx25mtjPkvjJwDWNKPqeyzPXX65YVqeMXHKlXGPXQ8U5P5Bu_9NKV4NeKPNxAGw0BR7gTLU7FuD9_Qsyjwk3xxdTxOrQI3JCjjJpU9N5ZU2LiTk2qPhXQx8ndb9_uUWsZqb-_aOYXcG9MOJhYt4Rk6eDuYY9mjMjhXk3gffUz2Tw4Pk-FgNHyz-OJifTPkAdhiL7fYri8iGbfYbv9gMPrQWA1BZOrANne-Fc1-_V__zpD6yaQwdtLwPrtnFzi8T8B8wHby8iG7u5X28hH71ucGopwgygmivCq44huI8m2IcoIoB4jyGqLQmiDKLUQ5QpRbiHIDUWxzFaIcIcoJonwboryB6GN2sj8Yvnvv2kIhrg59bw2mRBDknhaB1mGkI5XFWZplXpT3ZFpI3y-EJ1UhwlAWPdFLwSTL_EDlWso8Ul4kgiesVcKDPWUc7N9IBh6mxfRCLC3hKSXysJsKFQSFztssqt96om0WfSzmMktquuQ0qaWVoLQSklabvW36LSiPzI09ZC3UxFrDZOUmAMwb--7VKEisalolfhQIgem9vDZ71fwMswluEaoyr86wDawokOopnv15iOfszuar3GOt9fIsf8Fu6_P1ZLV8acH9A-3E9iA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+sizing+method+of+a+standalone+photovoltaic+system+for+powering+a+mobile+network+base+station+using+a+multi-objective+wind+driven+optimization+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Ibrahim%2C+Ibrahim+Anwar&rft.au=Sabah%2C+Slaiman&rft.au=Abbas%2C+Robert&rft.au=Hossain%2C+MJ&rft.date=2021-06-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=238&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enconman.2021.114179&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon