Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical physics (Lancaster) Ročník 43; číslo 4; s. 1700 - 1712
Hlavní autoři: Souris, Kevin, Lee, John Aldo, Sterpin, Edmond
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Association of Physicists in Medicine 01.04.2016
Témata:
ISSN:0094-2405, 2473-4209
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with gate/geant4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 107 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
AbstractList Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with gate/geant4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 107 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
PURPOSEAccuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures.METHODSA new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries.RESULTSComparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit.CONCLUSIONSMCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
Author Souris, Kevin
Sterpin, Edmond
Lee, John Aldo
Author_xml – sequence: 1
  givenname: Kevin
  surname: Souris
  fullname: Souris, Kevin
  email: kevin.souris@uclouvain.be
  organization: Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
– sequence: 2
  givenname: John Aldo
  surname: Lee
  fullname: Lee, John Aldo
  organization: Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
– sequence: 3
  givenname: Edmond
  surname: Sterpin
  fullname: Sterpin, Edmond
  organization: Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and Department of Oncology, Katholieke Universiteit Leuven, O&N I Herestraat 49, 3000 Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27036568$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22620839$$D View this record in Osti.gov
BookMark eNp9kU1v1DAQhi1URLeFA38AWeJCkdL6I7GdY7VqoVIreqBny3UmrFFiB9sB7b_HJdsKFdqTR_LzjN6ZOUB7PnhA6C0lx5RSdUKP67bmXMoXaMVqyauakXYPrQhp64rVpNlHByl9J4QI3pBXaJ9JwkUj1Aptzk3KeJyH7KY5TiEBvgo-A16bOAScXPky2QWP-xDxFEMuZd5ANNMWz8n5b4tcYeM7PBq_rWyIRb--wSbajctg8xwhvUYvezMkeLN7D9HN-dnX9efq8suni_XpZWVrRmUFnaK8U01HpATOhCg1Z0r0Xc3EbaPaHgQzHAwoJWjbCstID0aA7GmtinuI3i99Q8pOJ3sXYGOD9yWHZkwwonhbqA8LVSb6MUPKenTJwjAYD2FOmkopW8WFZAV9t0Pn2xE6PUU3mrjV9zsswNEC2BhSitA_IJTou_toqnf3KezJI7YE_LPfHI0b_mtUi_HLDbB9urW-ut7xHxc-3Xd-cH6G-Bc_df1z8L9JfgMZb7ob
CODEN MPHYA6
CitedBy_id crossref_primary_10_1088_1361_6560_ad67a7
crossref_primary_10_1177_15330338211033076
crossref_primary_10_1016_j_ejmp_2021_07_022
crossref_primary_10_1088_1361_6560_ac2c4f
crossref_primary_10_1088_1361_6560_ad0b64
crossref_primary_10_1002_mp_14647
crossref_primary_10_1002_mp_15859
crossref_primary_10_1002_mp_16706
crossref_primary_10_1016_j_phro_2025_100735
crossref_primary_10_1016_j_radonc_2024_110623
crossref_primary_10_1088_1361_6560_acf90d
crossref_primary_10_1016_j_ejmp_2022_01_002
crossref_primary_10_14338_IJPT_20_00049_1
crossref_primary_10_1088_2057_1976_ade9c8
crossref_primary_10_1002_mp_18044
crossref_primary_10_1016_j_cpc_2017_12_019
crossref_primary_10_1016_j_ijrobp_2022_01_009
crossref_primary_10_1002_mp_14125
crossref_primary_10_1002_acm2_12856
crossref_primary_10_1088_1361_6560_abd22f
crossref_primary_10_1002_mp_15604
crossref_primary_10_1002_mp_16813
crossref_primary_10_1002_mp_17628
crossref_primary_10_1088_1361_6560_adecdd
crossref_primary_10_1002_acm2_12221
crossref_primary_10_1016_j_ejmp_2022_09_018
crossref_primary_10_1186_s13014_020_01571_x
crossref_primary_10_1002_mp_17262
crossref_primary_10_3390_app11156806
crossref_primary_10_1002_mp_70013
crossref_primary_10_1088_2057_1976_ad20a8
crossref_primary_10_1016_j_compbiomed_2022_105609
crossref_primary_10_1002_mp_13861
crossref_primary_10_1002_mp_16208
crossref_primary_10_1002_mp_13856
crossref_primary_10_1002_mp_16607
crossref_primary_10_1002_mp_15913
crossref_primary_10_3389_fonc_2022_1004121
crossref_primary_10_1088_2057_1976_abaf5c
crossref_primary_10_1088_1361_6560_ab9b55
crossref_primary_10_1080_0284186X_2020_1834141
crossref_primary_10_1088_1361_6560_ad8e2a
crossref_primary_10_1088_2057_1976_ac4dd2
crossref_primary_10_1088_2632_2153_abb6d5
crossref_primary_10_1016_j_ejmp_2017_04_020
crossref_primary_10_1002_mp_13850
crossref_primary_10_1002_mp_14417
crossref_primary_10_1016_j_ijrobp_2023_11_061
crossref_primary_10_1002_mp_16719
crossref_primary_10_1186_s13014_024_02464_z
crossref_primary_10_2340_1651_226X_2024_40549
crossref_primary_10_1016_j_ijrobp_2021_02_024
crossref_primary_10_1002_mp_14571
crossref_primary_10_1088_1361_6560_ac8716
crossref_primary_10_1016_j_radonc_2017_09_006
crossref_primary_10_1002_mp_14215
crossref_primary_10_1002_mp_17602
crossref_primary_10_1016_j_ijpt_2025_100753
crossref_primary_10_1002_mp_14329
crossref_primary_10_1088_1361_6560_ab5e97
crossref_primary_10_1002_mp_13917
crossref_primary_10_1016_j_radphyschem_2022_110283
crossref_primary_10_1002_mp_17792
crossref_primary_10_1016_j_ejmp_2022_02_018
crossref_primary_10_1016_j_ejmp_2024_104508
crossref_primary_10_1088_0031_9155_61_21_N565
crossref_primary_10_1002_mp_13231
crossref_primary_10_1259_bjr_20190304
crossref_primary_10_1016_j_ijrobp_2024_01_216
crossref_primary_10_1002_mp_13749
crossref_primary_10_1016_j_radonc_2024_110653
crossref_primary_10_1007_s00285_025_02212_1
crossref_primary_10_1016_j_radphyschem_2025_113263
crossref_primary_10_1002_acm2_70093
crossref_primary_10_1002_mp_16370
crossref_primary_10_1051_vcm_2025001
crossref_primary_10_1002_mp_16097
crossref_primary_10_1016_j_ejmp_2019_12_018
crossref_primary_10_1002_acm2_12420
crossref_primary_10_1016_j_rpor_2017_08_005
crossref_primary_10_1088_1361_6560_ab120c
crossref_primary_10_1002_acm2_14328
crossref_primary_10_1002_mp_12688
crossref_primary_10_3389_fonc_2022_1031340
crossref_primary_10_1002_mp_14108
crossref_primary_10_1016_j_radonc_2020_06_027
crossref_primary_10_1088_1361_6560_abc939
crossref_primary_10_3389_fonc_2021_698537
crossref_primary_10_1016_j_ejmp_2018_10_002
crossref_primary_10_1002_mp_16084
crossref_primary_10_1016_j_apradiso_2024_111479
crossref_primary_10_1002_mp_17697
crossref_primary_10_1002_acm2_13527
crossref_primary_10_1002_mp_15678
crossref_primary_10_1002_mp_16008
crossref_primary_10_1002_mp_13888
crossref_primary_10_1016_j_radonc_2024_110434
crossref_primary_10_1140_epjp_s13360_024_05664_4
crossref_primary_10_1016_j_radonc_2021_03_027
crossref_primary_10_1016_j_phro_2025_100705
crossref_primary_10_1088_1361_6560_aca5e9
crossref_primary_10_1088_1361_6560_ac692e
Cites_doi 10.1118/1.4758060
10.1088/0031‐9155/55/23/S11
10.1088/0031‐9155/59/4/R151
10.1016/B978-0-12-410414-3.00010-4
10.1088/0031‐9155/57/17/5459
10.1007/s00354‐013‐0301‐5
10.4103/0971‐6203.139004
10.1103/RevModPhys.13.240
10.1088/0031‐9155/41/1/009
10.1088/0031‐9155/60/12/4915
10.1118/1.1769631
10.1016/j.nimb.2010.07.011
10.1007/978-1-4302-5927-5
10.1088/0031‐9155/49/19/007
10.1103/PhysRevC.62.034005
10.1007/978-3-319-06486-4
10.1118/1.4871617
10.1088/0031‐9155/56/4/001
10.1016/S0168‐9002(97)00048‐X
10.1088/0031‐9155/60/15/6097
10.1118/1.3578605
10.1118/1.4823469
10.1088/0031‐9155/57/11/3371
10.1118/1.598917
10.1118/1.4835475
10.1088/0031‐9155/56/22/N03
10.1088/0031‐9155/57/11/R99
10.1088/0031‐9155/57/23/7783
10.1088/0031‐9155/47/5/305
10.1016/S0168‐9002(03)01368‐8
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1118/1.4943377
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 1712
ExternalDocumentID 22620839
27036568
10_1118_1_4943377
MP3377
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Walloon Region
  grantid: IVDGPT
– fundername: Ion Beam Applications (IBA)
  grantid: IVDGPT
– fundername: Ion Beam Applications (IBA)
  funderid: IVDGPT
– fundername: Walloon Region
  funderid: IVDGPT
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
ADMLS
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
ID FETCH-LOGICAL-c4217-ed813d85d077e3266d853286fd426b589fe62a3eae8861996c20fea6e7f148813
IEDL.DBID DRFUL
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373711000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Fri May 19 00:36:25 EDT 2023
Thu Oct 02 11:26:25 EDT 2025
Wed Feb 19 01:56:20 EST 2025
Tue Nov 18 21:38:34 EST 2025
Sat Nov 29 01:33:02 EST 2025
Mon Feb 10 04:01:29 EST 2025
Fri Jun 21 00:14:56 EDT 2024
Sun Jul 14 11:31:37 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Xeon Phi
dose calculation
proton therapy
high performance computing
Monte Carlo simulation
Language English
License 0094-2405/2016/43(4)/1700/13/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4217-ed813d85d077e3266d853286fd426b589fe62a3eae8861996c20fea6e7f148813
Notes kevin.souris@uclouvain.be
Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27036568
PQID 1777983672
PQPubID 23479
PageCount 13
ParticipantIDs osti_scitechconnect_22620839
wiley_primary_10_1118_1_4943377_MP3377
pubmed_primary_27036568
crossref_primary_10_1118_1_4943377
scitation_primary_10_1118_1_4943377
crossref_citationtrail_10_1118_1_4943377
proquest_miscellaneous_1777983672
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2016
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Jan, Santin, Strul, Staelens, Assié, Autret, Avner, Barbier, Bardiés, Bloomfield, Brasse, Breton, Bruyndonckx, Buvat, Chatziioannou, Choi, Chung, Comtat, Donnarieix, Ferrer, Glick, Groiselle, Guez, Honore, Kerhoas-Cavata, Kirov, Kohli, Koole, Krieguer, van der Laan, Lamare, Largeron, Lartizien, Lazaro, Maas, Maigne, Mayet, Melot, Merheb, Pennacchio, Perez, Pietrzyk, Rannou, Rey, Schaart, Schmidtlein, Simon, Song, Vieira, Visvikis, de Walle, Wieërs, Morel (c17) 2004; 49
Sarrut, Bardiés, Boussion, Freud, Jan, Létang, Loudos, Maigne, Marcatili, Mauxion, Papadimitroulas, Perrot, Pietrzyk, Robert, Schaart, Visvikis, Buvat (c39) 2014; 41
Schneider, Pedroni, Lomax (c22) 1996; 41
Sterpin, Janssens, Smeets, Vander Stappen, Prieels, Priegnitz, Perali, Vynckier (c16) 2015; 60
Paganetti (c32) 2002; 47
Brun, Rademakers (c41) 1997; 389
Agostinelli (c19) 2003; 506
Rossi, Greisen (c27) 1941; 13
Yepes, Mirkovic, Taddei (c6) 2010; 55
Kawrakow (c24) 2000; 27
Kohno, Hotta, Nishioka, Matsubara, Tansho, Suzuki (c7) 2011; 56
Jia, Ziegenhein, Jiang (c3) 2014; 59
Jia, Schümann, Paganetti, Jiang (c5) 2012; 57
Jan, Benoit, Becheva, Carlier, Cassol, Descourt, Frisson, Grevillot, Guigues, Maigne, Morel, Perrot, Rehfeld, Sarrut, Schaart, Stute, Pietrzyk, Visvikis, Zahra, Buvat (c18) 2011; 56
Sterpin, Sorriaux, Vynckier (c30) 2013; 40
Paganetti (c1) 2012; 57
Fippel, Soukup (c13) 2004; 31
Pratx, Xing (c4) 2011; 38
Verburg, Shih, Seco (c14) 2012; 57
Grevillot, Frisson, Zahra, Bertrand, Stichelbaut, Freud, Sarrut (c40) 2010; 268
Jabbari, Seuntjens (c2) 2014; 39
Ziegenhein, Pirner, Kamerling, Oelfke (c8) 2015; 60
Arndt, Strakovsky, Workman (c33) 2000; 62
Sterpin, Sorriaux, Souris, Vynckier, Bouchard (c42) 2014; 41
Smeets, Roellinghoff, Prieels, Stichelbaut, Benilov, Busca, Fiorini, Peloso, Basilavecchia, Frizzi, Dehaes, Dubus (c15) 2012; 57
Perl, Shin, Schümann, Faddegon, Paganetti (c38) 2012; 39
Sanchez, Fernandez, Sotomayor, Escolar, Garcia (c35) 2013; 31
2010; 55
2000; 27
2012
2011
2004; 49
2013; 40
2010; 268
1948; 18
2011; 56
1993
2012; 39
2014; 41
2012; 57
2011; 38
1997; 389
2003; 506
2002; 47
2004; 31
2015; 60
2000
1941; 13
2013; 31
2014; 59
2000; 62
1996; 41
2014
2014; 39
1989
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Reinders J. (e_1_2_7_35_1) 2014
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
ICRU (e_1_2_7_30_1) 2000
e_1_2_7_28_1
Cramer T. (e_1_2_7_38_1) 2012
Bohr N. (e_1_2_7_26_1) 1948
International Commission on Radiation Units and Measurements (e_1_2_7_27_1) 1993
Leo W. R. (e_1_2_7_24_1) 2012
Salvat F. (e_1_2_7_21_1) 2011
e_1_2_7_25_1
e_1_2_7_31_1
ICRU (e_1_2_7_29_1) 1989
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
References_xml – volume: 62
  start-page: 034005
  year: 2000
  ident: c33
  article-title: Nucleon–nucleon elastic scattering to 3 GeV
  publication-title: Phys. Rev. C
– volume: 38
  start-page: 2685
  year: 2011
  ident: c4
  article-title: GPU computing in medical physics: A review
  publication-title: Med. Phys.
– volume: 57
  start-page: 7783
  year: 2012
  ident: c5
  article-title: GPU-based fast Monte Carlo dose calculation for proton therapy
  publication-title: Phys. Med. Biol.
– volume: 506
  start-page: 250
  year: 2003
  ident: c19
  article-title: —A simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 31
  start-page: 2263
  year: 2004
  ident: c13
  article-title: A Monte Carlo dose calculation algorithm for proton therapy
  publication-title: Med. Phys.
– volume: 389
  start-page: 81
  year: 1997
  ident: c41
  article-title: Root—an object oriented data analysis framework
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 13
  start-page: 240
  year: 1941
  ident: c27
  article-title: Cosmic-ray theory
  publication-title: Rev. Mod. Phys.
– volume: 47
  start-page: 747
  year: 2002
  ident: c32
  article-title: Nuclear interactions in proton therapy: Dose and relative biological effect distributions originating from primary and secondary particles
  publication-title: Phys. Med. Biol.
– volume: 59
  start-page: R151
  year: 2014
  ident: c3
  article-title: GPU-based high-performance computing for radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 011706
  year: 2014
  ident: c42
  article-title: A fano cavity test for Monte Carlo proton transport algorithms
  publication-title: Med. Phys.
– volume: 39
  start-page: 156
  year: 2014
  ident: c2
  article-title: A fast Monte Carlo code for proton transport in radiation therapy based on
  publication-title: J. Med. Phys.
– volume: 60
  start-page: 6097
  year: 2015
  ident: c8
  article-title: Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: 881
  year: 2011
  ident: c18
  article-title: V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 111
  year: 1996
  ident: c22
  article-title: The calibration of CT hounsfield units for radiotherapy treatment planning
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 064301
  year: 2014
  ident: c39
  article-title: A review of the use and potential of the gate Monte Carlo simulation code for radiation therapy and dosimetry applications
  publication-title: Med. Phys.
– volume: 57
  start-page: R99
  year: 2012
  ident: c1
  article-title: Range uncertainties in proton therapy and the role of Monte Carlo simulations
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: N287
  year: 2011
  ident: c7
  article-title: Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy
  publication-title: Phys. Med. Biol.
– volume: 27
  start-page: 485
  year: 2000
  ident: c24
  article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version
  publication-title: Med. Phys.
– volume: 57
  start-page: 3371
  year: 2012
  ident: c15
  article-title: Prompt gamma imaging with a slit camera for real-time range control in proton therapy
  publication-title: Phys. Med. Biol.
– volume: 49
  start-page: 4543
  year: 2004
  ident: c17
  article-title: : A simulation toolkit for pet and spect
  publication-title: Phys. Med. Biol.
– volume: 40
  start-page: 111705
  year: 2013
  ident: c30
  article-title: Extension of to protons: Simulation of nuclear reactions and benchmark with
  publication-title: Med. Phys.
– volume: 60
  start-page: 4915
  year: 2015
  ident: c16
  article-title: Analytical computation of prompt gamma ray emission and detection for proton range verification
  publication-title: Phys. Med. Biol.
– volume: 268
  start-page: 3295
  year: 2010
  ident: c40
  article-title: Optimization of settings for proton pencil beam scanning simulations using gate
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 57
  start-page: 5459
  year: 2012
  ident: c14
  article-title: Simulation of prompt gamma-ray emission during proton radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 31
  start-page: 139
  year: 2013
  ident: c35
  article-title: A comparative study and evaluation of parallel programming models for shared-memory parallel architectures
  publication-title: New Gener. Comput.
– volume: 39
  start-page: 6818
  year: 2012
  ident: c38
  article-title: Topas: An innovative proton Monte Carlo platform for research and clinical applications
  publication-title: Med. Phys.
– volume: 55
  start-page: 7107
  year: 2010
  ident: c6
  article-title: A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations
  publication-title: Phys. Med. Biol.
– year: 2012
  article-title: Early experiences porting scientific applications to the many integrated core (MIC) platform
– volume: 55
  start-page: 7107
  issue: 23
  year: 2010
  end-page: 7120
  article-title: A GPU implementation of a track‐repeating algorithm for proton radiotherapy dose calculations
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 111
  issue: 1
  year: 1996
  end-page: 124
  article-title: The calibration of CT hounsfield units for radiotherapy treatment planning
  publication-title: Phys. Med. Biol.
– year: 2000
  article-title: Nuclear data for neutron and proton radiotherapy and for radiation protection
– volume: 57
  start-page: R99
  issue: 11
  year: 2012
  end-page: R117
  article-title: Range uncertainties in proton therapy and the role of Monte Carlo simulations
  publication-title: Phys. Med. Biol.
– volume: 60
  start-page: 6097
  issue: 15
  year: 2015
  end-page: 6111
  article-title: Fast CPU‐based Monte Carlo simulation for radiotherapy dose calculation
  publication-title: Phys. Med. Biol.
– volume: 40
  start-page: 111705
  issue: 11
  year: 2013
  article-title: Extension of to protons: Simulation of nuclear reactions and benchmark with
  publication-title: Med. Phys.
– volume: 56
  start-page: N287
  issue: 22
  year: 2011
  end-page: N294
  article-title: Clinical implementation of a GPU‐based simplified Monte Carlo method for a treatment planning system of proton beam therapy
  publication-title: Phys. Med. Biol.
– volume: 389
  start-page: 81
  issue: 1
  year: 1997
  end-page: 86
  article-title: Root—an object oriented data analysis framework
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 49
  start-page: 4543
  issue: 19
  year: 2004
  end-page: 4561
  article-title: : A simulation toolkit for pet and spect
  publication-title: Phys. Med. Biol.
– year: 2011
  article-title: ‐2011: A code system for Monte Carlo simulation of electron and photon transport
– year: 2014
– start-page: 38
  year: 2012
  end-page: 44
  publication-title: OpenMP programming on intel Xeon Phi coprocessors: An early performance comparison
– volume: 13
  start-page: 240
  issue: 4
  year: 1941
  end-page: 309
  article-title: Cosmic‐ray theory
  publication-title: Rev. Mod. Phys.
– volume: 47
  start-page: 747
  issue: 5
  year: 2002
  end-page: 764
  article-title: Nuclear interactions in proton therapy: Dose and relative biological effect distributions originating from primary and secondary particles
  publication-title: Phys. Med. Biol.
– year: 2012
– volume: 38
  start-page: 2685
  issue: 5
  year: 2011
  end-page: 2697
  article-title: GPU computing in medical physics: A review
  publication-title: Med. Phys.
– volume: 18
  year: 1948
– year: 1989
  article-title: Tissue substitutes in radiation dosimetry and measurement
– volume: 60
  start-page: 4915
  issue: 12
  year: 2015
  end-page: 4946
  article-title: Analytical computation of prompt gamma ray emission and detection for proton range verification
  publication-title: Phys. Med. Biol.
– volume: 57
  start-page: 3371
  issue: 11
  year: 2012
  end-page: 3405
  article-title: Prompt gamma imaging with a slit camera for real‐time range control in proton therapy
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: 034005
  issue: 3
  year: 2000
  article-title: Nucleon–nucleon elastic scattering to 3 GeV
  publication-title: Phys. Rev. C
– volume: 57
  start-page: 5459
  issue: 17
  year: 2012
  end-page: 5472
  article-title: Simulation of prompt gamma‐ray emission during proton radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 39
  start-page: 156
  issue: 3
  year: 2014
  end-page: 163
  article-title: A fast Monte Carlo code for proton transport in radiation therapy based on
  publication-title: J. Med. Phys.
– volume: 56
  start-page: 881
  issue: 4
  year: 2011
  end-page: 901
  article-title: V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy
  publication-title: Phys. Med. Biol.
– volume: 59
  start-page: R151
  issue: 4
  year: 2014
  end-page: R182
  article-title: GPU‐based high‐performance computing for radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 57
  start-page: 7783
  issue: 23
  year: 2012
  end-page: 7797
  article-title: GPU‐based fast Monte Carlo dose calculation for proton therapy
  publication-title: Phys. Med. Biol.
– volume: 506
  start-page: 250
  issue: 3
  year: 2003
  end-page: 303
  article-title: —A simulation toolkit
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 39
  start-page: 6818
  issue: 11
  year: 2012
  end-page: 6837
  article-title: Topas: An innovative proton Monte Carlo platform for research and clinical applications
  publication-title: Med. Phys.
– volume: 31
  start-page: 2263
  issue: 8
  year: 2004
  end-page: 2273
  article-title: A Monte Carlo dose calculation algorithm for proton therapy
  publication-title: Med. Phys.
– volume: 41
  start-page: 064301
  issue: 6
  year: 2014
  article-title: A review of the use and potential of the gate Monte Carlo simulation code for radiation therapy and dosimetry applications
  publication-title: Med. Phys.
– volume: 41
  start-page: 011706
  issue: 1
  year: 2014
  article-title: A fano cavity test for Monte Carlo proton transport algorithms
  publication-title: Med. Phys.
– year: 1993
  article-title: Stopping powers and ranges for protons and alpha particles
– volume: 268
  start-page: 3295
  issue: 20
  year: 2010
  end-page: 3305
  article-title: Optimization of settings for proton pencil beam scanning simulations using gate
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 27
  start-page: 485
  issue: 3
  year: 2000
  end-page: 498
  article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version
  publication-title: Med. Phys.
– volume: 31
  start-page: 139
  issue: 3
  year: 2013
  end-page: 161
  article-title: A comparative study and evaluation of parallel programming models for shared‐memory parallel architectures
  publication-title: New Gener. Comput.
– ident: e_1_2_7_39_1
  doi: 10.1118/1.4758060
– ident: e_1_2_7_37_1
– ident: e_1_2_7_7_1
  doi: 10.1088/0031‐9155/55/23/S11
– ident: e_1_2_7_4_1
  doi: 10.1088/0031‐9155/59/4/R151
– ident: e_1_2_7_10_1
  doi: 10.1016/B978-0-12-410414-3.00010-4
– ident: e_1_2_7_45_1
– ident: e_1_2_7_15_1
  doi: 10.1088/0031‐9155/57/17/5459
– ident: e_1_2_7_36_1
  doi: 10.1007/s00354‐013‐0301‐5
– ident: e_1_2_7_3_1
  doi: 10.4103/0971‐6203.139004
– ident: e_1_2_7_11_1
– ident: e_1_2_7_28_1
  doi: 10.1103/RevModPhys.13.240
– ident: e_1_2_7_23_1
  doi: 10.1088/0031‐9155/41/1/009
– volume-title: ICRU Report 44
  year: 1989
  ident: e_1_2_7_29_1
– ident: e_1_2_7_22_1
– ident: e_1_2_7_17_1
  doi: 10.1088/0031‐9155/60/12/4915
– ident: e_1_2_7_14_1
  doi: 10.1118/1.1769631
– volume-title: Techniques for Nuclear and Particle Physics Experiments: A How‐to Approach
  year: 2012
  ident: e_1_2_7_24_1
– ident: e_1_2_7_41_1
  doi: 10.1016/j.nimb.2010.07.011
– volume-title: Workshop Proceedings
  year: 2011
  ident: e_1_2_7_21_1
– volume-title: High Performance Parallelism Pearls: Multicore and Many‐Core Programming Approaches
  year: 2014
  ident: e_1_2_7_35_1
– start-page: 38
  year: 2012
  ident: e_1_2_7_38_1
  publication-title: OpenMP programming on intel Xeon Phi coprocessors: An early performance comparison
– ident: e_1_2_7_44_1
– volume-title: The Penetration of Atomic Particles through Matter
  year: 1948
  ident: e_1_2_7_26_1
– ident: e_1_2_7_13_1
  doi: 10.1007/978-1-4302-5927-5
– ident: e_1_2_7_18_1
  doi: 10.1088/0031‐9155/49/19/007
– ident: e_1_2_7_34_1
  doi: 10.1103/PhysRevC.62.034005
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-319-06486-4
– ident: e_1_2_7_40_1
  doi: 10.1118/1.4871617
– ident: e_1_2_7_19_1
  doi: 10.1088/0031‐9155/56/4/001
– ident: e_1_2_7_42_1
  doi: 10.1016/S0168‐9002(97)00048‐X
– ident: e_1_2_7_9_1
  doi: 10.1088/0031‐9155/60/15/6097
– ident: e_1_2_7_5_1
  doi: 10.1118/1.3578605
– ident: e_1_2_7_31_1
  doi: 10.1118/1.4823469
– ident: e_1_2_7_32_1
– ident: e_1_2_7_16_1
  doi: 10.1088/0031‐9155/57/11/3371
– ident: e_1_2_7_25_1
  doi: 10.1118/1.598917
– volume-title: ICRU Report 63
  year: 2000
  ident: e_1_2_7_30_1
– ident: e_1_2_7_43_1
  doi: 10.1118/1.4835475
– ident: e_1_2_7_8_1
  doi: 10.1088/0031‐9155/56/22/N03
– volume-title: ICRU Report 49
  year: 1993
  ident: e_1_2_7_27_1
– ident: e_1_2_7_2_1
  doi: 10.1088/0031‐9155/57/11/R99
– ident: e_1_2_7_6_1
  doi: 10.1088/0031‐9155/57/23/7783
– ident: e_1_2_7_33_1
  doi: 10.1088/0031‐9155/47/5/305
– ident: e_1_2_7_20_1
  doi: 10.1016/S0168‐9002(03)01368‐8
SSID ssj0006350
Score 2.5065331
Snippet Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods...
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders...
PURPOSEAccuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods...
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods...
SourceID osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1700
SubjectTerms 60 APPLIED LIFE SCIENCES
ACCURACY
ALGORITHMS
ANIMAL TISSUES
BENCHMARKS
Collisional energy loss
Computer hardware
COMPUTERIZED SIMULATION
Computers
DEUTERONS
dose calculation
Dose‐volume analysis
dosimetry
Dosimetry/exposure assessment
ENERGY LOSSES
high performance computing
ICRU
IN VIVO
microprocessor chips
Monte Carlo algorithms
MONTE CARLO METHOD
Monte Carlo methods
Monte Carlo simulation
MULTIPLE SCATTERING
Nuclear interactions
Nuclear structure models
Phantoms, Imaging
PROTON BEAMS
Proton Therapy
Protons
RADIATION PROTECTION AND DOSIMETRY
radiation therapy
RADIOTHERAPY
Scintigraphy
Time Factors
Tissues
Water
Xeon Phi
Title Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures
URI http://dx.doi.org/10.1118/1.4943377
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4943377
https://www.ncbi.nlm.nih.gov/pubmed/27036568
https://www.proquest.com/docview/1777983672
https://www.osti.gov/biblio/22620839
Volume 43
WOSCitedRecordID wos000373711000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61Wx7iwKPlESiVeQhxCazjJHbECS2sOLDVCrHS3iw7cUqlbVJttpV660_gN_JLmImzgUoLQuIUH8Z5zeuzZzwD8NIkznEuTMgtj0O0fjZUzmShLV0yNCIaJtY3m5CHh2o-z6Zb8G59FsbXh-g33EgzWntNCm5s14WEU-I6fxNnsRBSbsNOhHIbD2Dnw5fx7HNviNGX-hMoWUxBhKQrLITT3_aTr7ijQY1qtQlq3oKb6JB8bPwqim3d0PjOf33AXbjdoU_23ovLPdhy1S7cmHTx9V243iaE5s0eLMamWTGfboi8qBvHJlTIio3MclGz5vik6_vFEPUyqvaAQ3-Y64JRMv2Rn_zj8jszVcFO0OjgmIpmstF0xn4PYDT3YTb--HX0Kew6M4R5jGuY0BWKi0IlxVBKhwAwxbGIVFoW6PBtorLSpZERzjilUspzzqNh6UzqZInLL5z7AAZVXblHwEpu0UTEwhYlBSEzRPwOYYQ0hc1TldgAXq8ZpNcsoO4ZC-2XL0pz3f3HAJ73pKe-Vscmon3isiZ-uvxbTulE-UpHVJgfwWIAz9bc16hoFD0xlavPGs2llJkSqYwCeOjFon8KyR8CYxXAi15O_vYKG6jO6-UvCn1alAG8aqXnz_fRkyldHv8r4RPalGiTjkLO92GwWp65p3AtP18dN8sD2JZzddDp0E9w5Bqj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB6VFCg8cJTLUGA5hHgxxMcelnhBgaiIJIpQI_VttWuvoVJqV3FaiTd-Ar-RX8JM1jFUCgiJJ-_DjK-5vt2ZnQV4brhzUZSYMLJRGqL3s6FyJgtt6XjfJHGfW3_YhJxM1OFhNt2CN-u9ML4_RLfgRpax8tdk4LQg3Vo5Va5Hr9IsTRIpL8B2imrEe7D97tNwNuo8MQZTvwUlSymLwNvOQsj-umM-F496NdrVJqx5FXYwIvnk-HkYu4pDw-v_9wU34FqLP9lbrzA3YctVu3B53GbYd-HSqiQ0b27BfGiaJfMFhyiNunFsTK2s2MAs5jVrjo7bk78Y4l5G_R5w6LdzfWVUTv_ZM__49p2ZqmDH6HZwTG0z2WA6Y7-nMJrbMBu-Pxjsh-3ZDGGe4iwmdIWKkkLxoi-lQwgocJzESpQFhnzLVVY6EZvEGaeUoErnPO6XzggnS5yAIe8d6FV15e4BKyOLTiJNbFFSGjJDzO8QSEhT2FwobgN4uZaQXsuAzs-Yaz-BUTrS7X8M4GlHeuK7dWwi2iMxaxKoy7_kVFCUL3VMrfkRLgbwZC1-jaZG-RNTufq00ZGUMlOJkHEAd71edE-JqZEZFyqAZ52i_O0VNlCd1YtfFPqkKAN4sVKfP99Hj6d0uf-vhI9hZ_9gPNKjD5OPD-AKgj_hq5D2oLdcnLqHcDE_Wx41i0etKf0EsRgdsg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VFFo48NNCMRRYKEK9GGKvvbuWuKAUC0QTRYhIva3W9ritlNpVnFbixiPwjDwJs1nHUCkgJE7Zw4wde_6-9czOALw0MWIQcOMHWRD55P0yX6FJ_KzEuG942I8zN2xCjkbq6CgZr8Hb5VkY1x-i--BmLWPhr62B43lRtlZuK9eD11EScS7lNViP4kSQWa4ffE4nh50npmDqjqAkkc0ixG1nIWJ_0zFfiUe9muxqFda8BZsUkVxy_CqMXcSh9M7_PcFduN3iT_bOKcw9WMNqCzaGbYZ9C24sSkLzZhumqWnmzBUckjTqBtnQtrJiAzOb1qw5PWsnfzHCvcz2e6ClO871ldly-mPH_OPbd2aqgp2R26G1bZvJBuMJ-z2F0dyHSfr-y-CD385m8POIdjE-FirghYqLvpRIEFDQmodKlAWF_CxWSYkiNBwNKiVspXMe9ks0AmVJGzDifQC9qq7wIbAyyMhJRDwrSpuGTAjzIwEJaYosFyrOPNhfSkgvZWDnZ0y128AoHej2PXrwoiM9d906VhHtWjFrK1DMT3JbUJTPdWhb8xNc9OD5UvyaTM3mT0yF9UWjAylloriQoQc7Ti-6u4S2kVkslAd7naL87S-soLqsZ78oNGmKB68W6vPn6-jh2P48-lfCZ7AxPkj14cfRp8dwk7CfcEVIu9Cbzy7wCVzPL-enzexpa0k_ARBtHS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+multipurpose+Monte+Carlo+simulation+for+proton+therapy+using+multi%E2%80%90+and+many%E2%80%90core+CPU+architectures&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Souris%2C+Kevin&rft.au=Lee%2C+John+Aldo&rft.au=Sterpin%2C+Edmond&rft.date=2016-04-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=43&rft.issue=4&rft.spage=1700&rft.epage=1712&rft_id=info:doi/10.1118%2F1.4943377&rft.externalDBID=10.1118%252F1.4943377&rft.externalDocID=MP3377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon