Solar‐induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 and flux tower observations
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF...
Gespeichert in:
| Veröffentlicht in: | Global change biology Jg. 24; H. 9; S. 3990 - 4008 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Blackwell Publishing Ltd
01.09.2018
|
| Schlagworte: | |
| ISSN: | 1354-1013, 1365-2486, 1365-2486 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
We conducted the first global analysis of the relationship between solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) based on OOC‐2 and flux tower observations. Strong linear relationships between SIF and GPP at the ecosystem scale were found for all eight biomes except evergreen broadleaf forests. The nearly universal rather than biome‐specific SIF–GPP relationship can potentially lead to more accurate GPP estimates globally. OCO‐2 SIF can generally better estimate GPP than satellite‐derived vegetation indices and light use efficiency models. Our findings revealed the potential of finer‐resolution SIF observations in ecosystem functioning and carbon cycling studies and model benchmarking efforts. |
|---|---|
| AbstractList | Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C grasslands and croplands than for C ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm ( R 2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes ( R 2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests ( R 2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C 4 grasslands and croplands than for C 3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R² = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R² = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R² = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C₄ grasslands and croplands than for C₃ ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. We conducted the first global analysis of the relationship between solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) based on OOC‐2 and flux tower observations. Strong linear relationships between SIF and GPP at the ecosystem scale were found for all eight biomes except evergreen broadleaf forests. The nearly universal rather than biome‐specific SIF–GPP relationship can potentially lead to more accurate GPP estimates globally. OCO‐2 SIF can generally better estimate GPP than satellite‐derived vegetation indices and light use efficiency models. Our findings revealed the potential of finer‐resolution SIF observations in ecosystem functioning and carbon cycling studies and model benchmarking efforts. Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. |
| Author | Rocha, Adrian V. Noe, Steffen M. Rey‐Sanchez, A. Camilo Hollinger, David Y. Varlagin, Andrej Emmel, Carmen Beringer, Jason Desai, Ankur R. He, Binbin Altaf Arain, M. Li, Xing Ortiz, Penélope Serrano Xiao, Jingfeng Mammarella, Ivan Krasnova, Alisa |
| Author_xml | – sequence: 1 givenname: Xing surname: Li fullname: Li, Xing organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Jingfeng orcidid: 0000-0002-0622-6903 surname: Xiao fullname: Xiao, Jingfeng email: j.xiao@unh.edu organization: University of New Hampshire – sequence: 3 givenname: Binbin surname: He fullname: He, Binbin organization: University of Electronic Science and Technology of China – sequence: 4 givenname: M. surname: Altaf Arain fullname: Altaf Arain, M. organization: McMaster University – sequence: 5 givenname: Jason surname: Beringer fullname: Beringer, Jason organization: The University of Western Australia – sequence: 6 givenname: Ankur R. surname: Desai fullname: Desai, Ankur R. organization: University of Wisconsin‐Madison – sequence: 7 givenname: Carmen surname: Emmel fullname: Emmel, Carmen organization: ETH Zurich – sequence: 8 givenname: David Y. surname: Hollinger fullname: Hollinger, David Y. organization: USDA Forest Service – sequence: 9 givenname: Alisa surname: Krasnova fullname: Krasnova, Alisa organization: Estonian University of Life Sciences – sequence: 10 givenname: Ivan surname: Mammarella fullname: Mammarella, Ivan organization: University of Helsinki – sequence: 11 givenname: Steffen M. orcidid: 0000-0003-1514-1140 surname: Noe fullname: Noe, Steffen M. organization: Estonian University of Life Sciences – sequence: 12 givenname: Penélope Serrano surname: Ortiz fullname: Ortiz, Penélope Serrano organization: Universidad de Granada – sequence: 13 givenname: A. Camilo surname: Rey‐Sanchez fullname: Rey‐Sanchez, A. Camilo organization: The Ohio State University – sequence: 14 givenname: Adrian V. surname: Rocha fullname: Rocha, Adrian V. organization: University of Notre Dame – sequence: 15 givenname: Andrej surname: Varlagin fullname: Varlagin, Andrej organization: Russian Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29733483$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1u1DAQxyNURD_gwAsgS1zgsK0dJ06WW1m1BanSHoBz5I_xritvZrGdLrnxCH0knoUnwekWDpUAX-zx_P6j8d9zXBz02ENRvGT0lOV1ttLqlFXlvHlSHDEu6llZteJgOtfVjFHGD4vjGG8opbyk4llxmFHOq5YfFT8-oZfh5_c715tBgyF67THgdj16T6wfMEDU0GsgLpKYAvYrPxKNIYCXKfM7l9YkQY5z1klPtmtMGMc-rSFmjcVAZKYMkFsZHKSRoCXK4QbiO3LpQkxk5VFlpeylHyeNkjFXxp4sF8vcWpkzZmrmG0m4g0BQRQi3Mjns4_PiqZU-wouH_aT4cnnxefFhdr28-rg4v57pqmTNzFa1FVoK2TRQWyaqfGsNBaNMY3hjm1Yxw2oljCpFyZnUIJSVlCsu1ZxLflK82dfdBvw65Md2G5ed8V72gEPsSsZE21Zly_-PUl43lM9bkdHXj9AbHEL2YaLaVlT1XDSZevVADWoDptsGt5Fh7H5_Ywbe7gEdMMYA9g_CaDeNSJdHpLsfkcyePWK1S_depiCd_5di5zyMfy_dXS3e7xW_AG9G0s4 |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130845 crossref_primary_10_1016_j_agrformet_2020_108169 crossref_primary_10_3389_feart_2022_802763 crossref_primary_10_5194_bg_17_1655_2020 crossref_primary_10_1016_j_rse_2023_113987 crossref_primary_10_1111_gcb_16944 crossref_primary_10_3390_rs11121460 crossref_primary_10_1016_j_agrformet_2023_109658 crossref_primary_10_1016_j_ecolind_2019_105669 crossref_primary_10_3390_rs13132545 crossref_primary_10_1016_j_agrformet_2019_107614 crossref_primary_10_1016_j_agrformet_2021_108567 crossref_primary_10_1016_j_fecs_2025_100375 crossref_primary_10_3390_rs14061357 crossref_primary_10_3390_rs16132388 crossref_primary_10_1029_2023JG007703 crossref_primary_10_1109_TGRS_2025_3608266 crossref_primary_10_1016_j_rse_2020_111728 crossref_primary_10_3390_rs17152642 crossref_primary_10_1016_j_rse_2019_111383 crossref_primary_10_1016_j_rse_2020_111722 crossref_primary_10_1016_j_rse_2023_113984 crossref_primary_10_1016_j_rse_2022_113104 crossref_primary_10_1016_j_rse_2023_113981 crossref_primary_10_1029_2021EF002634 crossref_primary_10_1016_j_rse_2022_113118 crossref_primary_10_1111_gcb_15603 crossref_primary_10_1038_s41612_025_00988_z crossref_primary_10_1016_j_scitotenv_2021_148396 crossref_primary_10_1016_j_ecoinf_2024_102780 crossref_primary_10_1016_j_rse_2021_112525 crossref_primary_10_3390_rs15174237 crossref_primary_10_1016_j_agrformet_2019_06_002 crossref_primary_10_1002_ajb2_1347 crossref_primary_10_1016_j_ecoinf_2024_102786 crossref_primary_10_1016_j_isprsjprs_2020_01_017 crossref_primary_10_1016_j_agrformet_2023_109546 crossref_primary_10_1016_j_scitotenv_2022_159692 crossref_primary_10_3390_rs12091377 crossref_primary_10_1029_2023JG007956 crossref_primary_10_3390_rs12233962 crossref_primary_10_1016_j_jag_2021_102418 crossref_primary_10_3389_fpls_2020_01244 crossref_primary_10_3389_ffgc_2021_695269 crossref_primary_10_1016_j_agrformet_2024_110236 crossref_primary_10_1016_j_ecolind_2023_110501 crossref_primary_10_1016_j_jhydrol_2023_129314 crossref_primary_10_1111_gcb_14427 crossref_primary_10_1016_j_scitotenv_2021_152786 crossref_primary_10_1007_s00704_024_05158_4 crossref_primary_10_1016_j_rse_2022_113209 crossref_primary_10_12677_GSER_2023_123034 crossref_primary_10_3390_rs10101663 crossref_primary_10_1038_s41598_023_41048_x crossref_primary_10_3390_rs11050517 crossref_primary_10_3390_rs14061328 crossref_primary_10_1029_2020GL087474 crossref_primary_10_1088_1748_9326_ac9dae crossref_primary_10_3390_rs14061329 crossref_primary_10_1016_j_scitotenv_2022_158499 crossref_primary_10_1007_s00484_025_02880_0 crossref_primary_10_1016_j_asr_2022_07_068 crossref_primary_10_3390_rs14246316 crossref_primary_10_1016_j_rse_2020_112030 crossref_primary_10_1111_gcb_16043 crossref_primary_10_1002_pei3_10109 crossref_primary_10_1016_j_chemosphere_2024_142147 crossref_primary_10_1016_j_rse_2021_112865 crossref_primary_10_3390_plants12112224 crossref_primary_10_1016_j_agrformet_2022_108819 crossref_primary_10_1016_j_rse_2021_112748 crossref_primary_10_1002_ldr_3701 crossref_primary_10_3390_rs12071202 crossref_primary_10_1029_2023JD040006 crossref_primary_10_1016_j_scitotenv_2023_162425 crossref_primary_10_1080_01431161_2020_1763507 crossref_primary_10_3390_rs13040794 crossref_primary_10_1016_j_rse_2019_111274 crossref_primary_10_1016_j_ecolmodel_2025_111283 crossref_primary_10_1016_j_isprsjprs_2023_07_021 crossref_primary_10_1016_j_rse_2020_111755 crossref_primary_10_3390_rs13142824 crossref_primary_10_1016_j_ecolind_2024_112406 crossref_primary_10_1029_2018JG005002 crossref_primary_10_3390_rs12040680 crossref_primary_10_5194_bg_17_1293_2020 crossref_primary_10_1016_j_scitotenv_2024_175845 crossref_primary_10_3389_fpls_2025_1603159 crossref_primary_10_1016_j_jhydrol_2022_128044 crossref_primary_10_1177_03091333221114864 crossref_primary_10_1111_gcb_16227 crossref_primary_10_1016_j_rse_2023_113547 crossref_primary_10_1038_s41467_018_07813_7 crossref_primary_10_1007_s13157_023_01722_2 crossref_primary_10_1080_22797254_2023_2301657 crossref_primary_10_3390_rs11141715 crossref_primary_10_1016_j_scitotenv_2024_177344 crossref_primary_10_3390_f14061086 crossref_primary_10_1016_j_isprsjprs_2023_10_015 crossref_primary_10_1016_j_scitotenv_2020_140338 crossref_primary_10_1016_j_agrformet_2023_109734 crossref_primary_10_1038_s43017_023_00456_3 crossref_primary_10_1016_j_gloplacha_2024_104627 crossref_primary_10_1038_s41597_024_03004_w crossref_primary_10_1016_j_rse_2022_113380 crossref_primary_10_1016_j_rse_2023_113785 crossref_primary_10_1016_j_rse_2022_113383 crossref_primary_10_1038_s41598_021_95281_3 crossref_primary_10_3390_rs15092392 crossref_primary_10_1038_s41598_022_23120_0 crossref_primary_10_3390_agronomy14102345 crossref_primary_10_3390_rs16101707 crossref_primary_10_1029_2020GL087858 crossref_primary_10_1111_gcb_15373 crossref_primary_10_1371_journal_pone_0264780 crossref_primary_10_3390_s22093411 crossref_primary_10_1016_j_ecolind_2022_109331 crossref_primary_10_1080_01431161_2020_1750731 crossref_primary_10_5194_bg_18_2843_2021 crossref_primary_10_1016_j_jhydrol_2025_133506 crossref_primary_10_5194_bg_16_3069_2019 crossref_primary_10_1080_15481603_2023_2194597 crossref_primary_10_3390_atmos16050560 crossref_primary_10_5194_bg_20_1473_2023 crossref_primary_10_1029_2018GL081109 crossref_primary_10_1080_15481603_2024_2345438 crossref_primary_10_1016_j_ecolind_2023_111511 crossref_primary_10_1016_j_jclepro_2024_142007 crossref_primary_10_1016_j_agrformet_2022_108905 crossref_primary_10_1016_j_agrformet_2022_108904 crossref_primary_10_1016_j_jhydrol_2020_124581 crossref_primary_10_1016_j_apenergy_2024_122681 crossref_primary_10_1029_2024JG008487 crossref_primary_10_3390_rs13112037 crossref_primary_10_1016_j_rse_2024_114492 crossref_primary_10_5194_essd_14_4077_2022 crossref_primary_10_1016_j_rse_2024_114490 crossref_primary_10_1016_j_rsase_2025_101735 crossref_primary_10_1016_j_scitotenv_2023_162591 crossref_primary_10_3390_rs11151746 crossref_primary_10_3390_rs13163159 crossref_primary_10_1016_j_ecolind_2024_112439 crossref_primary_10_1016_j_rse_2021_112672 crossref_primary_10_1016_j_rse_2024_114496 crossref_primary_10_1016_j_rse_2022_113365 crossref_primary_10_1038_s41558_024_01933_3 crossref_primary_10_1016_j_jag_2025_104503 crossref_primary_10_1088_2752_664X_adabed crossref_primary_10_1111_gcb_17569 crossref_primary_10_1029_2023JG007586 crossref_primary_10_1016_j_ecoinf_2025_103312 crossref_primary_10_1016_j_rse_2019_01_016 crossref_primary_10_1016_j_scitotenv_2022_154550 crossref_primary_10_1016_j_jhydrol_2024_130632 crossref_primary_10_1080_10106049_2022_2071469 crossref_primary_10_1029_2019GL082716 crossref_primary_10_3390_rs10111784 crossref_primary_10_3390_rs12020258 crossref_primary_10_1042_ETLS20200292 crossref_primary_10_3390_rs14122740 crossref_primary_10_1088_1748_9326_abf3dc crossref_primary_10_3390_rs15051172 crossref_primary_10_1016_j_rse_2022_112896 crossref_primary_10_1038_s41597_025_04686_6 crossref_primary_10_1029_2022MS003150 crossref_primary_10_1111_pce_13620 crossref_primary_10_3390_rs14061504 crossref_primary_10_5194_bg_22_555_2025 crossref_primary_10_3389_fenvs_2023_1093095 crossref_primary_10_1016_j_rse_2024_114150 crossref_primary_10_1038_s41467_020_18631_1 crossref_primary_10_3390_rs12152346 crossref_primary_10_1111_1365_2435_14694 crossref_primary_10_1016_j_ecolmodel_2024_111017 crossref_primary_10_1016_j_rse_2022_112892 crossref_primary_10_1029_2019JG005051 crossref_primary_10_1016_j_agrformet_2021_108735 crossref_primary_10_1038_s41467_025_58253_z crossref_primary_10_1016_j_rse_2024_113999 crossref_primary_10_1016_j_agrformet_2024_109888 crossref_primary_10_3390_su14020968 crossref_primary_10_1029_2020GL091247 crossref_primary_10_1038_s41477_025_02024_7 crossref_primary_10_1016_j_rse_2024_114284 crossref_primary_10_1016_j_agrformet_2025_110496 crossref_primary_10_3390_rs15164038 crossref_primary_10_1038_s41598_025_08927_x crossref_primary_10_1029_2019GL084832 crossref_primary_10_1016_j_agrformet_2024_110193 crossref_primary_10_1016_j_rse_2021_112360 crossref_primary_10_1080_01431161_2020_1782509 crossref_primary_10_1002_ldr_4093 crossref_primary_10_1016_j_rse_2023_113699 crossref_primary_10_3390_rs14153716 crossref_primary_10_1029_2022MS003135 crossref_primary_10_1080_17538947_2023_2300311 crossref_primary_10_1029_2020JG006136 crossref_primary_10_3390_rs11030273 crossref_primary_10_1016_j_compag_2023_107615 crossref_primary_10_1029_2024GL113419 crossref_primary_10_1016_j_rse_2023_113921 crossref_primary_10_1029_2024JG008280 crossref_primary_10_1038_s41477_021_00952_8 crossref_primary_10_1029_2019AV000140 crossref_primary_10_1002_joc_7947 crossref_primary_10_1016_j_scitotenv_2019_134064 crossref_primary_10_3390_rs15143568 crossref_primary_10_1080_11956860_2024_2303187 crossref_primary_10_3390_land9090288 crossref_primary_10_1109_JSTARS_2021_3128355 crossref_primary_10_1029_2023JG007407 crossref_primary_10_1073_pnas_2306507120 crossref_primary_10_1016_j_rse_2022_113282 crossref_primary_10_1111_gcb_15475 crossref_primary_10_3390_rs11151823 crossref_primary_10_1016_j_apgeog_2023_103115 crossref_primary_10_1029_2022JD037773 crossref_primary_10_3390_rs10091346 crossref_primary_10_1016_j_heliyon_2024_e31552 crossref_primary_10_1029_2024GL110148 crossref_primary_10_3390_rs15071756 crossref_primary_10_1016_j_scitotenv_2024_173337 crossref_primary_10_3390_rs13132593 crossref_primary_10_1016_j_jhydrol_2024_131883 crossref_primary_10_1016_j_agrformet_2022_109189 crossref_primary_10_1016_j_jhydrol_2025_133447 crossref_primary_10_1111_nph_70183 crossref_primary_10_1016_j_scitotenv_2022_159191 crossref_primary_10_1029_2023GL107429 crossref_primary_10_1038_s43016_023_00882_y crossref_primary_10_1016_j_ecolind_2022_108905 crossref_primary_10_3390_rs17122064 crossref_primary_10_1088_1748_9326_ab65cc crossref_primary_10_1088_1748_9326_abd2f1 crossref_primary_10_5194_bg_21_5481_2024 crossref_primary_10_1016_j_ecolind_2024_112924 crossref_primary_10_3390_s20041144 crossref_primary_10_34133_plantphenomics_0144 crossref_primary_10_1016_j_rse_2019_111314 crossref_primary_10_1029_2025GL118236 crossref_primary_10_5194_bg_15_5779_2018 crossref_primary_10_1016_j_jag_2023_103325 crossref_primary_10_3390_rs13050963 crossref_primary_10_1016_j_rse_2021_112856 crossref_primary_10_1111_gcb_14565 crossref_primary_10_1111_gcb_15775 crossref_primary_10_1016_j_ecolind_2021_108353 crossref_primary_10_1111_gcb_16503 crossref_primary_10_1016_j_isprsjprs_2022_10_018 crossref_primary_10_3390_rs16030555 crossref_primary_10_1016_j_jhydrol_2022_128680 crossref_primary_10_1038_s41597_023_02224_w crossref_primary_10_1111_gcb_17151 crossref_primary_10_1016_j_rse_2019_111344 crossref_primary_10_3390_rs11212563 crossref_primary_10_1016_j_ecolind_2021_107949 crossref_primary_10_1089_big_2020_0350 crossref_primary_10_1080_15481603_2024_2318846 crossref_primary_10_1016_j_rse_2020_111888 crossref_primary_10_1016_j_agrformet_2025_110569 crossref_primary_10_1109_TGRS_2024_3439333 crossref_primary_10_1016_j_rse_2025_114996 crossref_primary_10_1016_j_ecolind_2024_112857 crossref_primary_10_1111_ppl_14048 crossref_primary_10_3389_ffgc_2023_1172220 crossref_primary_10_1016_j_agrformet_2022_109180 crossref_primary_10_1029_2018JG004883 crossref_primary_10_1088_1748_9326_acd2ef crossref_primary_10_3390_rs14236011 crossref_primary_10_1007_s11214_020_00659_w crossref_primary_10_3390_rs14133018 crossref_primary_10_1016_j_jhydrol_2025_133468 crossref_primary_10_1016_j_ecolind_2022_108646 crossref_primary_10_1016_j_scitotenv_2025_178570 crossref_primary_10_1016_j_agrformet_2023_109591 crossref_primary_10_1016_j_agrformet_2022_109054 crossref_primary_10_1016_j_agrformet_2023_109473 crossref_primary_10_1029_2021MS002747 crossref_primary_10_1016_j_rse_2020_112062 crossref_primary_10_1016_j_ecolind_2024_112507 crossref_primary_10_1016_j_agrformet_2021_108427 crossref_primary_10_1016_j_agrformet_2020_108147 crossref_primary_10_1109_JSTARS_2023_3269908 crossref_primary_10_1109_TGRS_2022_3200988 crossref_primary_10_1111_gcb_16646 crossref_primary_10_1016_j_agrformet_2022_109038 crossref_primary_10_5194_hess_24_6021_2020 crossref_primary_10_1016_j_apgeog_2022_102869 crossref_primary_10_1371_journal_pone_0313258 crossref_primary_10_1016_j_jag_2021_102329 crossref_primary_10_3390_rs16030528 crossref_primary_10_1016_j_agrformet_2023_109440 crossref_primary_10_1016_j_agrformet_2024_110182 crossref_primary_10_1016_j_rse_2025_114856 crossref_primary_10_1029_2020JG005774 crossref_primary_10_1016_j_rse_2020_112195 crossref_primary_10_1111_gcb_15554 crossref_primary_10_1016_j_rse_2020_112196 crossref_primary_10_1029_2020JG005651 crossref_primary_10_1029_2022JG007352 crossref_primary_10_1093_jxb_eraa537 crossref_primary_10_3390_rs13122363 crossref_primary_10_1016_j_rse_2024_114530 crossref_primary_10_1016_j_foreco_2021_120000 crossref_primary_10_1016_j_agrformet_2021_108439 crossref_primary_10_1111_nph_18045 crossref_primary_10_3390_rs10122039 crossref_primary_10_1111_gcb_16634 crossref_primary_10_2478_mgrsd_2020_0029 crossref_primary_10_1080_15481603_2025_2483458 crossref_primary_10_1016_j_scitotenv_2024_178269 crossref_primary_10_3390_rs12172812 crossref_primary_10_1016_j_agrformet_2023_109323 crossref_primary_10_1016_j_scienta_2023_112651 crossref_primary_10_1016_j_agrformet_2020_108018 crossref_primary_10_1016_j_jag_2022_102861 crossref_primary_10_3390_rs15215101 crossref_primary_10_1029_2022JG007369 crossref_primary_10_1029_2023JG007977 crossref_primary_10_1016_j_agrformet_2024_110293 crossref_primary_10_1016_j_rse_2019_04_030 crossref_primary_10_1016_j_aeaoa_2025_100335 crossref_primary_10_1016_j_enconman_2025_120339 |
| Cites_doi | 10.1016/j.jplph.2014.12.015 10.1093/jxb/eru191 10.1104/pp.99.4.1426 10.1073/pnas.1616943114 10.1098/rstb.1977.0140 10.1016/j.agrformet.2017.12.186 10.1007/s11430-006-8226-1 10.5194/bg-14-597-2017 10.1111/gcb.13200 10.1016/j.agrformet.2014.06.013 10.1016/j.rse.2014.02.007 10.2307/2401901 10.1016/j.rse.2012.02.006 10.1002/2016JG003580 10.1016/j.rse.2013.02.003 10.1016/j.rse.2017.09.034 10.1016/j.agrformet.2006.08.017 10.1016/j.rse.2010.12.013 10.1146/annurev.arplant.59.032607.092759 10.1002/2015GL063201 10.5194/bg-3-571-2006 10.1016/j.rse.2018.02.016 10.1111/gcb.12664 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2 10.1111/1365-3040.ep11612087 10.3390/rs9030193 10.1126/science.aam5747 10.3390/rs9060530 10.2134/agronj2012.0065 10.1016/S0168-1923(02)00107-7 10.1029/2011GL048738 10.1088/1748-9326/aa7a19 10.1073/pnas.1320008111 10.1016/j.agrformet.2016.06.014 10.1016/j.jag.2014.08.002 10.1111/gcb.12652 10.5194/bg-12-4067-2015 10.1016/j.rse.2009.05.003 10.1111/j.1365-2486.2007.01352.x 10.1016/j.rse.2016.11.021 10.1016/j.rse.2015.06.008 10.1088/1748-9326/aab0b1 10.3389/fphys.2013.00017 10.1890/ES14-00542.1 10.1111/gcb.13017 10.1111/gcb.13590 10.1109/TGRS.2010.2046420 10.5194/amt-6-2803-2013 10.1111/j.1365-2486.2005.001002.x 10.1016/j.rse.2014.09.031 10.1002/2015JG003150 10.1016/j.rse.2015.02.022 10.1002/2016GL070775 10.1126/sciadv.1602244 10.5194/bg-8-637-2011 10.1016/j.agrformet.2007.11.012 10.1016/j.rse.2014.06.022 10.1016/j.rse.2016.05.015 10.1016/j.rse.2005.05.006 10.1109/TGRS.2016.2621820 10.1098/rspb.2013.0171 10.5194/amt-8-1337-2015 10.1016/j.rse.2009.10.013 10.1080/01431160500033682 |
| ContentType | Journal Article |
| Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
| DOI | 10.1111/gcb.14297 |
| DatabaseName | CrossRef PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed CrossRef AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 4008 |
| ExternalDocumentID | 29733483 10_1111_gcb_14297 GCB14297 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Aeronautics and Space Administration funderid: NNX14AJ18G; NNX16AG61G – fundername: China Scholarship Council – fundername: National Science Foundation funderid: 1065777; 1638688 – fundername: Iola Hubbard Climate Change Endowment; National Natural Science Foundation of China funderid: 41471293; 41671361 |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4217-f45f6ca6a77e5f164421fd0edbd7d37f78b1d15b6db26231ace6bfa03b3ab93a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 345 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441746900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Fri Jul 11 18:38:30 EDT 2025 Wed Oct 01 14:39:08 EDT 2025 Sun Jul 13 04:38:44 EDT 2025 Thu Apr 03 07:01:00 EDT 2025 Tue Nov 18 22:15:00 EST 2025 Sat Nov 29 06:02:29 EST 2025 Wed Jan 22 17:09:39 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | carbon flux chlorophyll fluorescence OCO-2 gross primary productivity vegetation type carbon cycle MODIS eddy covariance |
| Language | English |
| License | 2018 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4217-f45f6ca6a77e5f164421fd0edbd7d37f78b1d15b6db26231ace6bfa03b3ab93a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0622-6903 0000-0003-1514-1140 |
| OpenAccessLink | https://research-repository.uwa.edu.au/en/publications/09a8fd15-5723-4ad7-824a-ee5688c98762 |
| PMID | 29733483 |
| PQID | 2088645967 |
| PQPubID | 30327 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2116884283 proquest_miscellaneous_2035703986 proquest_journals_2088645967 pubmed_primary_29733483 crossref_primary_10_1111_gcb_14297 crossref_citationtrail_10_1111_gcb_14297 wiley_primary_10_1111_gcb_14297_GCB14297 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 2018-09-00 20180901 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationTitleAlternate | Glob Chang Biol |
| PublicationYear | 2018 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2015; 34 2011; 115 2012; 121 2013; 4 2017; 3 1983; 6 2002; 113 2017; 44 2009; 113 2008; 148 2013; 280 2017; 232 2005; 26 1992; 99 2013; 6 2006; 139 2017; 114 2017; 9 2017; 358 2014; 65 2014; 20 2016; 183 2018; 250 2015; 177 2010; 114 2015; 42 2017; 122 2015; 162 2015; 12 2015; 6 1972; 9 2015; 166 2018a; 204 2015; 120 2008; 59 2006; 3 2011; 38 2014; 111 2012; 104 2015; 8 2014; 152 2014; 197 2007; 13 2011; 8 2006; 111 2004; 54 1977; 281 2010; 48 2017; 14 2017; 55 2006; 49 2015; 156 2017; 12 2017; 190 2015; 21 2013; 133 2005; 97 2018 2018b; 13 2014; 147 2005; 11 2016; 23 2016; 22 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Sims D. A. (e_1_2_8_47_1) 2006; 111 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 Öquist G. (e_1_2_8_38_1) 1983; 6 e_1_2_8_50_1 |
| References_xml | – volume: 21 start-page: 4673 year: 2015 end-page: 4684 article-title: Sun‐induced fluorescence–a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant publication-title: Global Change Biology – volume: 44 start-page: 533 year: 2017 end-page: 541 article-title: Multiscale analyses of solar‐induced florescence and gross primary production publication-title: Geophysical Research Letters – volume: 114 start-page: 576 year: 2010 end-page: 591 article-title: A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data publication-title: Remote Sensing of Environment – volume: 49 start-page: 226 year: 2006 end-page: 240 article-title: Carbon dioxide exchange and the mechanism of environmental control in a farmland ecosystem in North China Plain publication-title: Science in China Series D: Earth Sciences – volume: 280 start-page: 20130171 year: 2013 article-title: Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 9 start-page: 530 year: 2017 article-title: Global analysis of bioclimatic controls on ecosystem productivity using satellite observations of solar‐induced chlorophyll fluorescence publication-title: Remote Sensing – volume: 183 start-page: 154 year: 2016 end-page: 169 article-title: Consistency between sun‐induced chlorophyll fluorescence and gross primary production of vegetation in North America publication-title: Remote Sensing of Environment – volume: 13 start-page: 1484 year: 2007 end-page: 1497 article-title: Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? publication-title: Global Change Biology – year: 2018 article-title: Overview of Solar‐Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory‐2: Retrieval, cross‐mission comparison, and global monitoring for GPP publication-title: Remote Sensing of Environment – volume: 358 start-page: eaam5747 year: 2017 article-title: OCO‐2 advances photosynthesis observation from space via solar‐induced chlorophyll fluorescence publication-title: Science – volume: 3 start-page: e1602244 year: 2017 article-title: Canopy near‐infrared reflectance and terrestrial photosynthesis publication-title: Science Advances – volume: 14 start-page: 597 year: 2017 article-title: Describing rainfall in northern Australia using multiple climate indices publication-title: Biogeosciences – volume: 59 start-page: 89 year: 2008 end-page: 113 article-title: Chlorophyll fluorescence: a probe of photosynthesis publication-title: Annual Review of Plant Biology – volume: 65 start-page: 4065 year: 2014 end-page: 4095 article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges publication-title: Journal of Experimental Botany – volume: 166 start-page: 163 year: 2015 end-page: 177 article-title: The 2010 Russian drought impact on satellite measurements of solar‐induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances publication-title: Remote Sensing of Environment – volume: 8 start-page: 1337 year: 2015 end-page: 1352 article-title: Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel‐5 Precursor for the monitoring of terrestrial chlorophyll fluorescence publication-title: Atmospheric Measurement Techniques – volume: 104 start-page: 1336 year: 2012 end-page: 1347 article-title: Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity publication-title: Agronomy Journal – volume: 13 start-page: 044005 year: 2018b article-title: Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought publication-title: Environmental Research Letters – volume: 162 start-page: 154 year: 2015 end-page: 168 article-title: Comparison of four EVI‐based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought publication-title: Remote Sensing of Environment – volume: 12 start-page: 085001 year: 2017 article-title: Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: Benchmarking for impact assessment studies publication-title: Environmental Research Letters – volume: 122 start-page: 716 year: 2017 end-page: 733 article-title: Effect of environmental conditions on the relationship between solar induced fluorescence and gross primary productivity at an OzFlux grassland site publication-title: Journal of Geophysical Research: Biogeosciences – volume: 38 start-page: L17706 year: 2011 article-title: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity publication-title: Geophysical Research Letters – volume: 99 start-page: 1426 year: 1992 end-page: 1434 article-title: Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit publication-title: Plant Physiology – volume: 97 start-page: 403 year: 2005 end-page: 414 article-title: Simple reflectance indices track heat and water stress‐induced changes in steady‐state chlorophyll fluorescence at the canopy scale publication-title: Remote Sensing of Environment – volume: 26 start-page: 2371 year: 2005 end-page: 2390 article-title: Geographical distribution of global greening trends and their climatic correlates: 1982‐1998 publication-title: International Journal of Remote Sensing – volume: 197 start-page: 142 year: 2014 end-page: 157 article-title: Data‐driven diagnostics of terrestrial carbon dynamics over North America publication-title: Agricultural and Forest Meteorology – volume: 42 start-page: 2977 year: 2015 end-page: 2987 article-title: Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest publication-title: Geophysical Research Letters – volume: 8 start-page: 637 year: 2011 end-page: 651 article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space publication-title: Biogeosciences – volume: 147 start-page: 1 year: 2014 end-page: 12 article-title: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory‐2 publication-title: Remote Sensing of Environment – volume: 23 start-page: 2874 year: 2016 end-page: 2886 article-title: Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest publication-title: Global Change Biology – volume: 177 start-page: 100 year: 2015 end-page: 109 article-title: Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: Implications for remote sensing of crop primary production publication-title: Journal of Plant Physiology – volume: 111 start-page: E1327 year: 2014 end-page: E1333 article-title: Global and time‐resolved monitoring of crop photosynthesis with chlorophyll fluorescence publication-title: Proceedings of the National Academy of Sciences – volume: 6 start-page: 2803 year: 2013 end-page: 2823 article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near‐infrared satellite measurements: Methodology, simulations, and application to GOME‐2 publication-title: Atmospheric Measurement Techniques – volume: 152 start-page: 375 year: 2014 end-page: 391 article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange publication-title: Remote Sensing of Environment – volume: 148 start-page: 821 year: 2008 end-page: 838 article-title: Cross‐site evaluation of eddy covariance GPP and RE decomposition techniques publication-title: Agricultural and Forest Meteorology – volume: 22 start-page: 2979 year: 2016 end-page: 2996 article-title: Satellite chlorophyll fluorescence measurements reveal large‐scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests publication-title: Global Change Biology – volume: 9 start-page: 747 year: 1972 end-page: 766 article-title: Solar radiation and productivity in tropical ecosystems publication-title: Journal of Applied Ecology – volume: 114 start-page: 2640 year: 2017 end-page: 2644 article-title: Light‐driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure publication-title: Proceedings of the National Academy of Sciences – volume: 3 start-page: 571 year: 2006 end-page: 583 article-title: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation publication-title: Biogeosciences – volume: 190 start-page: 178 year: 2017 end-page: 187 article-title: Application of satellite solar‐induced chlorophyll fluorescence to understanding large‐scale variations in vegetation phenology and function over northern high latitude forests publication-title: Remote Sensing of Environment – volume: 113 start-page: 159 year: 2002 end-page: 183 article-title: Footprint modeling for vegetation atmosphere exchange studies: A review and perspective publication-title: Agricultural and Forest Meteorology – volume: 20 start-page: 3103 year: 2014 end-page: 3121 article-title: Terrestrial gross primary production inferred from satellite fluorescence and vegetation models publication-title: Global Change Biology – volume: 20 start-page: 3727 year: 2014 end-page: 3742 article-title: Estimation of vegetation photosynthetic capacity from space‐based measurements of chlorophyll fluorescence for terrestrial biosphere models publication-title: Global Change Biology – volume: 281 start-page: 277 year: 1977 end-page: 294 article-title: Climate and the efficiency of crop production in Britain [and discussion] publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences – volume: 4 start-page: 17 year: 2013 article-title: Plant response to environmental conditions: Assessing potential production, water demand, and negative effects of water deficit publication-title: Frontiers in Physiology – volume: 6 start-page: 281 year: 1983 end-page: 300 article-title: Effects of low temperature on photosynthesis publication-title: Plant, Cell & Environment – volume: 133 start-page: 102 year: 2013 end-page: 115 article-title: Spatio‐temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance publication-title: Remote Sensing of Environment – volume: 115 start-page: 1081 year: 2011 end-page: 1089 article-title: Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems publication-title: Remote Sensing of Environment – volume: 55 start-page: 1273 year: 2017 end-page: 1284 article-title: The FLuorescence EXplorer Mission Concept—ESA's Earth Explorer 8 publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 34 start-page: 235 year: 2015 end-page: 248 article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 48 start-page: 3358 year: 2010 end-page: 3368 article-title: A field platform for continuous measurement of canopy fluorescence publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 113 start-page: 2037 year: 2009 end-page: 2051 article-title: Remote sensing of solar‐induced chlorophyll fluorescence: Review of methods and applications publication-title: Remote Sensing of Environment – volume: 121 start-page: 236 year: 2012 end-page: 251 article-title: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements publication-title: Remote Sensing of Environment – volume: 204 start-page: 659 year: 2018a end-page: 671 article-title: Chlorophyll fluorescence observed by OCO‐2 is strongly related to gross primary productivity estimated from flux towers in temperate forests publication-title: Remote Sensing of Environment – volume: 9 start-page: 193 year: 2017 article-title: Annual Gross Primary Production from Vegetation Indices: A Theoretically Sound Approach publication-title: Remote Sensing – volume: 6 start-page: 43 issue: 3 year: 2015 article-title: Generalization and evaluation of the process‐based forest ecosystem model PnET‐CN for other biomes publication-title: Ecosphere – volume: 111 year: 2006 article-title: On the use of MODIS EVI to assess gross primary productivity of North American ecosystems publication-title: Journal of Geophysical Research: Biogeosciences – volume: 120 start-page: 2427 year: 2015 end-page: 2440 article-title: Drought onset mechanisms revealed by satellite solar‐induced chlorophyll fluorescence: Insights from two contrasting extreme events publication-title: Journal of Geophysical Research: Biogeosciences – volume: 232 start-page: 1 year: 2017 end-page: 9 article-title: Directly estimating diurnal changes in GPP for C3 and C4 crops using far‐red sun‐induced chlorophyll fluorescence publication-title: Agricultural and Forest Meteorology – volume: 54 start-page: 547 year: 2004 end-page: 560 article-title: A continuous satellite‐derived measure of global terrestrial primary production publication-title: BioScience – volume: 12 start-page: 4067 year: 2015 end-page: 4084 article-title: Investigating the usefulness of satellite‐derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system publication-title: Biogeosciences – volume: 11 start-page: 1424 year: 2005 end-page: 1439 article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm publication-title: Global Change Biology – volume: 139 start-page: 382 year: 2006 end-page: 398 article-title: Modelling five years of weather‐driven variation of GPP in a boreal forest publication-title: Agricultural and Forest Meteorology – volume: 156 start-page: 202 year: 2015 end-page: 215 article-title: Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data publication-title: Remote Sensing of Environment – volume: 250 start-page: 90 year: 2018 end-page: 101 article-title: A novel correction for biases in forest eddy covariance carbon balance publication-title: Agricultural and Forest Meteorology – ident: e_1_2_8_14_1 doi: 10.1016/j.jplph.2014.12.015 – ident: e_1_2_8_41_1 doi: 10.1093/jxb/eru191 – ident: e_1_2_8_4_1 doi: 10.1104/pp.99.4.1426 – volume: 111 year: 2006 ident: e_1_2_8_47_1 article-title: On the use of MODIS EVI to assess gross primary productivity of North American ecosystems publication-title: Journal of Geophysical Research: Biogeosciences – ident: e_1_2_8_52_1 doi: 10.1073/pnas.1616943114 – ident: e_1_2_8_36_1 doi: 10.1098/rstb.1977.0140 – ident: e_1_2_8_19_1 doi: 10.1016/j.agrformet.2017.12.186 – ident: e_1_2_8_30_1 doi: 10.1007/s11430-006-8226-1 – ident: e_1_2_8_44_1 doi: 10.5194/bg-14-597-2017 – ident: e_1_2_8_56_1 doi: 10.1111/gcb.13200 – ident: e_1_2_8_59_1 doi: 10.1016/j.agrformet.2014.06.013 – ident: e_1_2_8_12_1 doi: 10.1016/j.rse.2014.02.007 – ident: e_1_2_8_35_1 doi: 10.2307/2401901 – ident: e_1_2_8_17_1 doi: 10.1016/j.rse.2012.02.006 – ident: e_1_2_8_55_1 doi: 10.1002/2016JG003580 – ident: e_1_2_8_64_1 doi: 10.1016/j.rse.2013.02.003 – ident: e_1_2_8_28_1 doi: 10.1016/j.rse.2017.09.034 – ident: e_1_2_8_33_1 doi: 10.1016/j.agrformet.2006.08.017 – ident: e_1_2_8_48_1 doi: 10.1016/j.rse.2010.12.013 – ident: e_1_2_8_3_1 doi: 10.1146/annurev.arplant.59.032607.092759 – ident: e_1_2_8_61_1 doi: 10.1002/2015GL063201 – ident: e_1_2_8_39_1 doi: 10.5194/bg-3-571-2006 – ident: e_1_2_8_49_1 doi: 10.1016/j.rse.2018.02.016 – ident: e_1_2_8_65_1 doi: 10.1111/gcb.12664 – ident: e_1_2_8_45_1 doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2 – volume: 6 start-page: 281 year: 1983 ident: e_1_2_8_38_1 article-title: Effects of low temperature on photosynthesis publication-title: Plant, Cell & Environment doi: 10.1111/1365-3040.ep11612087 – ident: e_1_2_8_13_1 doi: 10.3390/rs9030193 – ident: e_1_2_8_50_1 doi: 10.1126/science.aam5747 – ident: e_1_2_8_32_1 doi: 10.3390/rs9060530 – ident: e_1_2_8_37_1 doi: 10.2134/agronj2012.0065 – ident: e_1_2_8_46_1 doi: 10.1016/S0168-1923(02)00107-7 – ident: e_1_2_8_11_1 doi: 10.1029/2011GL048738 – ident: e_1_2_8_20_1 doi: 10.1088/1748-9326/aa7a19 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.1320008111 – ident: e_1_2_8_31_1 doi: 10.1016/j.agrformet.2016.06.014 – ident: e_1_2_8_26_1 doi: 10.1016/j.jag.2014.08.002 – ident: e_1_2_8_40_1 doi: 10.1111/gcb.12652 – ident: e_1_2_8_25_1 doi: 10.5194/bg-12-4067-2015 – ident: e_1_2_8_34_1 doi: 10.1016/j.rse.2009.05.003 – ident: e_1_2_8_15_1 doi: 10.1111/j.1365-2486.2007.01352.x – ident: e_1_2_8_21_1 doi: 10.1016/j.rse.2016.11.021 – ident: e_1_2_8_63_1 doi: 10.1016/j.rse.2015.06.008 – ident: e_1_2_8_29_1 doi: 10.1088/1748-9326/aab0b1 – ident: e_1_2_8_53_1 doi: 10.3389/fphys.2013.00017 – ident: e_1_2_8_54_1 doi: 10.1890/ES14-00542.1 – ident: e_1_2_8_42_1 doi: 10.1111/gcb.13017 – ident: e_1_2_8_62_1 doi: 10.1111/gcb.13590 – ident: e_1_2_8_6_1 doi: 10.1109/TGRS.2010.2046420 – ident: e_1_2_8_22_1 doi: 10.5194/amt-6-2803-2013 – ident: e_1_2_8_43_1 doi: 10.1111/j.1365-2486.2005.001002.x – ident: e_1_2_8_5_1 doi: 10.1016/j.rse.2014.09.031 – ident: e_1_2_8_51_1 doi: 10.1002/2015JG003150 – ident: e_1_2_8_9_1 doi: 10.1016/j.rse.2015.02.022 – ident: e_1_2_8_57_1 doi: 10.1002/2016GL070775 – ident: e_1_2_8_2_1 doi: 10.1126/sciadv.1602244 – ident: e_1_2_8_23_1 doi: 10.5194/bg-8-637-2011 – ident: e_1_2_8_7_1 doi: 10.1016/j.agrformet.2007.11.012 – ident: e_1_2_8_24_1 doi: 10.1016/j.rse.2014.06.022 – ident: e_1_2_8_66_1 doi: 10.1016/j.rse.2016.05.015 – ident: e_1_2_8_8_1 doi: 10.1016/j.rse.2005.05.006 – ident: e_1_2_8_10_1 doi: 10.1109/TGRS.2016.2621820 – ident: e_1_2_8_27_1 doi: 10.1098/rspb.2013.0171 – ident: e_1_2_8_16_1 doi: 10.5194/amt-8-1337-2015 – ident: e_1_2_8_60_1 doi: 10.1016/j.rse.2009.10.013 – ident: e_1_2_8_58_1 doi: 10.1080/01431160500033682 |
| SSID | ssj0003206 |
| Score | 2.6707726 |
| Snippet | Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly... Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3990 |
| SubjectTerms | Agricultural land broadleaved evergreen forests carbon Carbon cycle carbon flux Chlorophyll chlorophyll fluorescence Chlorophylls cropland Ecological function Ecosystems eddy covariance Environmental stress Fluctuations Fluorescence Flux Forests Grasslands gross primary productivity Missions MODIS OCO‐2 Performance prediction Photosynthesis photosynthetically active radiation prediction Primary production primary productivity radiation use efficiency Resolution Satellite observation Satellites Spatial discrimination Stresses temperature Towers vegetation index vegetation type |
| Title | Solar‐induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 and flux tower observations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14297 https://www.ncbi.nlm.nih.gov/pubmed/29733483 https://www.proquest.com/docview/2088645967 https://www.proquest.com/docview/2035703986 https://www.proquest.com/docview/2116884283 |
| Volume | 24 |
| WOSCitedRecordID | wos000441746900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB21KUi8cAm0BEo1IIT6Yim-O_AEoYGH0iKgKG_Wrne3jWR5qzipyBufwCfxLXwJM2vHUHEREi9Rkh1LI-1czqztcwAe-0bo2BfaM5k2XhQo6UntG49aF6FTQR3fqUR8PEyPjrLpdPR2A56t34Vp-CG6AzfODFevOcGFrH9K8tNCUpoHo3QTtgKK27gHWy_fTU4Ou0IcBk5a0w_jiKqNH7bEQvwgT3fx5Xb0C8a8DFldz5nc-C9vb8L1Fmri8yY2bsGGrvpwtRGfXPVh--DHO25k1iZ53YfBGwLSdu7M8AmOyxmhWvfrNnx9z6Pwt89faJSnoFBYnNHAb2mvyhJNubRzRw9VaJzVWPMx-2m5woIlQEpCtQr53BdpL1kShGMfz8_swtarioBoTdcQhkZBVkrjBY_xixVag44koH6KkxmBVWxITFC0fCrInVihrfB4fEyuBbSi2JlP6DTg0Mru6Lm-AyeTgw_j114rAuEVEY1LnolikxQiEWmqY0PDHf1r1FArqVIVpibNpK_8WLIuFkE5XxQ6kUYMQxkKOQpFuA29ylb6LiCBL5MZqXSS8v3OkRCCpjWjtRjSZyoGsL-OhbxoGdJZqKPM15MS7WLudnEAjzrT84YW5HdGu-uAytvKUOcBlXUm8Elo-WG3TDnNN2pEpe2SbUImRhtlyV9sfD_JMqbLG8BOE6ydJ6xHFka8su9i8s8u5q_GL9yXe_9ueh-uEWrMmgftdqG3mC_1A7hSXCxm9XwPNtNpttem4ncGhD4g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF2VFgQvXAKFQIEBIdQXS1nfjXiB0FBEmiJoUd-sXe9uG8nyVnFSkTc-gU_iW_gSZtaOoeIiJF6iJDuWRtqZ2TNj-xzGnnAjdMSF9kyqjRf6SnpSc-Ph0YXoVOCJ71QiPo6TySQ9OsrerbHnq3dhGn6IbuBGmeHqNSU4DaR_yvLjQmKe-1lygW2EGEYY3xuv3o8Ox10lDnynrcmDKMRyw4OWWYie5OkuPn8e_QIyz2NWd-iMrv2fu9fZ1RZswosmOm6wNV312KVGfnLZY5s7P95yQ7M2zese6-8hlLYzZwZPYVhOEde6XzfZ1w_UDH_7_AWbeQwLBcUJtvwWd6sswZQLO3MEUYWGaQ01DdqPyyUUJAJSIq5VQJNfwN0kURCKfjg9sXNbLyuEojVegygaBFopDWfUyM-XYA04moD6GYymCFehoTEB0TKqAJ3FCmwF-8N9dM3HFUXOfAKnAgdWdsPn-hY7HO0cDHe9VgbCK0JsmDwTRiYuRCySREcG2zv816iBVlIlKkhMkkqueCRJGQvBHBeFjqURg0AGQmaBCDbZemUrfYcBwi-TGql0nNAdz0wIgf2a0VoM8DMRfba9Coa8aDnSSaqjzFe9Eu5i7naxzx53pqcNMcjvjLZWEZW3taHOfSzsROET4_Kjbhmzmm7ViErbBdkERI2WpfFfbDiP05QI8_rsdhOtnSekSBaEtLLtgvLPLuavhy_dl7v_bvqQXd492Bvn4zeTt_fYFcSQafPY3RZbn88W-j67WJzNp_XsQZuR3wFoG0Eo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEB2VFBAvXAKFQIEBIdQXS3F8DeIF0hoQIa2AVn2zdr27bSTLjuKkIm98Ap_Et_AlzKwdQ8VFSLxESXYsjbRzObO2zwF44hqhA1dox8TaOP5ASUdq1zjUugidCur4ViXiaBxNJvHx8fBgA56v34Wp-SHaAzfODFuvOcH1TJmfsvwkk5Tng2F0ATZ9FpHpwObu--Rw3FZib2C1NV0v8KncuF7DLMRP8rQXn-9Hv4DM85jVNp3k2v-5ex2uNmATX9TRcQM2dNGFS7X85KoLW3s_3nIjsybNqy703hGULufWDJ_iKJ8SrrW_bsLXDzwMf_v8hYZ5CguF2SmN_CXtVp6jyZfl3BJEZRqnFVZ80H6SrzBjEZCccK1CPvlF2k0WBeHox9lpuSirVUFQtKJrCEWjICul8YwH-cUKS4OWJqB6hsmU4CrWNCYoGkYV5F6ssCxwf7RPrg1oRbEzn9CqwGEp28Pn6hYcJnsfR6-dRgbCyXwamBzjBybMRCiiSAeGxjv616i-VlJFyotMFEtXuYFkZSwCc67IdCiN6HvSE3LoCW8LOkVZ6DuABL9MbKTSYcR3PIdCCJrXjNaiT5-R6MHOOhjSrOFIZ6mOPF3PSrSLqd3FHjxuTWc1McjvjLbXEZU2taFKB1TYmcInpOVH7TJlNd-qEYUul2zjMTXaMA7_YuO6YRwzYV4PbtfR2nrCimSezys7Nij_7GL6avTSfrn776YP4fLBbpKO30ze3oMrBCHj-qm7begs5kt9Hy5mZ4tpNX_QJOR3lxdAow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar-induced+chlorophyll+fluorescence+is+strongly+correlated+with+terrestrial+photosynthesis+for+a+wide+variety+of+biomes%3A+First+global+analysis+based+on+OCO-2+and+flux+tower+observations&rft.jtitle=Global+change+biology&rft.au=Li%2C+Xing&rft.au=Xiao%2C+Jingfeng&rft.au=He%2C+Binbin&rft.au=Altaf+Arain%2C+M&rft.date=2018-09-01&rft.eissn=1365-2486&rft.volume=24&rft.issue=9&rft.spage=3990&rft_id=info:doi/10.1111%2Fgcb.14297&rft_id=info%3Apmid%2F29733483&rft.externalDocID=29733483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |