Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massi...
Uloženo v:
| Vydáno v: | Medical physics (Lancaster) Ročník 43; číslo 4; s. 1700 - 1712 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Association of Physicists in Medicine
01.04.2016
|
| Témata: | |
| ISSN: | 0094-2405, 2473-4209 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose:
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures.
Methods:
A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries.
Results:
Comparisons with gate/geant4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 107 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit.
Conclusions:
MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification. |
|---|---|
| AbstractList | Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification. Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with gate/geant4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 107 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification. PURPOSEAccuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures.METHODSA new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries.RESULTSComparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit.CONCLUSIONSMCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification. Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification. |
| Author | Souris, Kevin Sterpin, Edmond Lee, John Aldo |
| Author_xml | – sequence: 1 givenname: Kevin surname: Souris fullname: Souris, Kevin email: kevin.souris@uclouvain.be organization: Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium – sequence: 2 givenname: John Aldo surname: Lee fullname: Lee, John Aldo organization: Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium – sequence: 3 givenname: Edmond surname: Sterpin fullname: Sterpin, Edmond organization: Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and Department of Oncology, Katholieke Universiteit Leuven, O&N I Herestraat 49, 3000 Leuven, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27036568$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22620839$$D View this record in Osti.gov |
| BookMark | eNp9kU1v1DAQhi1URLeFA38AWeJCkdL6I7GdY7VqoVIreqBny3UmrFFiB9sB7b_HJdsKFdqTR_LzjN6ZOUB7PnhA6C0lx5RSdUKP67bmXMoXaMVqyauakXYPrQhp64rVpNlHByl9J4QI3pBXaJ9JwkUj1Aptzk3KeJyH7KY5TiEBvgo-A16bOAScXPky2QWP-xDxFEMuZd5ANNMWz8n5b4tcYeM7PBq_rWyIRb--wSbajctg8xwhvUYvezMkeLN7D9HN-dnX9efq8suni_XpZWVrRmUFnaK8U01HpATOhCg1Z0r0Xc3EbaPaHgQzHAwoJWjbCstID0aA7GmtinuI3i99Q8pOJ3sXYGOD9yWHZkwwonhbqA8LVSb6MUPKenTJwjAYD2FOmkopW8WFZAV9t0Pn2xE6PUU3mrjV9zsswNEC2BhSitA_IJTou_toqnf3KezJI7YE_LPfHI0b_mtUi_HLDbB9urW-ut7xHxc-3Xd-cH6G-Bc_df1z8L9JfgMZb7ob |
| CODEN | MPHYA6 |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ad67a7 crossref_primary_10_1177_15330338211033076 crossref_primary_10_1016_j_ejmp_2021_07_022 crossref_primary_10_1088_1361_6560_ac2c4f crossref_primary_10_1088_1361_6560_ad0b64 crossref_primary_10_1002_mp_14647 crossref_primary_10_1002_mp_15859 crossref_primary_10_1002_mp_16706 crossref_primary_10_1016_j_phro_2025_100735 crossref_primary_10_1016_j_radonc_2024_110623 crossref_primary_10_1088_1361_6560_acf90d crossref_primary_10_1016_j_ejmp_2022_01_002 crossref_primary_10_14338_IJPT_20_00049_1 crossref_primary_10_1088_2057_1976_ade9c8 crossref_primary_10_1002_mp_18044 crossref_primary_10_1016_j_cpc_2017_12_019 crossref_primary_10_1016_j_ijrobp_2022_01_009 crossref_primary_10_1002_mp_14125 crossref_primary_10_1002_acm2_12856 crossref_primary_10_1088_1361_6560_abd22f crossref_primary_10_1002_mp_15604 crossref_primary_10_1002_mp_16813 crossref_primary_10_1002_mp_17628 crossref_primary_10_1088_1361_6560_adecdd crossref_primary_10_1002_acm2_12221 crossref_primary_10_1016_j_ejmp_2022_09_018 crossref_primary_10_1186_s13014_020_01571_x crossref_primary_10_1002_mp_17262 crossref_primary_10_3390_app11156806 crossref_primary_10_1002_mp_70013 crossref_primary_10_1088_2057_1976_ad20a8 crossref_primary_10_1016_j_compbiomed_2022_105609 crossref_primary_10_1002_mp_13861 crossref_primary_10_1002_mp_16208 crossref_primary_10_1002_mp_13856 crossref_primary_10_1002_mp_16607 crossref_primary_10_1002_mp_15913 crossref_primary_10_3389_fonc_2022_1004121 crossref_primary_10_1088_2057_1976_abaf5c crossref_primary_10_1088_1361_6560_ab9b55 crossref_primary_10_1080_0284186X_2020_1834141 crossref_primary_10_1088_1361_6560_ad8e2a crossref_primary_10_1088_2057_1976_ac4dd2 crossref_primary_10_1088_2632_2153_abb6d5 crossref_primary_10_1016_j_ejmp_2017_04_020 crossref_primary_10_1002_mp_13850 crossref_primary_10_1002_mp_14417 crossref_primary_10_1016_j_ijrobp_2023_11_061 crossref_primary_10_1002_mp_16719 crossref_primary_10_1186_s13014_024_02464_z crossref_primary_10_2340_1651_226X_2024_40549 crossref_primary_10_1016_j_ijrobp_2021_02_024 crossref_primary_10_1002_mp_14571 crossref_primary_10_1088_1361_6560_ac8716 crossref_primary_10_1016_j_radonc_2017_09_006 crossref_primary_10_1002_mp_14215 crossref_primary_10_1002_mp_17602 crossref_primary_10_1016_j_ijpt_2025_100753 crossref_primary_10_1002_mp_14329 crossref_primary_10_1088_1361_6560_ab5e97 crossref_primary_10_1002_mp_13917 crossref_primary_10_1016_j_radphyschem_2022_110283 crossref_primary_10_1002_mp_17792 crossref_primary_10_1016_j_ejmp_2022_02_018 crossref_primary_10_1016_j_ejmp_2024_104508 crossref_primary_10_1088_0031_9155_61_21_N565 crossref_primary_10_1002_mp_13231 crossref_primary_10_1259_bjr_20190304 crossref_primary_10_1016_j_ijrobp_2024_01_216 crossref_primary_10_1002_mp_13749 crossref_primary_10_1016_j_radonc_2024_110653 crossref_primary_10_1007_s00285_025_02212_1 crossref_primary_10_1016_j_radphyschem_2025_113263 crossref_primary_10_1002_acm2_70093 crossref_primary_10_1002_mp_16370 crossref_primary_10_1051_vcm_2025001 crossref_primary_10_1002_mp_16097 crossref_primary_10_1016_j_ejmp_2019_12_018 crossref_primary_10_1002_acm2_12420 crossref_primary_10_1016_j_rpor_2017_08_005 crossref_primary_10_1088_1361_6560_ab120c crossref_primary_10_1002_acm2_14328 crossref_primary_10_1002_mp_12688 crossref_primary_10_3389_fonc_2022_1031340 crossref_primary_10_1002_mp_14108 crossref_primary_10_1016_j_radonc_2020_06_027 crossref_primary_10_1088_1361_6560_abc939 crossref_primary_10_3389_fonc_2021_698537 crossref_primary_10_1016_j_ejmp_2018_10_002 crossref_primary_10_1002_mp_16084 crossref_primary_10_1016_j_apradiso_2024_111479 crossref_primary_10_1002_mp_17697 crossref_primary_10_1002_acm2_13527 crossref_primary_10_1002_mp_15678 crossref_primary_10_1002_mp_16008 crossref_primary_10_1002_mp_13888 crossref_primary_10_1016_j_radonc_2024_110434 crossref_primary_10_1140_epjp_s13360_024_05664_4 crossref_primary_10_1016_j_radonc_2021_03_027 crossref_primary_10_1016_j_phro_2025_100705 crossref_primary_10_1088_1361_6560_aca5e9 crossref_primary_10_1088_1361_6560_ac692e |
| Cites_doi | 10.1118/1.4758060 10.1088/0031‐9155/55/23/S11 10.1088/0031‐9155/59/4/R151 10.1016/B978-0-12-410414-3.00010-4 10.1088/0031‐9155/57/17/5459 10.1007/s00354‐013‐0301‐5 10.4103/0971‐6203.139004 10.1103/RevModPhys.13.240 10.1088/0031‐9155/41/1/009 10.1088/0031‐9155/60/12/4915 10.1118/1.1769631 10.1016/j.nimb.2010.07.011 10.1007/978-1-4302-5927-5 10.1088/0031‐9155/49/19/007 10.1103/PhysRevC.62.034005 10.1007/978-3-319-06486-4 10.1118/1.4871617 10.1088/0031‐9155/56/4/001 10.1016/S0168‐9002(97)00048‐X 10.1088/0031‐9155/60/15/6097 10.1118/1.3578605 10.1118/1.4823469 10.1088/0031‐9155/57/11/3371 10.1118/1.598917 10.1118/1.4835475 10.1088/0031‐9155/56/22/N03 10.1088/0031‐9155/57/11/R99 10.1088/0031‐9155/57/23/7783 10.1088/0031‐9155/47/5/305 10.1016/S0168‐9002(03)01368‐8 |
| ContentType | Journal Article |
| Copyright | American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine |
| Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2016 American Association of Physicists in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
| DOI | 10.1118/1.4943377 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 1712 |
| ExternalDocumentID | 22620839 27036568 10_1118_1_4943377 MP3377 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Walloon Region grantid: IVDGPT – fundername: Ion Beam Applications (IBA) grantid: IVDGPT – fundername: Ion Beam Applications (IBA) funderid: IVDGPT – fundername: Walloon Region funderid: IVDGPT |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE ADMLS AFWVQ AITYG ALVPJ AAMMB AAYXX ABUFD AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 AAJUZ AAPBV ABCVL ABPTK ADDAD AEUQT OTOTI |
| ID | FETCH-LOGICAL-c4217-ed813d85d077e3266d853286fd426b589fe62a3eae8861996c20fea6e7f148813 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373711000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-2405 |
| IngestDate | Fri May 19 00:36:25 EDT 2023 Thu Oct 02 11:26:25 EDT 2025 Wed Feb 19 01:56:20 EST 2025 Tue Nov 18 21:38:34 EST 2025 Sat Nov 29 01:33:02 EST 2025 Mon Feb 10 04:01:29 EST 2025 Fri Jun 21 00:14:56 EDT 2024 Sun Jul 14 11:31:37 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Xeon Phi dose calculation proton therapy high performance computing Monte Carlo simulation |
| Language | English |
| License | 0094-2405/2016/43(4)/1700/13/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4217-ed813d85d077e3266d853286fd426b589fe62a3eae8861996c20fea6e7f148813 |
| Notes | kevin.souris@uclouvain.be Electronic mail ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27036568 |
| PQID | 1777983672 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | osti_scitechconnect_22620839 wiley_primary_10_1118_1_4943377_MP3377 pubmed_primary_27036568 crossref_primary_10_1118_1_4943377 scitation_primary_10_1118_1_4943377 crossref_citationtrail_10_1118_1_4943377 proquest_miscellaneous_1777983672 |
| PublicationCentury | 2000 |
| PublicationDate | April 2016 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2016 |
| Publisher | American Association of Physicists in Medicine |
| Publisher_xml | – name: American Association of Physicists in Medicine |
| References | Jan, Santin, Strul, Staelens, Assié, Autret, Avner, Barbier, Bardiés, Bloomfield, Brasse, Breton, Bruyndonckx, Buvat, Chatziioannou, Choi, Chung, Comtat, Donnarieix, Ferrer, Glick, Groiselle, Guez, Honore, Kerhoas-Cavata, Kirov, Kohli, Koole, Krieguer, van der Laan, Lamare, Largeron, Lartizien, Lazaro, Maas, Maigne, Mayet, Melot, Merheb, Pennacchio, Perez, Pietrzyk, Rannou, Rey, Schaart, Schmidtlein, Simon, Song, Vieira, Visvikis, de Walle, Wieërs, Morel (c17) 2004; 49 Sarrut, Bardiés, Boussion, Freud, Jan, Létang, Loudos, Maigne, Marcatili, Mauxion, Papadimitroulas, Perrot, Pietrzyk, Robert, Schaart, Visvikis, Buvat (c39) 2014; 41 Schneider, Pedroni, Lomax (c22) 1996; 41 Sterpin, Janssens, Smeets, Vander Stappen, Prieels, Priegnitz, Perali, Vynckier (c16) 2015; 60 Paganetti (c32) 2002; 47 Brun, Rademakers (c41) 1997; 389 Agostinelli (c19) 2003; 506 Rossi, Greisen (c27) 1941; 13 Yepes, Mirkovic, Taddei (c6) 2010; 55 Kawrakow (c24) 2000; 27 Kohno, Hotta, Nishioka, Matsubara, Tansho, Suzuki (c7) 2011; 56 Jia, Ziegenhein, Jiang (c3) 2014; 59 Jia, Schümann, Paganetti, Jiang (c5) 2012; 57 Jan, Benoit, Becheva, Carlier, Cassol, Descourt, Frisson, Grevillot, Guigues, Maigne, Morel, Perrot, Rehfeld, Sarrut, Schaart, Stute, Pietrzyk, Visvikis, Zahra, Buvat (c18) 2011; 56 Sterpin, Sorriaux, Vynckier (c30) 2013; 40 Paganetti (c1) 2012; 57 Fippel, Soukup (c13) 2004; 31 Pratx, Xing (c4) 2011; 38 Verburg, Shih, Seco (c14) 2012; 57 Grevillot, Frisson, Zahra, Bertrand, Stichelbaut, Freud, Sarrut (c40) 2010; 268 Jabbari, Seuntjens (c2) 2014; 39 Ziegenhein, Pirner, Kamerling, Oelfke (c8) 2015; 60 Arndt, Strakovsky, Workman (c33) 2000; 62 Sterpin, Sorriaux, Souris, Vynckier, Bouchard (c42) 2014; 41 Smeets, Roellinghoff, Prieels, Stichelbaut, Benilov, Busca, Fiorini, Peloso, Basilavecchia, Frizzi, Dehaes, Dubus (c15) 2012; 57 Perl, Shin, Schümann, Faddegon, Paganetti (c38) 2012; 39 Sanchez, Fernandez, Sotomayor, Escolar, Garcia (c35) 2013; 31 2010; 55 2000; 27 2012 2011 2004; 49 2013; 40 2010; 268 1948; 18 2011; 56 1993 2012; 39 2014; 41 2012; 57 2011; 38 1997; 389 2003; 506 2002; 47 2004; 31 2015; 60 2000 1941; 13 2013; 31 2014; 59 2000; 62 1996; 41 2014 2014; 39 1989 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Reinders J. (e_1_2_7_35_1) 2014 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 ICRU (e_1_2_7_30_1) 2000 e_1_2_7_28_1 Cramer T. (e_1_2_7_38_1) 2012 Bohr N. (e_1_2_7_26_1) 1948 International Commission on Radiation Units and Measurements (e_1_2_7_27_1) 1993 Leo W. R. (e_1_2_7_24_1) 2012 Salvat F. (e_1_2_7_21_1) 2011 e_1_2_7_25_1 e_1_2_7_31_1 ICRU (e_1_2_7_29_1) 1989 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_39_1 |
| References_xml | – volume: 62 start-page: 034005 year: 2000 ident: c33 article-title: Nucleon–nucleon elastic scattering to 3 GeV publication-title: Phys. Rev. C – volume: 38 start-page: 2685 year: 2011 ident: c4 article-title: GPU computing in medical physics: A review publication-title: Med. Phys. – volume: 57 start-page: 7783 year: 2012 ident: c5 article-title: GPU-based fast Monte Carlo dose calculation for proton therapy publication-title: Phys. Med. Biol. – volume: 506 start-page: 250 year: 2003 ident: c19 article-title: —A simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 31 start-page: 2263 year: 2004 ident: c13 article-title: A Monte Carlo dose calculation algorithm for proton therapy publication-title: Med. Phys. – volume: 389 start-page: 81 year: 1997 ident: c41 article-title: Root—an object oriented data analysis framework publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 13 start-page: 240 year: 1941 ident: c27 article-title: Cosmic-ray theory publication-title: Rev. Mod. Phys. – volume: 47 start-page: 747 year: 2002 ident: c32 article-title: Nuclear interactions in proton therapy: Dose and relative biological effect distributions originating from primary and secondary particles publication-title: Phys. Med. Biol. – volume: 59 start-page: R151 year: 2014 ident: c3 article-title: GPU-based high-performance computing for radiation therapy publication-title: Phys. Med. Biol. – volume: 41 start-page: 011706 year: 2014 ident: c42 article-title: A fano cavity test for Monte Carlo proton transport algorithms publication-title: Med. Phys. – volume: 39 start-page: 156 year: 2014 ident: c2 article-title: A fast Monte Carlo code for proton transport in radiation therapy based on publication-title: J. Med. Phys. – volume: 60 start-page: 6097 year: 2015 ident: c8 article-title: Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation publication-title: Phys. Med. Biol. – volume: 56 start-page: 881 year: 2011 ident: c18 article-title: V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy publication-title: Phys. Med. Biol. – volume: 41 start-page: 111 year: 1996 ident: c22 article-title: The calibration of CT hounsfield units for radiotherapy treatment planning publication-title: Phys. Med. Biol. – volume: 41 start-page: 064301 year: 2014 ident: c39 article-title: A review of the use and potential of the gate Monte Carlo simulation code for radiation therapy and dosimetry applications publication-title: Med. Phys. – volume: 57 start-page: R99 year: 2012 ident: c1 article-title: Range uncertainties in proton therapy and the role of Monte Carlo simulations publication-title: Phys. Med. Biol. – volume: 56 start-page: N287 year: 2011 ident: c7 article-title: Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy publication-title: Phys. Med. Biol. – volume: 27 start-page: 485 year: 2000 ident: c24 article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version publication-title: Med. Phys. – volume: 57 start-page: 3371 year: 2012 ident: c15 article-title: Prompt gamma imaging with a slit camera for real-time range control in proton therapy publication-title: Phys. Med. Biol. – volume: 49 start-page: 4543 year: 2004 ident: c17 article-title: : A simulation toolkit for pet and spect publication-title: Phys. Med. Biol. – volume: 40 start-page: 111705 year: 2013 ident: c30 article-title: Extension of to protons: Simulation of nuclear reactions and benchmark with publication-title: Med. Phys. – volume: 60 start-page: 4915 year: 2015 ident: c16 article-title: Analytical computation of prompt gamma ray emission and detection for proton range verification publication-title: Phys. Med. Biol. – volume: 268 start-page: 3295 year: 2010 ident: c40 article-title: Optimization of settings for proton pencil beam scanning simulations using gate publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 57 start-page: 5459 year: 2012 ident: c14 article-title: Simulation of prompt gamma-ray emission during proton radiotherapy publication-title: Phys. Med. Biol. – volume: 31 start-page: 139 year: 2013 ident: c35 article-title: A comparative study and evaluation of parallel programming models for shared-memory parallel architectures publication-title: New Gener. Comput. – volume: 39 start-page: 6818 year: 2012 ident: c38 article-title: Topas: An innovative proton Monte Carlo platform for research and clinical applications publication-title: Med. Phys. – volume: 55 start-page: 7107 year: 2010 ident: c6 article-title: A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations publication-title: Phys. Med. Biol. – year: 2012 article-title: Early experiences porting scientific applications to the many integrated core (MIC) platform – volume: 55 start-page: 7107 issue: 23 year: 2010 end-page: 7120 article-title: A GPU implementation of a track‐repeating algorithm for proton radiotherapy dose calculations publication-title: Phys. Med. Biol. – volume: 41 start-page: 111 issue: 1 year: 1996 end-page: 124 article-title: The calibration of CT hounsfield units for radiotherapy treatment planning publication-title: Phys. Med. Biol. – year: 2000 article-title: Nuclear data for neutron and proton radiotherapy and for radiation protection – volume: 57 start-page: R99 issue: 11 year: 2012 end-page: R117 article-title: Range uncertainties in proton therapy and the role of Monte Carlo simulations publication-title: Phys. Med. Biol. – volume: 60 start-page: 6097 issue: 15 year: 2015 end-page: 6111 article-title: Fast CPU‐based Monte Carlo simulation for radiotherapy dose calculation publication-title: Phys. Med. Biol. – volume: 40 start-page: 111705 issue: 11 year: 2013 article-title: Extension of to protons: Simulation of nuclear reactions and benchmark with publication-title: Med. Phys. – volume: 56 start-page: N287 issue: 22 year: 2011 end-page: N294 article-title: Clinical implementation of a GPU‐based simplified Monte Carlo method for a treatment planning system of proton beam therapy publication-title: Phys. Med. Biol. – volume: 389 start-page: 81 issue: 1 year: 1997 end-page: 86 article-title: Root—an object oriented data analysis framework publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 49 start-page: 4543 issue: 19 year: 2004 end-page: 4561 article-title: : A simulation toolkit for pet and spect publication-title: Phys. Med. Biol. – year: 2011 article-title: ‐2011: A code system for Monte Carlo simulation of electron and photon transport – year: 2014 – start-page: 38 year: 2012 end-page: 44 publication-title: OpenMP programming on intel Xeon Phi coprocessors: An early performance comparison – volume: 13 start-page: 240 issue: 4 year: 1941 end-page: 309 article-title: Cosmic‐ray theory publication-title: Rev. Mod. Phys. – volume: 47 start-page: 747 issue: 5 year: 2002 end-page: 764 article-title: Nuclear interactions in proton therapy: Dose and relative biological effect distributions originating from primary and secondary particles publication-title: Phys. Med. Biol. – year: 2012 – volume: 38 start-page: 2685 issue: 5 year: 2011 end-page: 2697 article-title: GPU computing in medical physics: A review publication-title: Med. Phys. – volume: 18 year: 1948 – year: 1989 article-title: Tissue substitutes in radiation dosimetry and measurement – volume: 60 start-page: 4915 issue: 12 year: 2015 end-page: 4946 article-title: Analytical computation of prompt gamma ray emission and detection for proton range verification publication-title: Phys. Med. Biol. – volume: 57 start-page: 3371 issue: 11 year: 2012 end-page: 3405 article-title: Prompt gamma imaging with a slit camera for real‐time range control in proton therapy publication-title: Phys. Med. Biol. – volume: 62 start-page: 034005 issue: 3 year: 2000 article-title: Nucleon–nucleon elastic scattering to 3 GeV publication-title: Phys. Rev. C – volume: 57 start-page: 5459 issue: 17 year: 2012 end-page: 5472 article-title: Simulation of prompt gamma‐ray emission during proton radiotherapy publication-title: Phys. Med. Biol. – volume: 39 start-page: 156 issue: 3 year: 2014 end-page: 163 article-title: A fast Monte Carlo code for proton transport in radiation therapy based on publication-title: J. Med. Phys. – volume: 56 start-page: 881 issue: 4 year: 2011 end-page: 901 article-title: V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy publication-title: Phys. Med. Biol. – volume: 59 start-page: R151 issue: 4 year: 2014 end-page: R182 article-title: GPU‐based high‐performance computing for radiation therapy publication-title: Phys. Med. Biol. – volume: 57 start-page: 7783 issue: 23 year: 2012 end-page: 7797 article-title: GPU‐based fast Monte Carlo dose calculation for proton therapy publication-title: Phys. Med. Biol. – volume: 506 start-page: 250 issue: 3 year: 2003 end-page: 303 article-title: —A simulation toolkit publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 39 start-page: 6818 issue: 11 year: 2012 end-page: 6837 article-title: Topas: An innovative proton Monte Carlo platform for research and clinical applications publication-title: Med. Phys. – volume: 31 start-page: 2263 issue: 8 year: 2004 end-page: 2273 article-title: A Monte Carlo dose calculation algorithm for proton therapy publication-title: Med. Phys. – volume: 41 start-page: 064301 issue: 6 year: 2014 article-title: A review of the use and potential of the gate Monte Carlo simulation code for radiation therapy and dosimetry applications publication-title: Med. Phys. – volume: 41 start-page: 011706 issue: 1 year: 2014 article-title: A fano cavity test for Monte Carlo proton transport algorithms publication-title: Med. Phys. – year: 1993 article-title: Stopping powers and ranges for protons and alpha particles – volume: 268 start-page: 3295 issue: 20 year: 2010 end-page: 3305 article-title: Optimization of settings for proton pencil beam scanning simulations using gate publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 27 start-page: 485 issue: 3 year: 2000 end-page: 498 article-title: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version publication-title: Med. Phys. – volume: 31 start-page: 139 issue: 3 year: 2013 end-page: 161 article-title: A comparative study and evaluation of parallel programming models for shared‐memory parallel architectures publication-title: New Gener. Comput. – ident: e_1_2_7_39_1 doi: 10.1118/1.4758060 – ident: e_1_2_7_37_1 – ident: e_1_2_7_7_1 doi: 10.1088/0031‐9155/55/23/S11 – ident: e_1_2_7_4_1 doi: 10.1088/0031‐9155/59/4/R151 – ident: e_1_2_7_10_1 doi: 10.1016/B978-0-12-410414-3.00010-4 – ident: e_1_2_7_45_1 – ident: e_1_2_7_15_1 doi: 10.1088/0031‐9155/57/17/5459 – ident: e_1_2_7_36_1 doi: 10.1007/s00354‐013‐0301‐5 – ident: e_1_2_7_3_1 doi: 10.4103/0971‐6203.139004 – ident: e_1_2_7_11_1 – ident: e_1_2_7_28_1 doi: 10.1103/RevModPhys.13.240 – ident: e_1_2_7_23_1 doi: 10.1088/0031‐9155/41/1/009 – volume-title: ICRU Report 44 year: 1989 ident: e_1_2_7_29_1 – ident: e_1_2_7_22_1 – ident: e_1_2_7_17_1 doi: 10.1088/0031‐9155/60/12/4915 – ident: e_1_2_7_14_1 doi: 10.1118/1.1769631 – volume-title: Techniques for Nuclear and Particle Physics Experiments: A How‐to Approach year: 2012 ident: e_1_2_7_24_1 – ident: e_1_2_7_41_1 doi: 10.1016/j.nimb.2010.07.011 – volume-title: Workshop Proceedings year: 2011 ident: e_1_2_7_21_1 – volume-title: High Performance Parallelism Pearls: Multicore and Many‐Core Programming Approaches year: 2014 ident: e_1_2_7_35_1 – start-page: 38 year: 2012 ident: e_1_2_7_38_1 publication-title: OpenMP programming on intel Xeon Phi coprocessors: An early performance comparison – ident: e_1_2_7_44_1 – volume-title: The Penetration of Atomic Particles through Matter year: 1948 ident: e_1_2_7_26_1 – ident: e_1_2_7_13_1 doi: 10.1007/978-1-4302-5927-5 – ident: e_1_2_7_18_1 doi: 10.1088/0031‐9155/49/19/007 – ident: e_1_2_7_34_1 doi: 10.1103/PhysRevC.62.034005 – ident: e_1_2_7_12_1 doi: 10.1007/978-3-319-06486-4 – ident: e_1_2_7_40_1 doi: 10.1118/1.4871617 – ident: e_1_2_7_19_1 doi: 10.1088/0031‐9155/56/4/001 – ident: e_1_2_7_42_1 doi: 10.1016/S0168‐9002(97)00048‐X – ident: e_1_2_7_9_1 doi: 10.1088/0031‐9155/60/15/6097 – ident: e_1_2_7_5_1 doi: 10.1118/1.3578605 – ident: e_1_2_7_31_1 doi: 10.1118/1.4823469 – ident: e_1_2_7_32_1 – ident: e_1_2_7_16_1 doi: 10.1088/0031‐9155/57/11/3371 – ident: e_1_2_7_25_1 doi: 10.1118/1.598917 – volume-title: ICRU Report 63 year: 2000 ident: e_1_2_7_30_1 – ident: e_1_2_7_43_1 doi: 10.1118/1.4835475 – ident: e_1_2_7_8_1 doi: 10.1088/0031‐9155/56/22/N03 – volume-title: ICRU Report 49 year: 1993 ident: e_1_2_7_27_1 – ident: e_1_2_7_2_1 doi: 10.1088/0031‐9155/57/11/R99 – ident: e_1_2_7_6_1 doi: 10.1088/0031‐9155/57/23/7783 – ident: e_1_2_7_33_1 doi: 10.1088/0031‐9155/47/5/305 – ident: e_1_2_7_20_1 doi: 10.1016/S0168‐9002(03)01368‐8 |
| SSID | ssj0006350 |
| Score | 2.5065331 |
| Snippet | Purpose:
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods... Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders... PURPOSEAccuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods... Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods... |
| SourceID | osti proquest pubmed crossref wiley scitation |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1700 |
| SubjectTerms | 60 APPLIED LIFE SCIENCES ACCURACY ALGORITHMS ANIMAL TISSUES BENCHMARKS Collisional energy loss Computer hardware COMPUTERIZED SIMULATION Computers DEUTERONS dose calculation Dose‐volume analysis dosimetry Dosimetry/exposure assessment ENERGY LOSSES high performance computing ICRU IN VIVO microprocessor chips Monte Carlo algorithms MONTE CARLO METHOD Monte Carlo methods Monte Carlo simulation MULTIPLE SCATTERING Nuclear interactions Nuclear structure models Phantoms, Imaging PROTON BEAMS Proton Therapy Protons RADIATION PROTECTION AND DOSIMETRY radiation therapy RADIOTHERAPY Scintigraphy Time Factors Tissues Water Xeon Phi |
| Title | Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures |
| URI | http://dx.doi.org/10.1118/1.4943377 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4943377 https://www.ncbi.nlm.nih.gov/pubmed/27036568 https://www.proquest.com/docview/1777983672 https://www.osti.gov/biblio/22620839 |
| Volume | 43 |
| WOSCitedRecordID | wos000373711000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2473-4209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61Wx7iwKPlESiVeQhxCazjJHbECS2sOLDVCrHS3iw7cUqlbVJttpV660_gN_JLmImzgUoLQuIUH8Z5zeuzZzwD8NIkznEuTMgtj0O0fjZUzmShLV0yNCIaJtY3m5CHh2o-z6Zb8G59FsbXh-g33EgzWntNCm5s14WEU-I6fxNnsRBSbsNOhHIbD2Dnw5fx7HNviNGX-hMoWUxBhKQrLITT3_aTr7ijQY1qtQlq3oKb6JB8bPwqim3d0PjOf33AXbjdoU_23ovLPdhy1S7cmHTx9V243iaE5s0eLMamWTGfboi8qBvHJlTIio3MclGz5vik6_vFEPUyqvaAQ3-Y64JRMv2Rn_zj8jszVcFO0OjgmIpmstF0xn4PYDT3YTb--HX0Kew6M4R5jGuY0BWKi0IlxVBKhwAwxbGIVFoW6PBtorLSpZERzjilUspzzqNh6UzqZInLL5z7AAZVXblHwEpu0UTEwhYlBSEzRPwOYYQ0hc1TldgAXq8ZpNcsoO4ZC-2XL0pz3f3HAJ73pKe-Vscmon3isiZ-uvxbTulE-UpHVJgfwWIAz9bc16hoFD0xlavPGs2llJkSqYwCeOjFon8KyR8CYxXAi15O_vYKG6jO6-UvCn1alAG8aqXnz_fRkyldHv8r4RPalGiTjkLO92GwWp65p3AtP18dN8sD2JZzddDp0E9w5Bqj |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB6VFCg8cJTLUGA5hHgxxMcelnhBgaiIJIpQI_VttWuvoVJqV3FaiTd-Ar-RX8JM1jFUCgiJJ-_DjK-5vt2ZnQV4brhzUZSYMLJRGqL3s6FyJgtt6XjfJHGfW3_YhJxM1OFhNt2CN-u9ML4_RLfgRpax8tdk4LQg3Vo5Va5Hr9IsTRIpL8B2imrEe7D97tNwNuo8MQZTvwUlSymLwNvOQsj-umM-F496NdrVJqx5FXYwIvnk-HkYu4pDw-v_9wU34FqLP9lbrzA3YctVu3B53GbYd-HSqiQ0b27BfGiaJfMFhyiNunFsTK2s2MAs5jVrjo7bk78Y4l5G_R5w6LdzfWVUTv_ZM__49p2ZqmDH6HZwTG0z2WA6Y7-nMJrbMBu-Pxjsh-3ZDGGe4iwmdIWKkkLxoi-lQwgocJzESpQFhnzLVVY6EZvEGaeUoErnPO6XzggnS5yAIe8d6FV15e4BKyOLTiJNbFFSGjJDzO8QSEhT2FwobgN4uZaQXsuAzs-Yaz-BUTrS7X8M4GlHeuK7dWwi2iMxaxKoy7_kVFCUL3VMrfkRLgbwZC1-jaZG-RNTufq00ZGUMlOJkHEAd71edE-JqZEZFyqAZ52i_O0VNlCd1YtfFPqkKAN4sVKfP99Hj6d0uf-vhI9hZ_9gPNKjD5OPD-AKgj_hq5D2oLdcnLqHcDE_Wx41i0etKf0EsRgdsg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6VFFo48NNCMRRYKEK9GGKvvbuWuKAUC0QTRYhIva3W9ritlNpVnFbixiPwjDwJs1nHUCkgJE7Zw4wde_6-9czOALw0MWIQcOMHWRD55P0yX6FJ_KzEuG942I8zN2xCjkbq6CgZr8Hb5VkY1x-i--BmLWPhr62B43lRtlZuK9eD11EScS7lNViP4kSQWa4ffE4nh50npmDqjqAkkc0ixG1nIWJ_0zFfiUe9muxqFda8BZsUkVxy_CqMXcSh9M7_PcFduN3iT_bOKcw9WMNqCzaGbYZ9C24sSkLzZhumqWnmzBUckjTqBtnQtrJiAzOb1qw5PWsnfzHCvcz2e6ClO871ldly-mPH_OPbd2aqgp2R26G1bZvJBuMJ-z2F0dyHSfr-y-CD385m8POIdjE-FirghYqLvpRIEFDQmodKlAWF_CxWSYkiNBwNKiVspXMe9ks0AmVJGzDifQC9qq7wIbAyyMhJRDwrSpuGTAjzIwEJaYosFyrOPNhfSkgvZWDnZ0y128AoHej2PXrwoiM9d906VhHtWjFrK1DMT3JbUJTPdWhb8xNc9OD5UvyaTM3mT0yF9UWjAylloriQoQc7Ti-6u4S2kVkslAd7naL87S-soLqsZ78oNGmKB68W6vPn6-jh2P48-lfCZ7AxPkj14cfRp8dwk7CfcEVIu9Cbzy7wCVzPL-enzexpa0k_ARBtHS0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+multipurpose+Monte+Carlo+simulation+for+proton+therapy+using+multi%E2%80%90+and+many%E2%80%90core+CPU+architectures&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Souris%2C+Kevin&rft.au=Lee%2C+John+Aldo&rft.au=Sterpin%2C+Edmond&rft.date=2016-04-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=43&rft.issue=4&rft.spage=1700&rft.epage=1712&rft_id=info:doi/10.1118%2F1.4943377&rft.externalDBID=10.1118%252F1.4943377&rft.externalDocID=MP3377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |