Solar‐induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 and flux tower observations

Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology Jg. 24; H. 9; S. 3990 - 4008
Hauptverfasser: Li, Xing, Xiao, Jingfeng, He, Binbin, Altaf Arain, M., Beringer, Jason, Desai, Ankur R., Emmel, Carmen, Hollinger, David Y., Krasnova, Alisa, Mammarella, Ivan, Noe, Steffen M., Ortiz, Penélope Serrano, Rey‐Sanchez, A. Camilo, Rocha, Adrian V., Varlagin, Andrej
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.09.2018
Schlagworte:
ISSN:1354-1013, 1365-2486, 1365-2486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. We conducted the first global analysis of the relationship between solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) based on OOC‐2 and flux tower observations. Strong linear relationships between SIF and GPP at the ecosystem scale were found for all eight biomes except evergreen broadleaf forests. The nearly universal rather than biome‐specific SIF–GPP relationship can potentially lead to more accurate GPP estimates globally. OCO‐2 SIF can generally better estimate GPP than satellite‐derived vegetation indices and light use efficiency models. Our findings revealed the potential of finer‐resolution SIF observations in ecosystem functioning and carbon cycling studies and model benchmarking efforts.
AbstractList Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R  = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R  = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R  = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C grasslands and croplands than for C ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm ( R 2  = 0.72, p  < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes ( R 2  = 0.57–0.79, p  < 0.0001) except evergreen broadleaf forests ( R 2  = 0.16, p  < 0.05) at the daily timescale. A higher slope was found for C 4 grasslands and croplands than for C 3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R² = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R² = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R² = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C₄ grasslands and croplands than for C₃ ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. We conducted the first global analysis of the relationship between solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) based on OOC‐2 and flux tower observations. Strong linear relationships between SIF and GPP at the ecosystem scale were found for all eight biomes except evergreen broadleaf forests. The nearly universal rather than biome‐specific SIF–GPP relationship can potentially lead to more accurate GPP estimates globally. OCO‐2 SIF can generally better estimate GPP than satellite‐derived vegetation indices and light use efficiency models. Our findings revealed the potential of finer‐resolution SIF observations in ecosystem functioning and carbon cycling studies and model benchmarking efforts.
Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
Author Rocha, Adrian V.
Noe, Steffen M.
Rey‐Sanchez, A. Camilo
Hollinger, David Y.
Varlagin, Andrej
Emmel, Carmen
Beringer, Jason
Desai, Ankur R.
He, Binbin
Altaf Arain, M.
Li, Xing
Ortiz, Penélope Serrano
Xiao, Jingfeng
Mammarella, Ivan
Krasnova, Alisa
Author_xml – sequence: 1
  givenname: Xing
  surname: Li
  fullname: Li, Xing
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Jingfeng
  orcidid: 0000-0002-0622-6903
  surname: Xiao
  fullname: Xiao, Jingfeng
  email: j.xiao@unh.edu
  organization: University of New Hampshire
– sequence: 3
  givenname: Binbin
  surname: He
  fullname: He, Binbin
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: M.
  surname: Altaf Arain
  fullname: Altaf Arain, M.
  organization: McMaster University
– sequence: 5
  givenname: Jason
  surname: Beringer
  fullname: Beringer, Jason
  organization: The University of Western Australia
– sequence: 6
  givenname: Ankur R.
  surname: Desai
  fullname: Desai, Ankur R.
  organization: University of Wisconsin‐Madison
– sequence: 7
  givenname: Carmen
  surname: Emmel
  fullname: Emmel, Carmen
  organization: ETH Zurich
– sequence: 8
  givenname: David Y.
  surname: Hollinger
  fullname: Hollinger, David Y.
  organization: USDA Forest Service
– sequence: 9
  givenname: Alisa
  surname: Krasnova
  fullname: Krasnova, Alisa
  organization: Estonian University of Life Sciences
– sequence: 10
  givenname: Ivan
  surname: Mammarella
  fullname: Mammarella, Ivan
  organization: University of Helsinki
– sequence: 11
  givenname: Steffen M.
  orcidid: 0000-0003-1514-1140
  surname: Noe
  fullname: Noe, Steffen M.
  organization: Estonian University of Life Sciences
– sequence: 12
  givenname: Penélope Serrano
  surname: Ortiz
  fullname: Ortiz, Penélope Serrano
  organization: Universidad de Granada
– sequence: 13
  givenname: A. Camilo
  surname: Rey‐Sanchez
  fullname: Rey‐Sanchez, A. Camilo
  organization: The Ohio State University
– sequence: 14
  givenname: Adrian V.
  surname: Rocha
  fullname: Rocha, Adrian V.
  organization: University of Notre Dame
– sequence: 15
  givenname: Andrej
  surname: Varlagin
  fullname: Varlagin, Andrej
  organization: Russian Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29733483$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAQxyNURD_gwAsgS1zgsK0dJ06WW1m1BanSHoBz5I_xritvZrGdLrnxCH0knoUnwekWDpUAX-zx_P6j8d9zXBz02ENRvGT0lOV1ttLqlFXlvHlSHDEu6llZteJgOtfVjFHGD4vjGG8opbyk4llxmFHOq5YfFT8-oZfh5_c715tBgyF67THgdj16T6wfMEDU0GsgLpKYAvYrPxKNIYCXKfM7l9YkQY5z1klPtmtMGMc-rSFmjcVAZKYMkFsZHKSRoCXK4QbiO3LpQkxk5VFlpeylHyeNkjFXxp4sF8vcWpkzZmrmG0m4g0BQRQi3Mjns4_PiqZU-wouH_aT4cnnxefFhdr28-rg4v57pqmTNzFa1FVoK2TRQWyaqfGsNBaNMY3hjm1Yxw2oljCpFyZnUIJSVlCsu1ZxLflK82dfdBvw65Md2G5ed8V72gEPsSsZE21Zly_-PUl43lM9bkdHXj9AbHEL2YaLaVlT1XDSZevVADWoDptsGt5Fh7H5_Ywbe7gEdMMYA9g_CaDeNSJdHpLsfkcyePWK1S_depiCd_5di5zyMfy_dXS3e7xW_AG9G0s4
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130845
crossref_primary_10_1016_j_agrformet_2020_108169
crossref_primary_10_3389_feart_2022_802763
crossref_primary_10_5194_bg_17_1655_2020
crossref_primary_10_1016_j_rse_2023_113987
crossref_primary_10_1111_gcb_16944
crossref_primary_10_3390_rs11121460
crossref_primary_10_1016_j_agrformet_2023_109658
crossref_primary_10_1016_j_ecolind_2019_105669
crossref_primary_10_3390_rs13132545
crossref_primary_10_1016_j_agrformet_2019_107614
crossref_primary_10_1016_j_agrformet_2021_108567
crossref_primary_10_1016_j_fecs_2025_100375
crossref_primary_10_3390_rs14061357
crossref_primary_10_3390_rs16132388
crossref_primary_10_1029_2023JG007703
crossref_primary_10_1109_TGRS_2025_3608266
crossref_primary_10_1016_j_rse_2020_111728
crossref_primary_10_3390_rs17152642
crossref_primary_10_1016_j_rse_2019_111383
crossref_primary_10_1016_j_rse_2020_111722
crossref_primary_10_1016_j_rse_2023_113984
crossref_primary_10_1016_j_rse_2022_113104
crossref_primary_10_1016_j_rse_2023_113981
crossref_primary_10_1029_2021EF002634
crossref_primary_10_1016_j_rse_2022_113118
crossref_primary_10_1111_gcb_15603
crossref_primary_10_1038_s41612_025_00988_z
crossref_primary_10_1016_j_scitotenv_2021_148396
crossref_primary_10_1016_j_ecoinf_2024_102780
crossref_primary_10_1016_j_rse_2021_112525
crossref_primary_10_3390_rs15174237
crossref_primary_10_1016_j_agrformet_2019_06_002
crossref_primary_10_1002_ajb2_1347
crossref_primary_10_1016_j_ecoinf_2024_102786
crossref_primary_10_1016_j_isprsjprs_2020_01_017
crossref_primary_10_1016_j_agrformet_2023_109546
crossref_primary_10_1016_j_scitotenv_2022_159692
crossref_primary_10_3390_rs12091377
crossref_primary_10_1029_2023JG007956
crossref_primary_10_3390_rs12233962
crossref_primary_10_1016_j_jag_2021_102418
crossref_primary_10_3389_fpls_2020_01244
crossref_primary_10_3389_ffgc_2021_695269
crossref_primary_10_1016_j_agrformet_2024_110236
crossref_primary_10_1016_j_ecolind_2023_110501
crossref_primary_10_1016_j_jhydrol_2023_129314
crossref_primary_10_1111_gcb_14427
crossref_primary_10_1016_j_scitotenv_2021_152786
crossref_primary_10_1007_s00704_024_05158_4
crossref_primary_10_1016_j_rse_2022_113209
crossref_primary_10_12677_GSER_2023_123034
crossref_primary_10_3390_rs10101663
crossref_primary_10_1038_s41598_023_41048_x
crossref_primary_10_3390_rs11050517
crossref_primary_10_3390_rs14061328
crossref_primary_10_1029_2020GL087474
crossref_primary_10_1088_1748_9326_ac9dae
crossref_primary_10_3390_rs14061329
crossref_primary_10_1016_j_scitotenv_2022_158499
crossref_primary_10_1007_s00484_025_02880_0
crossref_primary_10_1016_j_asr_2022_07_068
crossref_primary_10_3390_rs14246316
crossref_primary_10_1016_j_rse_2020_112030
crossref_primary_10_1111_gcb_16043
crossref_primary_10_1002_pei3_10109
crossref_primary_10_1016_j_chemosphere_2024_142147
crossref_primary_10_1016_j_rse_2021_112865
crossref_primary_10_3390_plants12112224
crossref_primary_10_1016_j_agrformet_2022_108819
crossref_primary_10_1016_j_rse_2021_112748
crossref_primary_10_1002_ldr_3701
crossref_primary_10_3390_rs12071202
crossref_primary_10_1029_2023JD040006
crossref_primary_10_1016_j_scitotenv_2023_162425
crossref_primary_10_1080_01431161_2020_1763507
crossref_primary_10_3390_rs13040794
crossref_primary_10_1016_j_rse_2019_111274
crossref_primary_10_1016_j_ecolmodel_2025_111283
crossref_primary_10_1016_j_isprsjprs_2023_07_021
crossref_primary_10_1016_j_rse_2020_111755
crossref_primary_10_3390_rs13142824
crossref_primary_10_1016_j_ecolind_2024_112406
crossref_primary_10_1029_2018JG005002
crossref_primary_10_3390_rs12040680
crossref_primary_10_5194_bg_17_1293_2020
crossref_primary_10_1016_j_scitotenv_2024_175845
crossref_primary_10_3389_fpls_2025_1603159
crossref_primary_10_1016_j_jhydrol_2022_128044
crossref_primary_10_1177_03091333221114864
crossref_primary_10_1111_gcb_16227
crossref_primary_10_1016_j_rse_2023_113547
crossref_primary_10_1038_s41467_018_07813_7
crossref_primary_10_1007_s13157_023_01722_2
crossref_primary_10_1080_22797254_2023_2301657
crossref_primary_10_3390_rs11141715
crossref_primary_10_1016_j_scitotenv_2024_177344
crossref_primary_10_3390_f14061086
crossref_primary_10_1016_j_isprsjprs_2023_10_015
crossref_primary_10_1016_j_scitotenv_2020_140338
crossref_primary_10_1016_j_agrformet_2023_109734
crossref_primary_10_1038_s43017_023_00456_3
crossref_primary_10_1016_j_gloplacha_2024_104627
crossref_primary_10_1038_s41597_024_03004_w
crossref_primary_10_1016_j_rse_2022_113380
crossref_primary_10_1016_j_rse_2023_113785
crossref_primary_10_1016_j_rse_2022_113383
crossref_primary_10_1038_s41598_021_95281_3
crossref_primary_10_3390_rs15092392
crossref_primary_10_1038_s41598_022_23120_0
crossref_primary_10_3390_agronomy14102345
crossref_primary_10_3390_rs16101707
crossref_primary_10_1029_2020GL087858
crossref_primary_10_1111_gcb_15373
crossref_primary_10_1371_journal_pone_0264780
crossref_primary_10_3390_s22093411
crossref_primary_10_1016_j_ecolind_2022_109331
crossref_primary_10_1080_01431161_2020_1750731
crossref_primary_10_5194_bg_18_2843_2021
crossref_primary_10_1016_j_jhydrol_2025_133506
crossref_primary_10_5194_bg_16_3069_2019
crossref_primary_10_1080_15481603_2023_2194597
crossref_primary_10_3390_atmos16050560
crossref_primary_10_5194_bg_20_1473_2023
crossref_primary_10_1029_2018GL081109
crossref_primary_10_1080_15481603_2024_2345438
crossref_primary_10_1016_j_ecolind_2023_111511
crossref_primary_10_1016_j_jclepro_2024_142007
crossref_primary_10_1016_j_agrformet_2022_108905
crossref_primary_10_1016_j_agrformet_2022_108904
crossref_primary_10_1016_j_jhydrol_2020_124581
crossref_primary_10_1016_j_apenergy_2024_122681
crossref_primary_10_1029_2024JG008487
crossref_primary_10_3390_rs13112037
crossref_primary_10_1016_j_rse_2024_114492
crossref_primary_10_5194_essd_14_4077_2022
crossref_primary_10_1016_j_rse_2024_114490
crossref_primary_10_1016_j_rsase_2025_101735
crossref_primary_10_1016_j_scitotenv_2023_162591
crossref_primary_10_3390_rs11151746
crossref_primary_10_3390_rs13163159
crossref_primary_10_1016_j_ecolind_2024_112439
crossref_primary_10_1016_j_rse_2021_112672
crossref_primary_10_1016_j_rse_2024_114496
crossref_primary_10_1016_j_rse_2022_113365
crossref_primary_10_1038_s41558_024_01933_3
crossref_primary_10_1016_j_jag_2025_104503
crossref_primary_10_1088_2752_664X_adabed
crossref_primary_10_1111_gcb_17569
crossref_primary_10_1029_2023JG007586
crossref_primary_10_1016_j_ecoinf_2025_103312
crossref_primary_10_1016_j_rse_2019_01_016
crossref_primary_10_1016_j_scitotenv_2022_154550
crossref_primary_10_1016_j_jhydrol_2024_130632
crossref_primary_10_1080_10106049_2022_2071469
crossref_primary_10_1029_2019GL082716
crossref_primary_10_3390_rs10111784
crossref_primary_10_3390_rs12020258
crossref_primary_10_1042_ETLS20200292
crossref_primary_10_3390_rs14122740
crossref_primary_10_1088_1748_9326_abf3dc
crossref_primary_10_3390_rs15051172
crossref_primary_10_1016_j_rse_2022_112896
crossref_primary_10_1038_s41597_025_04686_6
crossref_primary_10_1029_2022MS003150
crossref_primary_10_1111_pce_13620
crossref_primary_10_3390_rs14061504
crossref_primary_10_5194_bg_22_555_2025
crossref_primary_10_3389_fenvs_2023_1093095
crossref_primary_10_1016_j_rse_2024_114150
crossref_primary_10_1038_s41467_020_18631_1
crossref_primary_10_3390_rs12152346
crossref_primary_10_1111_1365_2435_14694
crossref_primary_10_1016_j_ecolmodel_2024_111017
crossref_primary_10_1016_j_rse_2022_112892
crossref_primary_10_1029_2019JG005051
crossref_primary_10_1016_j_agrformet_2021_108735
crossref_primary_10_1038_s41467_025_58253_z
crossref_primary_10_1016_j_rse_2024_113999
crossref_primary_10_1016_j_agrformet_2024_109888
crossref_primary_10_3390_su14020968
crossref_primary_10_1029_2020GL091247
crossref_primary_10_1038_s41477_025_02024_7
crossref_primary_10_1016_j_rse_2024_114284
crossref_primary_10_1016_j_agrformet_2025_110496
crossref_primary_10_3390_rs15164038
crossref_primary_10_1038_s41598_025_08927_x
crossref_primary_10_1029_2019GL084832
crossref_primary_10_1016_j_agrformet_2024_110193
crossref_primary_10_1016_j_rse_2021_112360
crossref_primary_10_1080_01431161_2020_1782509
crossref_primary_10_1002_ldr_4093
crossref_primary_10_1016_j_rse_2023_113699
crossref_primary_10_3390_rs14153716
crossref_primary_10_1029_2022MS003135
crossref_primary_10_1080_17538947_2023_2300311
crossref_primary_10_1029_2020JG006136
crossref_primary_10_3390_rs11030273
crossref_primary_10_1016_j_compag_2023_107615
crossref_primary_10_1029_2024GL113419
crossref_primary_10_1016_j_rse_2023_113921
crossref_primary_10_1029_2024JG008280
crossref_primary_10_1038_s41477_021_00952_8
crossref_primary_10_1029_2019AV000140
crossref_primary_10_1002_joc_7947
crossref_primary_10_1016_j_scitotenv_2019_134064
crossref_primary_10_3390_rs15143568
crossref_primary_10_1080_11956860_2024_2303187
crossref_primary_10_3390_land9090288
crossref_primary_10_1109_JSTARS_2021_3128355
crossref_primary_10_1029_2023JG007407
crossref_primary_10_1073_pnas_2306507120
crossref_primary_10_1016_j_rse_2022_113282
crossref_primary_10_1111_gcb_15475
crossref_primary_10_3390_rs11151823
crossref_primary_10_1016_j_apgeog_2023_103115
crossref_primary_10_1029_2022JD037773
crossref_primary_10_3390_rs10091346
crossref_primary_10_1016_j_heliyon_2024_e31552
crossref_primary_10_1029_2024GL110148
crossref_primary_10_3390_rs15071756
crossref_primary_10_1016_j_scitotenv_2024_173337
crossref_primary_10_3390_rs13132593
crossref_primary_10_1016_j_jhydrol_2024_131883
crossref_primary_10_1016_j_agrformet_2022_109189
crossref_primary_10_1016_j_jhydrol_2025_133447
crossref_primary_10_1111_nph_70183
crossref_primary_10_1016_j_scitotenv_2022_159191
crossref_primary_10_1029_2023GL107429
crossref_primary_10_1038_s43016_023_00882_y
crossref_primary_10_1016_j_ecolind_2022_108905
crossref_primary_10_3390_rs17122064
crossref_primary_10_1088_1748_9326_ab65cc
crossref_primary_10_1088_1748_9326_abd2f1
crossref_primary_10_5194_bg_21_5481_2024
crossref_primary_10_1016_j_ecolind_2024_112924
crossref_primary_10_3390_s20041144
crossref_primary_10_34133_plantphenomics_0144
crossref_primary_10_1016_j_rse_2019_111314
crossref_primary_10_1029_2025GL118236
crossref_primary_10_5194_bg_15_5779_2018
crossref_primary_10_1016_j_jag_2023_103325
crossref_primary_10_3390_rs13050963
crossref_primary_10_1016_j_rse_2021_112856
crossref_primary_10_1111_gcb_14565
crossref_primary_10_1111_gcb_15775
crossref_primary_10_1016_j_ecolind_2021_108353
crossref_primary_10_1111_gcb_16503
crossref_primary_10_1016_j_isprsjprs_2022_10_018
crossref_primary_10_3390_rs16030555
crossref_primary_10_1016_j_jhydrol_2022_128680
crossref_primary_10_1038_s41597_023_02224_w
crossref_primary_10_1111_gcb_17151
crossref_primary_10_1016_j_rse_2019_111344
crossref_primary_10_3390_rs11212563
crossref_primary_10_1016_j_ecolind_2021_107949
crossref_primary_10_1089_big_2020_0350
crossref_primary_10_1080_15481603_2024_2318846
crossref_primary_10_1016_j_rse_2020_111888
crossref_primary_10_1016_j_agrformet_2025_110569
crossref_primary_10_1109_TGRS_2024_3439333
crossref_primary_10_1016_j_rse_2025_114996
crossref_primary_10_1016_j_ecolind_2024_112857
crossref_primary_10_1111_ppl_14048
crossref_primary_10_3389_ffgc_2023_1172220
crossref_primary_10_1016_j_agrformet_2022_109180
crossref_primary_10_1029_2018JG004883
crossref_primary_10_1088_1748_9326_acd2ef
crossref_primary_10_3390_rs14236011
crossref_primary_10_1007_s11214_020_00659_w
crossref_primary_10_3390_rs14133018
crossref_primary_10_1016_j_jhydrol_2025_133468
crossref_primary_10_1016_j_ecolind_2022_108646
crossref_primary_10_1016_j_scitotenv_2025_178570
crossref_primary_10_1016_j_agrformet_2023_109591
crossref_primary_10_1016_j_agrformet_2022_109054
crossref_primary_10_1016_j_agrformet_2023_109473
crossref_primary_10_1029_2021MS002747
crossref_primary_10_1016_j_rse_2020_112062
crossref_primary_10_1016_j_ecolind_2024_112507
crossref_primary_10_1016_j_agrformet_2021_108427
crossref_primary_10_1016_j_agrformet_2020_108147
crossref_primary_10_1109_JSTARS_2023_3269908
crossref_primary_10_1109_TGRS_2022_3200988
crossref_primary_10_1111_gcb_16646
crossref_primary_10_1016_j_agrformet_2022_109038
crossref_primary_10_5194_hess_24_6021_2020
crossref_primary_10_1016_j_apgeog_2022_102869
crossref_primary_10_1371_journal_pone_0313258
crossref_primary_10_1016_j_jag_2021_102329
crossref_primary_10_3390_rs16030528
crossref_primary_10_1016_j_agrformet_2023_109440
crossref_primary_10_1016_j_agrformet_2024_110182
crossref_primary_10_1016_j_rse_2025_114856
crossref_primary_10_1029_2020JG005774
crossref_primary_10_1016_j_rse_2020_112195
crossref_primary_10_1111_gcb_15554
crossref_primary_10_1016_j_rse_2020_112196
crossref_primary_10_1029_2020JG005651
crossref_primary_10_1029_2022JG007352
crossref_primary_10_1093_jxb_eraa537
crossref_primary_10_3390_rs13122363
crossref_primary_10_1016_j_rse_2024_114530
crossref_primary_10_1016_j_foreco_2021_120000
crossref_primary_10_1016_j_agrformet_2021_108439
crossref_primary_10_1111_nph_18045
crossref_primary_10_3390_rs10122039
crossref_primary_10_1111_gcb_16634
crossref_primary_10_2478_mgrsd_2020_0029
crossref_primary_10_1080_15481603_2025_2483458
crossref_primary_10_1016_j_scitotenv_2024_178269
crossref_primary_10_3390_rs12172812
crossref_primary_10_1016_j_agrformet_2023_109323
crossref_primary_10_1016_j_scienta_2023_112651
crossref_primary_10_1016_j_agrformet_2020_108018
crossref_primary_10_1016_j_jag_2022_102861
crossref_primary_10_3390_rs15215101
crossref_primary_10_1029_2022JG007369
crossref_primary_10_1029_2023JG007977
crossref_primary_10_1016_j_agrformet_2024_110293
crossref_primary_10_1016_j_rse_2019_04_030
crossref_primary_10_1016_j_aeaoa_2025_100335
crossref_primary_10_1016_j_enconman_2025_120339
Cites_doi 10.1016/j.jplph.2014.12.015
10.1093/jxb/eru191
10.1104/pp.99.4.1426
10.1073/pnas.1616943114
10.1098/rstb.1977.0140
10.1016/j.agrformet.2017.12.186
10.1007/s11430-006-8226-1
10.5194/bg-14-597-2017
10.1111/gcb.13200
10.1016/j.agrformet.2014.06.013
10.1016/j.rse.2014.02.007
10.2307/2401901
10.1016/j.rse.2012.02.006
10.1002/2016JG003580
10.1016/j.rse.2013.02.003
10.1016/j.rse.2017.09.034
10.1016/j.agrformet.2006.08.017
10.1016/j.rse.2010.12.013
10.1146/annurev.arplant.59.032607.092759
10.1002/2015GL063201
10.5194/bg-3-571-2006
10.1016/j.rse.2018.02.016
10.1111/gcb.12664
10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
10.1111/1365-3040.ep11612087
10.3390/rs9030193
10.1126/science.aam5747
10.3390/rs9060530
10.2134/agronj2012.0065
10.1016/S0168-1923(02)00107-7
10.1029/2011GL048738
10.1088/1748-9326/aa7a19
10.1073/pnas.1320008111
10.1016/j.agrformet.2016.06.014
10.1016/j.jag.2014.08.002
10.1111/gcb.12652
10.5194/bg-12-4067-2015
10.1016/j.rse.2009.05.003
10.1111/j.1365-2486.2007.01352.x
10.1016/j.rse.2016.11.021
10.1016/j.rse.2015.06.008
10.1088/1748-9326/aab0b1
10.3389/fphys.2013.00017
10.1890/ES14-00542.1
10.1111/gcb.13017
10.1111/gcb.13590
10.1109/TGRS.2010.2046420
10.5194/amt-6-2803-2013
10.1111/j.1365-2486.2005.001002.x
10.1016/j.rse.2014.09.031
10.1002/2015JG003150
10.1016/j.rse.2015.02.022
10.1002/2016GL070775
10.1126/sciadv.1602244
10.5194/bg-8-637-2011
10.1016/j.agrformet.2007.11.012
10.1016/j.rse.2014.06.022
10.1016/j.rse.2016.05.015
10.1016/j.rse.2005.05.006
10.1109/TGRS.2016.2621820
10.1098/rspb.2013.0171
10.5194/amt-8-1337-2015
10.1016/j.rse.2009.10.013
10.1080/01431160500033682
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd
DBID AAYXX
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.14297
DatabaseName CrossRef
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed
CrossRef
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 4008
ExternalDocumentID 29733483
10_1111_gcb_14297
GCB14297
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Aeronautics and Space Administration
  funderid: NNX14AJ18G; NNX16AG61G
– fundername: China Scholarship Council
– fundername: National Science Foundation
  funderid: 1065777; 1638688
– fundername: Iola Hubbard Climate Change Endowment; National Natural Science Foundation of China
  funderid: 41471293; 41671361
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c4217-f45f6ca6a77e5f164421fd0edbd7d37f78b1d15b6db26231ace6bfa03b3ab93a3
IEDL.DBID DRFUL
ISICitedReferencesCount 345
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441746900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:38:30 EDT 2025
Wed Oct 01 14:39:08 EDT 2025
Sun Jul 13 04:38:44 EDT 2025
Thu Apr 03 07:01:00 EDT 2025
Tue Nov 18 22:15:00 EST 2025
Sat Nov 29 06:02:29 EST 2025
Wed Jan 22 17:09:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords carbon flux
chlorophyll fluorescence
OCO-2
gross primary productivity
vegetation type
carbon cycle
MODIS
eddy covariance
Language English
License 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4217-f45f6ca6a77e5f164421fd0edbd7d37f78b1d15b6db26231ace6bfa03b3ab93a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0622-6903
0000-0003-1514-1140
OpenAccessLink https://research-repository.uwa.edu.au/en/publications/09a8fd15-5723-4ad7-824a-ee5688c98762
PMID 29733483
PQID 2088645967
PQPubID 30327
PageCount 19
ParticipantIDs proquest_miscellaneous_2116884283
proquest_miscellaneous_2035703986
proquest_journals_2088645967
pubmed_primary_29733483
crossref_primary_10_1111_gcb_14297
crossref_citationtrail_10_1111_gcb_14297
wiley_primary_10_1111_gcb_14297_GCB14297
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 34
2011; 115
2012; 121
2013; 4
2017; 3
1983; 6
2002; 113
2017; 44
2009; 113
2008; 148
2013; 280
2017; 232
2005; 26
1992; 99
2013; 6
2006; 139
2017; 114
2017; 9
2017; 358
2014; 65
2014; 20
2016; 183
2018; 250
2015; 177
2010; 114
2015; 42
2017; 122
2015; 162
2015; 12
2015; 6
1972; 9
2015; 166
2018a; 204
2015; 120
2008; 59
2006; 3
2011; 38
2014; 111
2012; 104
2015; 8
2014; 152
2014; 197
2007; 13
2011; 8
2006; 111
2004; 54
1977; 281
2010; 48
2017; 14
2017; 55
2006; 49
2015; 156
2017; 12
2017; 190
2015; 21
2013; 133
2005; 97
2018
2018b; 13
2014; 147
2005; 11
2016; 23
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Sims D. A. (e_1_2_8_47_1) 2006; 111
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
Öquist G. (e_1_2_8_38_1) 1983; 6
e_1_2_8_50_1
References_xml – volume: 21
  start-page: 4673
  year: 2015
  end-page: 4684
  article-title: Sun‐induced fluorescence–a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant
  publication-title: Global Change Biology
– volume: 44
  start-page: 533
  year: 2017
  end-page: 541
  article-title: Multiscale analyses of solar‐induced florescence and gross primary production
  publication-title: Geophysical Research Letters
– volume: 114
  start-page: 576
  year: 2010
  end-page: 591
  article-title: A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data
  publication-title: Remote Sensing of Environment
– volume: 49
  start-page: 226
  year: 2006
  end-page: 240
  article-title: Carbon dioxide exchange and the mechanism of environmental control in a farmland ecosystem in North China Plain
  publication-title: Science in China Series D: Earth Sciences
– volume: 280
  start-page: 20130171
  year: 2013
  article-title: Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
– volume: 9
  start-page: 530
  year: 2017
  article-title: Global analysis of bioclimatic controls on ecosystem productivity using satellite observations of solar‐induced chlorophyll fluorescence
  publication-title: Remote Sensing
– volume: 183
  start-page: 154
  year: 2016
  end-page: 169
  article-title: Consistency between sun‐induced chlorophyll fluorescence and gross primary production of vegetation in North America
  publication-title: Remote Sensing of Environment
– volume: 13
  start-page: 1484
  year: 2007
  end-page: 1497
  article-title: Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence?
  publication-title: Global Change Biology
– year: 2018
  article-title: Overview of Solar‐Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory‐2: Retrieval, cross‐mission comparison, and global monitoring for GPP
  publication-title: Remote Sensing of Environment
– volume: 358
  start-page: eaam5747
  year: 2017
  article-title: OCO‐2 advances photosynthesis observation from space via solar‐induced chlorophyll fluorescence
  publication-title: Science
– volume: 3
  start-page: e1602244
  year: 2017
  article-title: Canopy near‐infrared reflectance and terrestrial photosynthesis
  publication-title: Science Advances
– volume: 14
  start-page: 597
  year: 2017
  article-title: Describing rainfall in northern Australia using multiple climate indices
  publication-title: Biogeosciences
– volume: 59
  start-page: 89
  year: 2008
  end-page: 113
  article-title: Chlorophyll fluorescence: a probe of photosynthesis
  publication-title: Annual Review of Plant Biology
– volume: 65
  start-page: 4065
  year: 2014
  end-page: 4095
  article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 163
  year: 2015
  end-page: 177
  article-title: The 2010 Russian drought impact on satellite measurements of solar‐induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances
  publication-title: Remote Sensing of Environment
– volume: 8
  start-page: 1337
  year: 2015
  end-page: 1352
  article-title: Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel‐5 Precursor for the monitoring of terrestrial chlorophyll fluorescence
  publication-title: Atmospheric Measurement Techniques
– volume: 104
  start-page: 1336
  year: 2012
  end-page: 1347
  article-title: Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity
  publication-title: Agronomy Journal
– volume: 13
  start-page: 044005
  year: 2018b
  article-title: Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought
  publication-title: Environmental Research Letters
– volume: 162
  start-page: 154
  year: 2015
  end-page: 168
  article-title: Comparison of four EVI‐based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought
  publication-title: Remote Sensing of Environment
– volume: 12
  start-page: 085001
  year: 2017
  article-title: Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: Benchmarking for impact assessment studies
  publication-title: Environmental Research Letters
– volume: 122
  start-page: 716
  year: 2017
  end-page: 733
  article-title: Effect of environmental conditions on the relationship between solar induced fluorescence and gross primary productivity at an OzFlux grassland site
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 38
  start-page: L17706
  year: 2011
  article-title: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity
  publication-title: Geophysical Research Letters
– volume: 99
  start-page: 1426
  year: 1992
  end-page: 1434
  article-title: Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit
  publication-title: Plant Physiology
– volume: 97
  start-page: 403
  year: 2005
  end-page: 414
  article-title: Simple reflectance indices track heat and water stress‐induced changes in steady‐state chlorophyll fluorescence at the canopy scale
  publication-title: Remote Sensing of Environment
– volume: 26
  start-page: 2371
  year: 2005
  end-page: 2390
  article-title: Geographical distribution of global greening trends and their climatic correlates: 1982‐1998
  publication-title: International Journal of Remote Sensing
– volume: 197
  start-page: 142
  year: 2014
  end-page: 157
  article-title: Data‐driven diagnostics of terrestrial carbon dynamics over North America
  publication-title: Agricultural and Forest Meteorology
– volume: 42
  start-page: 2977
  year: 2015
  end-page: 2987
  article-title: Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest
  publication-title: Geophysical Research Letters
– volume: 8
  start-page: 637
  year: 2011
  end-page: 651
  article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space
  publication-title: Biogeosciences
– volume: 147
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory‐2
  publication-title: Remote Sensing of Environment
– volume: 23
  start-page: 2874
  year: 2016
  end-page: 2886
  article-title: Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest
  publication-title: Global Change Biology
– volume: 177
  start-page: 100
  year: 2015
  end-page: 109
  article-title: Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: Implications for remote sensing of crop primary production
  publication-title: Journal of Plant Physiology
– volume: 111
  start-page: E1327
  year: 2014
  end-page: E1333
  article-title: Global and time‐resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 2803
  year: 2013
  end-page: 2823
  article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near‐infrared satellite measurements: Methodology, simulations, and application to GOME‐2
  publication-title: Atmospheric Measurement Techniques
– volume: 152
  start-page: 375
  year: 2014
  end-page: 391
  article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange
  publication-title: Remote Sensing of Environment
– volume: 148
  start-page: 821
  year: 2008
  end-page: 838
  article-title: Cross‐site evaluation of eddy covariance GPP and RE decomposition techniques
  publication-title: Agricultural and Forest Meteorology
– volume: 22
  start-page: 2979
  year: 2016
  end-page: 2996
  article-title: Satellite chlorophyll fluorescence measurements reveal large‐scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests
  publication-title: Global Change Biology
– volume: 9
  start-page: 747
  year: 1972
  end-page: 766
  article-title: Solar radiation and productivity in tropical ecosystems
  publication-title: Journal of Applied Ecology
– volume: 114
  start-page: 2640
  year: 2017
  end-page: 2644
  article-title: Light‐driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  start-page: 571
  year: 2006
  end-page: 583
  article-title: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation
  publication-title: Biogeosciences
– volume: 190
  start-page: 178
  year: 2017
  end-page: 187
  article-title: Application of satellite solar‐induced chlorophyll fluorescence to understanding large‐scale variations in vegetation phenology and function over northern high latitude forests
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 159
  year: 2002
  end-page: 183
  article-title: Footprint modeling for vegetation atmosphere exchange studies: A review and perspective
  publication-title: Agricultural and Forest Meteorology
– volume: 20
  start-page: 3103
  year: 2014
  end-page: 3121
  article-title: Terrestrial gross primary production inferred from satellite fluorescence and vegetation models
  publication-title: Global Change Biology
– volume: 20
  start-page: 3727
  year: 2014
  end-page: 3742
  article-title: Estimation of vegetation photosynthetic capacity from space‐based measurements of chlorophyll fluorescence for terrestrial biosphere models
  publication-title: Global Change Biology
– volume: 281
  start-page: 277
  year: 1977
  end-page: 294
  article-title: Climate and the efficiency of crop production in Britain [and discussion]
  publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences
– volume: 4
  start-page: 17
  year: 2013
  article-title: Plant response to environmental conditions: Assessing potential production, water demand, and negative effects of water deficit
  publication-title: Frontiers in Physiology
– volume: 6
  start-page: 281
  year: 1983
  end-page: 300
  article-title: Effects of low temperature on photosynthesis
  publication-title: Plant, Cell & Environment
– volume: 133
  start-page: 102
  year: 2013
  end-page: 115
  article-title: Spatio‐temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance
  publication-title: Remote Sensing of Environment
– volume: 115
  start-page: 1081
  year: 2011
  end-page: 1089
  article-title: Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems
  publication-title: Remote Sensing of Environment
– volume: 55
  start-page: 1273
  year: 2017
  end-page: 1284
  article-title: The FLuorescence EXplorer Mission Concept—ESA's Earth Explorer 8
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 34
  start-page: 235
  year: 2015
  end-page: 248
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 48
  start-page: 3358
  year: 2010
  end-page: 3368
  article-title: A field platform for continuous measurement of canopy fluorescence
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 113
  start-page: 2037
  year: 2009
  end-page: 2051
  article-title: Remote sensing of solar‐induced chlorophyll fluorescence: Review of methods and applications
  publication-title: Remote Sensing of Environment
– volume: 121
  start-page: 236
  year: 2012
  end-page: 251
  article-title: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements
  publication-title: Remote Sensing of Environment
– volume: 204
  start-page: 659
  year: 2018a
  end-page: 671
  article-title: Chlorophyll fluorescence observed by OCO‐2 is strongly related to gross primary productivity estimated from flux towers in temperate forests
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 193
  year: 2017
  article-title: Annual Gross Primary Production from Vegetation Indices: A Theoretically Sound Approach
  publication-title: Remote Sensing
– volume: 6
  start-page: 43
  issue: 3
  year: 2015
  article-title: Generalization and evaluation of the process‐based forest ecosystem model PnET‐CN for other biomes
  publication-title: Ecosphere
– volume: 111
  year: 2006
  article-title: On the use of MODIS EVI to assess gross primary productivity of North American ecosystems
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 120
  start-page: 2427
  year: 2015
  end-page: 2440
  article-title: Drought onset mechanisms revealed by satellite solar‐induced chlorophyll fluorescence: Insights from two contrasting extreme events
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 232
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Directly estimating diurnal changes in GPP for C3 and C4 crops using far‐red sun‐induced chlorophyll fluorescence
  publication-title: Agricultural and Forest Meteorology
– volume: 54
  start-page: 547
  year: 2004
  end-page: 560
  article-title: A continuous satellite‐derived measure of global terrestrial primary production
  publication-title: BioScience
– volume: 12
  start-page: 4067
  year: 2015
  end-page: 4084
  article-title: Investigating the usefulness of satellite‐derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system
  publication-title: Biogeosciences
– volume: 11
  start-page: 1424
  year: 2005
  end-page: 1439
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm
  publication-title: Global Change Biology
– volume: 139
  start-page: 382
  year: 2006
  end-page: 398
  article-title: Modelling five years of weather‐driven variation of GPP in a boreal forest
  publication-title: Agricultural and Forest Meteorology
– volume: 156
  start-page: 202
  year: 2015
  end-page: 215
  article-title: Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data
  publication-title: Remote Sensing of Environment
– volume: 250
  start-page: 90
  year: 2018
  end-page: 101
  article-title: A novel correction for biases in forest eddy covariance carbon balance
  publication-title: Agricultural and Forest Meteorology
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jplph.2014.12.015
– ident: e_1_2_8_41_1
  doi: 10.1093/jxb/eru191
– ident: e_1_2_8_4_1
  doi: 10.1104/pp.99.4.1426
– volume: 111
  year: 2006
  ident: e_1_2_8_47_1
  article-title: On the use of MODIS EVI to assess gross primary productivity of North American ecosystems
  publication-title: Journal of Geophysical Research: Biogeosciences
– ident: e_1_2_8_52_1
  doi: 10.1073/pnas.1616943114
– ident: e_1_2_8_36_1
  doi: 10.1098/rstb.1977.0140
– ident: e_1_2_8_19_1
  doi: 10.1016/j.agrformet.2017.12.186
– ident: e_1_2_8_30_1
  doi: 10.1007/s11430-006-8226-1
– ident: e_1_2_8_44_1
  doi: 10.5194/bg-14-597-2017
– ident: e_1_2_8_56_1
  doi: 10.1111/gcb.13200
– ident: e_1_2_8_59_1
  doi: 10.1016/j.agrformet.2014.06.013
– ident: e_1_2_8_12_1
  doi: 10.1016/j.rse.2014.02.007
– ident: e_1_2_8_35_1
  doi: 10.2307/2401901
– ident: e_1_2_8_17_1
  doi: 10.1016/j.rse.2012.02.006
– ident: e_1_2_8_55_1
  doi: 10.1002/2016JG003580
– ident: e_1_2_8_64_1
  doi: 10.1016/j.rse.2013.02.003
– ident: e_1_2_8_28_1
  doi: 10.1016/j.rse.2017.09.034
– ident: e_1_2_8_33_1
  doi: 10.1016/j.agrformet.2006.08.017
– ident: e_1_2_8_48_1
  doi: 10.1016/j.rse.2010.12.013
– ident: e_1_2_8_3_1
  doi: 10.1146/annurev.arplant.59.032607.092759
– ident: e_1_2_8_61_1
  doi: 10.1002/2015GL063201
– ident: e_1_2_8_39_1
  doi: 10.5194/bg-3-571-2006
– ident: e_1_2_8_49_1
  doi: 10.1016/j.rse.2018.02.016
– ident: e_1_2_8_65_1
  doi: 10.1111/gcb.12664
– ident: e_1_2_8_45_1
  doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
– volume: 6
  start-page: 281
  year: 1983
  ident: e_1_2_8_38_1
  article-title: Effects of low temperature on photosynthesis
  publication-title: Plant, Cell & Environment
  doi: 10.1111/1365-3040.ep11612087
– ident: e_1_2_8_13_1
  doi: 10.3390/rs9030193
– ident: e_1_2_8_50_1
  doi: 10.1126/science.aam5747
– ident: e_1_2_8_32_1
  doi: 10.3390/rs9060530
– ident: e_1_2_8_37_1
  doi: 10.2134/agronj2012.0065
– ident: e_1_2_8_46_1
  doi: 10.1016/S0168-1923(02)00107-7
– ident: e_1_2_8_11_1
  doi: 10.1029/2011GL048738
– ident: e_1_2_8_20_1
  doi: 10.1088/1748-9326/aa7a19
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1320008111
– ident: e_1_2_8_31_1
  doi: 10.1016/j.agrformet.2016.06.014
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jag.2014.08.002
– ident: e_1_2_8_40_1
  doi: 10.1111/gcb.12652
– ident: e_1_2_8_25_1
  doi: 10.5194/bg-12-4067-2015
– ident: e_1_2_8_34_1
  doi: 10.1016/j.rse.2009.05.003
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1365-2486.2007.01352.x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.rse.2016.11.021
– ident: e_1_2_8_63_1
  doi: 10.1016/j.rse.2015.06.008
– ident: e_1_2_8_29_1
  doi: 10.1088/1748-9326/aab0b1
– ident: e_1_2_8_53_1
  doi: 10.3389/fphys.2013.00017
– ident: e_1_2_8_54_1
  doi: 10.1890/ES14-00542.1
– ident: e_1_2_8_42_1
  doi: 10.1111/gcb.13017
– ident: e_1_2_8_62_1
  doi: 10.1111/gcb.13590
– ident: e_1_2_8_6_1
  doi: 10.1109/TGRS.2010.2046420
– ident: e_1_2_8_22_1
  doi: 10.5194/amt-6-2803-2013
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: e_1_2_8_5_1
  doi: 10.1016/j.rse.2014.09.031
– ident: e_1_2_8_51_1
  doi: 10.1002/2015JG003150
– ident: e_1_2_8_9_1
  doi: 10.1016/j.rse.2015.02.022
– ident: e_1_2_8_57_1
  doi: 10.1002/2016GL070775
– ident: e_1_2_8_2_1
  doi: 10.1126/sciadv.1602244
– ident: e_1_2_8_23_1
  doi: 10.5194/bg-8-637-2011
– ident: e_1_2_8_7_1
  doi: 10.1016/j.agrformet.2007.11.012
– ident: e_1_2_8_24_1
  doi: 10.1016/j.rse.2014.06.022
– ident: e_1_2_8_66_1
  doi: 10.1016/j.rse.2016.05.015
– ident: e_1_2_8_8_1
  doi: 10.1016/j.rse.2005.05.006
– ident: e_1_2_8_10_1
  doi: 10.1109/TGRS.2016.2621820
– ident: e_1_2_8_27_1
  doi: 10.1098/rspb.2013.0171
– ident: e_1_2_8_16_1
  doi: 10.5194/amt-8-1337-2015
– ident: e_1_2_8_60_1
  doi: 10.1016/j.rse.2009.10.013
– ident: e_1_2_8_58_1
  doi: 10.1080/01431160500033682
SSID ssj0003206
Score 2.6707726
Snippet Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly...
Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3990
SubjectTerms Agricultural land
broadleaved evergreen forests
carbon
Carbon cycle
carbon flux
Chlorophyll
chlorophyll fluorescence
Chlorophylls
cropland
Ecological function
Ecosystems
eddy covariance
Environmental stress
Fluctuations
Fluorescence
Flux
Forests
Grasslands
gross primary productivity
Missions
MODIS
OCO‐2
Performance prediction
Photosynthesis
photosynthetically active radiation
prediction
Primary production
primary productivity
radiation use efficiency
Resolution
Satellite observation
Satellites
Spatial discrimination
Stresses
temperature
Towers
vegetation index
vegetation type
Title Solar‐induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 and flux tower observations
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14297
https://www.ncbi.nlm.nih.gov/pubmed/29733483
https://www.proquest.com/docview/2088645967
https://www.proquest.com/docview/2035703986
https://www.proquest.com/docview/2116884283
Volume 24
WOSCitedRecordID wos000441746900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB21KUi8cAm0BEo1IIT6Yim-O_AEoYGH0iKgKG_Wrne3jWR5qzipyBufwCfxLXwJM2vHUHEREi9Rkh1LI-1czqztcwAe-0bo2BfaM5k2XhQo6UntG49aF6FTQR3fqUR8PEyPjrLpdPR2A56t34Vp-CG6AzfODFevOcGFrH9K8tNCUpoHo3QTtgKK27gHWy_fTU4Ou0IcBk5a0w_jiKqNH7bEQvwgT3fx5Xb0C8a8DFldz5nc-C9vb8L1Fmri8yY2bsGGrvpwtRGfXPVh--DHO25k1iZ53YfBGwLSdu7M8AmOyxmhWvfrNnx9z6Pwt89faJSnoFBYnNHAb2mvyhJNubRzRw9VaJzVWPMx-2m5woIlQEpCtQr53BdpL1kShGMfz8_swtarioBoTdcQhkZBVkrjBY_xixVag44koH6KkxmBVWxITFC0fCrInVihrfB4fEyuBbSi2JlP6DTg0Mru6Lm-AyeTgw_j114rAuEVEY1LnolikxQiEWmqY0PDHf1r1FArqVIVpibNpK_8WLIuFkE5XxQ6kUYMQxkKOQpFuA29ylb6LiCBL5MZqXSS8v3OkRCCpjWjtRjSZyoGsL-OhbxoGdJZqKPM15MS7WLudnEAjzrT84YW5HdGu-uAytvKUOcBlXUm8Elo-WG3TDnNN2pEpe2SbUImRhtlyV9sfD_JMqbLG8BOE6ydJ6xHFka8su9i8s8u5q_GL9yXe_9ueh-uEWrMmgftdqG3mC_1A7hSXCxm9XwPNtNpttem4ncGhD4g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF2VFgQvXAKFQIEBIdQXS1nfjXiB0FBEmiJoUd-sXe9uG8nyVnFSkTc-gU_iW_gSZtaOoeIiJF6iJDuWRtqZ2TNj-xzGnnAjdMSF9kyqjRf6SnpSc-Ph0YXoVOCJ71QiPo6TySQ9OsrerbHnq3dhGn6IbuBGmeHqNSU4DaR_yvLjQmKe-1lygW2EGEYY3xuv3o8Ox10lDnynrcmDKMRyw4OWWYie5OkuPn8e_QIyz2NWd-iMrv2fu9fZ1RZswosmOm6wNV312KVGfnLZY5s7P95yQ7M2zese6-8hlLYzZwZPYVhOEde6XzfZ1w_UDH_7_AWbeQwLBcUJtvwWd6sswZQLO3MEUYWGaQ01DdqPyyUUJAJSIq5VQJNfwN0kURCKfjg9sXNbLyuEojVegygaBFopDWfUyM-XYA04moD6GYymCFehoTEB0TKqAJ3FCmwF-8N9dM3HFUXOfAKnAgdWdsPn-hY7HO0cDHe9VgbCK0JsmDwTRiYuRCySREcG2zv816iBVlIlKkhMkkqueCRJGQvBHBeFjqURg0AGQmaBCDbZemUrfYcBwi-TGql0nNAdz0wIgf2a0VoM8DMRfba9Coa8aDnSSaqjzFe9Eu5i7naxzx53pqcNMcjvjLZWEZW3taHOfSzsROET4_Kjbhmzmm7ViErbBdkERI2WpfFfbDiP05QI8_rsdhOtnSekSBaEtLLtgvLPLuavhy_dl7v_bvqQXd492Bvn4zeTt_fYFcSQafPY3RZbn88W-j67WJzNp_XsQZuR3wFoG0Eo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB2VFBAvXAKFQIEBIdQXS3F8DeIF0hoQIa2AVn2zdr27bSTLjuKkIm98Ap_Et_AlzKwdQ8VFSLxESXYsjbRzObO2zwF44hqhA1dox8TaOP5ASUdq1zjUugidCur4ViXiaBxNJvHx8fBgA56v34Wp-SHaAzfODFuvOcH1TJmfsvwkk5Tng2F0ATZ9FpHpwObu--Rw3FZib2C1NV0v8KncuF7DLMRP8rQXn-9Hv4DM85jVNp3k2v-5ex2uNmATX9TRcQM2dNGFS7X85KoLW3s_3nIjsybNqy703hGULufWDJ_iKJ8SrrW_bsLXDzwMf_v8hYZ5CguF2SmN_CXtVp6jyZfl3BJEZRqnFVZ80H6SrzBjEZCccK1CPvlF2k0WBeHox9lpuSirVUFQtKJrCEWjICul8YwH-cUKS4OWJqB6hsmU4CrWNCYoGkYV5F6ssCxwf7RPrg1oRbEzn9CqwGEp28Pn6hYcJnsfR6-dRgbCyXwamBzjBybMRCiiSAeGxjv616i-VlJFyotMFEtXuYFkZSwCc67IdCiN6HvSE3LoCW8LOkVZ6DuABL9MbKTSYcR3PIdCCJrXjNaiT5-R6MHOOhjSrOFIZ6mOPF3PSrSLqd3FHjxuTWc1McjvjLbXEZU2taFKB1TYmcInpOVH7TJlNd-qEYUul2zjMTXaMA7_YuO6YRwzYV4PbtfR2nrCimSezys7Nij_7GL6avTSfrn776YP4fLBbpKO30ze3oMrBCHj-qm7begs5kt9Hy5mZ4tpNX_QJOR3lxdAow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar-induced+chlorophyll+fluorescence+is+strongly+correlated+with+terrestrial+photosynthesis+for+a+wide+variety+of+biomes%3A+First+global+analysis+based+on+OCO-2+and+flux+tower+observations&rft.jtitle=Global+change+biology&rft.au=Li%2C+Xing&rft.au=Xiao%2C+Jingfeng&rft.au=He%2C+Binbin&rft.au=Altaf+Arain%2C+M&rft.date=2018-09-01&rft.eissn=1365-2486&rft.volume=24&rft.issue=9&rft.spage=3990&rft_id=info:doi/10.1111%2Fgcb.14297&rft_id=info%3Apmid%2F29733483&rft.externalDocID=29733483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon