Simultaneous numerical representation of soil microsite production and consumption of carbon dioxide, methane, and nitrous oxide using probability distribution functions

Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 26; no. 1; pp. 200 - 218
Main Authors: Sihi, Debjani, Davidson, Eric A., Savage, Kathleen E., Liang, Dong
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.01.2020
Subjects:
ISSN:1354-1013, 1365-2486, 1365-2486
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2, which then determines the PDF of microsites that produce or consume CH4 and N2O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2O flux. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment. Schematic of DAMM‐GHG model. Probability distribution functions (PDF) of soil carbon and moisture represent heterogeneity across soil microsites and, along with temperature (not shown), affect all gaseous production, consumption, and diffusion processes at each soil microsite. Heterotrophic respiration consumes O2, and the resulting PDF of O2 microsite concentrations affects CH4 and N2O processes as substrate (S) or inhibitor (I) at each microsite. Net fluxes across all microsites are summed (∑ microsites; red arrows) to simulate chamber fluxes. Simultaneous, high‐frequency chamber flux measurements of three gases constrain the model.
AbstractList Production and consumption of nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O 2 ) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O 2 consumption among microsites. Linking microsite consumption of O 2 with a diffusion model generates a broad range of microsite concentrations of O 2 , which then determines the PDF of microsites that produce or consume CH 4 and N 2 O, such that a range of microsites occurs with both positive and negative signs for net CH 4 and N 2 O flux. Results demonstrate that it is numerically feasible for microsites of N 2 O reduction and CH 4 oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Production and consumption of nitrous oxide (N2 O), methane (CH4 ), and carbon dioxide (CO2 ) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2 ) as substrate or inhibitor for each process. High-frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log-normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 , which then determines the PDF of microsites that produce or consume CH4 and N2 O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2 O flux. Results demonstrate that it is numerically feasible for microsites of N2 O reduction and CH4 oxidation to co-occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.Production and consumption of nitrous oxide (N2 O), methane (CH4 ), and carbon dioxide (CO2 ) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2 ) as substrate or inhibitor for each process. High-frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log-normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 , which then determines the PDF of microsites that produce or consume CH4 and N2 O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2 O flux. Results demonstrate that it is numerically feasible for microsites of N2 O reduction and CH4 oxidation to co-occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Production and consumption of nitrous oxide (N O), methane (CH ), and carbon dioxide (CO ) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O ) as substrate or inhibitor for each process. High-frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log-normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O consumption among microsites. Linking microsite consumption of O with a diffusion model generates a broad range of microsite concentrations of O , which then determines the PDF of microsites that produce or consume CH and N O, such that a range of microsites occurs with both positive and negative signs for net CH and N O flux. Results demonstrate that it is numerically feasible for microsites of N O reduction and CH oxidation to co-occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2, which then determines the PDF of microsites that produce or consume CH4 and N2O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2O flux. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Production and consumption of nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O₂) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O₂ consumption among microsites. Linking microsite consumption of O₂ with a diffusion model generates a broad range of microsite concentrations of O₂, which then determines the PDF of microsites that produce or consume CH₄ and N₂O, such that a range of microsites occurs with both positive and negative signs for net CH₄ and N₂O flux. Results demonstrate that it is numerically feasible for microsites of N₂O reduction and CH₄ oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non‐normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis–Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. High‐frequency chamber‐based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log‐normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2, which then determines the PDF of microsites that produce or consume CH4 and N2O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2O flux. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co‐occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment. Schematic of DAMM‐GHG model. Probability distribution functions (PDF) of soil carbon and moisture represent heterogeneity across soil microsites and, along with temperature (not shown), affect all gaseous production, consumption, and diffusion processes at each soil microsite. Heterotrophic respiration consumes O2, and the resulting PDF of O2 microsite concentrations affects CH4 and N2O processes as substrate (S) or inhibitor (I) at each microsite. Net fluxes across all microsites are summed (∑ microsites; red arrows) to simulate chamber fluxes. Simultaneous, high‐frequency chamber flux measurements of three gases constrain the model.
Author Sihi, Debjani
Davidson, Eric A.
Liang, Dong
Savage, Kathleen E.
Author_xml – sequence: 1
  givenname: Debjani
  orcidid: 0000-0002-5513-8862
  surname: Sihi
  fullname: Sihi, Debjani
  email: sihid@ornl.gov, darisihi@gmail.com
  organization: University of Maryland Center for Environmental Science
– sequence: 2
  givenname: Eric A.
  orcidid: 0000-0002-8525-8697
  surname: Davidson
  fullname: Davidson, Eric A.
  organization: University of Maryland Center for Environmental Science
– sequence: 3
  givenname: Kathleen E.
  orcidid: 0000-0002-1649-5314
  surname: Savage
  fullname: Savage, Kathleen E.
  organization: Woods Hole Research Center
– sequence: 4
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  organization: University of Maryland Center for Environmental Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31580516$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1TAQhi3Uit5Y8AIoEhuQmtZ27CRdwlEplSqxgK4jX8bFVWIffBGcR-It6yQti0qANx5pvvnHnn-O0J7zDhB6TfAZKef8TskzwnrOX6BD0rS8pqxv9-aYs5pg0hygoxjvMcYNxe1LdNAQ3mNO2kP0-6ud8piEA59j5fIEwSoxVgG2ASK4JJL1rvKmit6O1WRV8NEmqLbB66yWpHC6Ut7FPG2fYCWCLJG2_pfVcFpNkL6XHqcL62wKc7clV-Vo3d0sJ4W0o027UhVTsDIvYia7pUs8QftGjBFePd7H6PbT5bfN5_rmy9X15sNNrRglvOaNAcUY6UES1jHJNADmvTLadMoIQVSnLhrSGMaNaHXHMeFSU0a1YZJQ3Ryjd6tuedKPDDENk40KxnGd0UAZxryMkfL_o01BLzraz-jbZ-i9z8GVjxSquFJUe1aoN49UlhPoYRvsJMJuePKrAO9XYLYhBjB_EIKHeReGsgvDsguFPX_GKrvamYKw478qftoRdn-XHq42H9eKBxx2ySA
CitedBy_id crossref_primary_10_1111_gcb_14921
crossref_primary_10_1016_j_geoderma_2022_116050
crossref_primary_10_1016_j_still_2024_106361
crossref_primary_10_1111_gcb_16669
crossref_primary_10_1016_j_geoderma_2024_116854
crossref_primary_10_1016_j_agrformet_2020_107958
crossref_primary_10_1007_s11356_023_27371_w
crossref_primary_10_1016_j_geoderma_2022_116078
crossref_primary_10_1002_jeq2_20353
crossref_primary_10_1029_2021JG006684
crossref_primary_10_1016_j_apsoil_2020_103712
crossref_primary_10_5194_gmd_18_3131_2025
crossref_primary_10_1016_j_agee_2022_107944
crossref_primary_10_3390_horticulturae11060708
crossref_primary_10_1029_2023AV000990
crossref_primary_10_3390_f16060944
crossref_primary_10_1007_s11368_021_03093_9
crossref_primary_10_1111_2041_210X_14223
crossref_primary_10_1007_s00374_024_01819_8
crossref_primary_10_1111_gcb_15802
crossref_primary_10_5194_bg_18_1769_2021
crossref_primary_10_1016_j_agwat_2023_108380
crossref_primary_10_1016_j_soilbio_2020_108006
crossref_primary_10_1029_2021JG006629
crossref_primary_10_1029_2023JG007943
crossref_primary_10_1016_j_geoderma_2021_115572
crossref_primary_10_5194_bg_22_1711_2025
crossref_primary_10_1525_elementa_2020_00050
crossref_primary_10_1016_j_soilbio_2025_109974
crossref_primary_10_1029_2021MS002460
crossref_primary_10_1016_j_soilbio_2024_109354
crossref_primary_10_1111_gcb_16190
crossref_primary_10_1029_2024JD041871
crossref_primary_10_1016_j_soilbio_2025_109870
crossref_primary_10_1016_j_agwat_2025_109689
crossref_primary_10_1016_j_soilbio_2023_109296
crossref_primary_10_5194_bg_19_4811_2022
crossref_primary_10_1002_agj2_70146
crossref_primary_10_1029_2021JG006593
crossref_primary_10_1038_s43247_024_01656_5
crossref_primary_10_3389_ffgc_2022_674348
crossref_primary_10_1016_j_jhydrol_2023_129408
Cites_doi 10.1002/2017JG004041
10.1098/rstb.2013.0122
10.5194/bg-12-2089-2015
10.1038/nature04514
10.1016/j.soilbio.2017.12.002
10.1128/AEM.62.11.4100-4107.1996
10.1016/j.soilbio.2013.01.002
10.1029/93GL01537
10.1002/2017RG000559
10.1016/0038-0717(86)90076-3
10.5194/bg-4-927-2007
10.18637/jss.v063.i19
10.1007/BF02183035
10.1016/S0038-0717(96)00133-2
10.1007/s10533-016-0270-0
10.1016/j.fcr.2009.06.007
10.18637/jss.v033.i03
10.1002/2014wr015897
10.1021/es0495720
10.1016/j.soilbio.2006.09.021
10.1111/j.1467-9868.2008.00700.x
10.1016/j.agrformet.2018.01.026
10.1007/s10533-018-0472-8
10.1016/j.soilbio.2009.03.007
10.1111/j.1365-2486.2011.02546.x
10.1111/gcb.14515
10.1111/j.1574-6968.1992.tb05331.x
10.4141/cjss93-034
10.1007/s00442-010-1628-y
10.1016/j.scitotenv.2017.12.202
10.1002/2017JG003796
10.1023/a:1004757405147
10.1029/2017JG004347
10.1186/2192-1709-1-11
10.1128/AEM.55.7.1670-1676.1989
10.1111/j.1758-2229.2009.00038.x
10.1111/j.1365-2486.2005.00983.x
10.1111/j.1365-2389.1995.tb01347.x
10.1017/CBO9781107415416.008
10.1016/1352-2310(95)00059-8
10.1093/oxfordjournals.pcp.a077292
10.1007/s10533-017-0409-7
10.1016/j.soilbio.2018.09.014
10.1111/j.1747-0765.2007.00195.x
10.2136/sssaj1987.03615995005100050019x
10.1515/zpch-1889-0416
10.1016/B978-044450486-9/50018-2
10.1016/0038-0717(94)90214-3
10.1016/0038-0717(95)00018-A
10.1038/s41597-019-0119-1
10.1002/2017GB005622
10.5194/bg-11-309-2014
10.1111/j.1365-2435.2008.01414.x
10.1038/srep36517
10.2307/1939508
10.1016/S1352-2310(98)00052-1
10.1111/j.1365-2486.2005.01065.x
10.1029/2019wr024846
10.1111/j.1365-2486.2006.01280.x
10.1097/00010694-197106000-00007
10.5194/bg-11-2709-2014
10.1111/gcb.12718
10.1021/bi00353a021
10.1016/0045-6535(93)90428-8
10.1016/S0038-0717(02)00169-4
10.1111/gcb.13489
10.1093/jxb/erg121
10.1007/s100210000009
10.1021/es0710757
10.1641/0006-3568(2000)050[0667:Tacmos]2.0.Co;2
10.1016/S0043-1354(02)00104-5
10.1029/2000WR900350
10.1111/j.1365-2486.2008.01752.x
10.1046/j.1365-2486.1998.00128.x
10.1046/j.1365-2486.2003.00592.x
10.1016/j.soilbio.2012.07.025
10.1007/978-1-4615-2524-0_7
10.1002/2016JG003386
10.1029/2012WR011894
10.1016/j.still.2016.03.006
10.1007/bf00479593
10.1029/95jd02028
10.1007/bf00996995
10.5194/bg-13-3735-2016
10.1007/s00442-011-2106-x
10.2307/2389824
10.1007/s00374-002-0517-x
10.1111/j.1365-2486.2005.01056.x
10.1111/gcb.14514
10.1111/gcb.12239
10.1007/s10533-008-9277-5
10.2136/sssaj1984.03615995004800060013x
10.1021/es504513v
10.1080/1943815x.2010.497492
10.1016/S0304-3800(01)00257-5
10.2136/sssaj2009.0055
10.1128/MMBR.60.4.609-640.1996
10.1007/s10021-016-0103-y
10.2134/jeq1993.00472425002200030004x
10.1007/978-1-4615-8219-9_4
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.14855
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 218
ExternalDocumentID 31580516
10_1111_gcb_14855
GCB14855
Genre article
Journal Article
GeographicLocations Maine
GeographicLocations_xml – name: Maine
GrantInformation_xml – fundername: USDA Forest Service's Northern Research Station
– fundername: US Department of Energy's BER (Office of Science) Program
– fundername: National Institute of Food and Agriculture
  funderid: 2014‐67003‐22073
– fundername: National Institute of Food and Agriculture
  grantid: 2014-67003-22073
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c4215-53fec4418eb1474b4dee058cfdf7cfaa1c7c9313f45fa6d75015bd242df4b12d3
IEDL.DBID DRFUL
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 17:33:32 EDT 2025
Wed Oct 01 14:17:15 EDT 2025
Sun Jul 13 04:23:58 EDT 2025
Wed Feb 19 02:32:12 EST 2025
Sat Nov 29 06:02:32 EST 2025
Tue Nov 18 21:58:53 EST 2025
Wed Jan 22 16:37:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords probability distribution function
DAMM
soil microsite
CO2
DAMM-GHG
N2O
CH4
greenhouse gas
Language English
License 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4215-53fec4418eb1474b4dee058cfdf7cfaa1c7c9313f45fa6d75015bd242df4b12d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8525-8697
0000-0002-1649-5314
0000-0002-5513-8862
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.14855
PMID 31580516
PQID 2332024084
PQPubID 30327
PageCount 19
ParticipantIDs proquest_miscellaneous_2400520625
proquest_miscellaneous_2300597285
proquest_journals_2332024084
pubmed_primary_31580516
crossref_primary_10_1111_gcb_14855
crossref_citationtrail_10_1111_gcb_14855
wiley_primary_10_1111_gcb_14855_GCB14855
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1993; 26
2001; 141
1993; 22
2013; 368
1993; 20
1999; 44
2009; 113
2012; 18
2003; 54
2014; 20
2013; 59
1995; 27
2013; 57
2009; 93
2019; 25
1996; 60
2006; 440
1996; 62
2007; 4
2008; 22
1995; 29
2010; 7
2014; 11
2009; 15
1989
2010; 33
1987; 51
2019; 6
1984; 48
1889; 4U
2018; 624
1986; 18
2010; 164
2008; 54
1994
1991
2007; 13
2016; 13
2016; 6
1989; 55
2018; 118
2009; 71
1995; 46
2015; 63
1986; 25
2001; 37
1971; 111
2008; 42
2000; 222
2012; 48
1998; 4
2005; 11
2007; 39
2009; 41
2018; 127
2000; 3
2018; 123
2000; 50
1899
1994; 26
1996; 35
1996; 101
1992; 94
2013; 19
2018; 252
2017; 31
1996; 28
2015; 49
2001
1993; 73
2018; 137
2003; 9
1993; 74
2017; 122
2014; 50
2005; 39
2011; 167
2010; 74
2015; 12
2017; 20
2002; 36
2018; 140
2006; 12
2002; 34
2017; 23
2008
2016; 121
2017; 173
1994; 8
1995; 84
2012; 1
2019
2018
1977; 1
2016
2015
2014
2018; 56
1998; 32
2009; 1
1987; 28
2016; 131
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
Davidson E. A. (e_1_2_7_25_1) 1991
e_1_2_7_29_1
Ciais P. (e_1_2_7_21_1) 2014
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
Vant't Hoff J. H. (e_1_2_7_98_1) 1899
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
R Core Team (e_1_2_7_74_1) 2018
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_88_1
Lurndahl N. (e_1_2_7_60_1) 2016
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
Vieten B. (e_1_2_7_101_1) 2008
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
Firestone M. K. (e_1_2_7_42_1) 1989
References_xml – volume: 9
  start-page: 228
  issue: 2
  year: 2003
  end-page: 236
  article-title: A mechanism of abiotic immobilization of nitrate in forest ecosystems: The ferrous wheel hypothesis
  publication-title: Global Change Biology
– volume: 12
  start-page: 154
  issue: 2
  year: 2006
  end-page: 164
  article-title: On the variability of respiration in terrestrial ecosystems: Moving beyond Q10
  publication-title: Global Change Biology
– volume: 32
  start-page: 3257
  issue: 19
  year: 1998
  end-page: 3264
  article-title: A model of the processes leading to methane emission from peatland
  publication-title: Atmospheric Environment
– volume: 74
  start-page: 481
  issue: 2
  year: 2010
  end-page: 491
  article-title: Hierarchical, bimodal model for gas diffusivity in aggregated, unsaturated soils
  publication-title: Soil Science Society of America Journal
– start-page: 413
  year: 2001
  end-page: 431
– volume: 11
  start-page: 2114
  issue: 12
  year: 2005
  end-page: 2127
  article-title: Bi‐directional soil/atmosphere N O exchange over two mown grassland systems with contrasting management practices
  publication-title: Global Change Biology
– volume: 368
  start-page: 20130122
  issue: 1621
  year: 2013
  article-title: Nitrous oxide emissions from soils: How well do we understand the processes and their controls?
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 54
  start-page: 33
  issue: 1
  year: 2008
  end-page: 45
  article-title: Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification
  publication-title: Soil Science and Plant Nutrition
– volume: 13
  start-page: 1
  issue: 1
  year: 2007
  end-page: 17
  article-title: Soils, a sink for N O? A review
  publication-title: Global Change Biology
– volume: 94
  start-page: 277
  issue: 3
  year: 1992
  end-page: 281
  article-title: Denitrification by fungi
  publication-title: FEMS Microbiology Letters
– volume: 28
  start-page: 263
  issue: 2
  year: 1987
  end-page: 271
  article-title: N O Reduction by Azotobacter vinelandii with emphasis on kinetic nitrogen isotope effects
  publication-title: Plant and Cell Physiology
– volume: 440
  start-page: 165
  year: 2006
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 26
  start-page: 1331
  issue: 10
  year: 1994
  end-page: 1339
  article-title: Temperature and N fertilization effects on methane oxidation in a drained peatland soil
  publication-title: Soil Biology and Biochemistry
– volume: 60
  start-page: 609
  issue: 4
  year: 1996
  end-page: 640
  article-title: Soil microorganisms as controllers of atmospheric trace gases (H , CO, CH , OCS, N O, and NO)
  publication-title: Microbiological Reviews
– volume: 11
  start-page: 2709
  issue: 10
  year: 2014
  end-page: 2720
  article-title: High temporal frequency measurements of greenhouse gas emissions from soils
  publication-title: Biogeosciences
– volume: 4
  start-page: 217
  issue: 2
  year: 1998
  end-page: 227
  article-title: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest
  publication-title: Global Change Biology
– volume: 93
  start-page: 49
  issue: 1
  year: 2009
  end-page: 77
  article-title: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models
  publication-title: Biogeochemistry
– volume: 1
  start-page: 135
  year: 1977
  end-page: 214
– volume: 164
  start-page: 25
  issue: 1
  year: 2010
  end-page: 40
  article-title: Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints
  publication-title: Oecologia
– volume: 137
  start-page: 51
  issue: 1
  year: 2018
  end-page: 71
  article-title: The Millennial model: In search of measurable pools and transformations for modeling soil carbon in the new century
  publication-title: Biogeochemistry
– year: 2008
– volume: 55
  start-page: 1670
  issue: 7
  year: 1989
  end-page: 1676
  article-title: Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of
  publication-title: Applied and Environmental Microbiology
– volume: 44
  start-page: 301
  issue: 3
  year: 1999
  end-page: 328
  article-title: Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils
  publication-title: Biogeochemistry
– volume: 123
  start-page: 1526
  issue: 5
  year: 2018
  end-page: 1547
  article-title: On upscaling of soil microbial processes and biogeochemical fluxes from aggregates to landscapes
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 48
  start-page: 1267
  issue: 6
  year: 1984
  end-page: 1272
  article-title: Effect of water‐filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils 1
  publication-title: Soil Science Society of America Journal
– volume: 11
  start-page: 309
  issue: 2
  year: 2014
  end-page: 320
  article-title: Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude
  publication-title: Biogeosciences
– volume: 50
  start-page: 7406
  issue: 9
  year: 2014
  end-page: 7429
  article-title: Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks
  publication-title: Water Resources Research
– volume: 71
  start-page: 319
  issue: 2
  year: 2009
  end-page: 392
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 18
  start-page: 559
  issue: 6
  year: 1986
  end-page: 568
  article-title: Simultaneous estimation of several nitrogen cycle rates using N: Theory and application
  publication-title: Soil Biology and Biochemistry
– volume: 42
  start-page: 665
  issue: 3
  year: 2008
  end-page: 670
  article-title: Improved field methods to quantify methane oxidation in landfill cover materials using stable carbon isotopes
  publication-title: Environmental Science & Technology
– volume: 141
  start-page: 105
  issue: 1
  year: 2001
  end-page: 123
  article-title: Biogeochemical model of Lake Zürich: Sensitivity, identifiability and uncertainty analysis
  publication-title: Ecological Modelling
– volume: 118
  start-page: 42
  year: 2018
  end-page: 50
  article-title: Anoxic microsites in upland soils dominantly controlled by clay content
  publication-title: Soil Biology and Biochemistry
– volume: 28
  start-page: 1307
  issue: 10–11
  year: 1996
  end-page: 1317
  article-title: Kinetic characteristics of ammonium‐oxidizer communities in a California oak woodland‐annual grassland
  publication-title: Soil Biology and Biochemistry
– volume: 4U
  start-page: 226
  issue: 1
  year: 1889
  article-title: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren
  publication-title: Zeitschrift für Physikalische Chemie
– volume: 113
  start-page: 312
  issue: 3
  year: 2009
  end-page: 320
  article-title: Multivariate global sensitivity analysis for dynamic crop models
  publication-title: Field Crops Research
– volume: 48
  start-page: 1
  issue: 11
  year: 2012
  end-page: 15
  article-title: Coupled transport and reaction kinetics control the nitrate source‐sink function of hyporheic zones
  publication-title: Water Resources Research
– volume: 624
  start-page: 1467
  year: 2018
  end-page: 1477
  article-title: Improving model prediction of soil N O emissions through Bayesian calibration
  publication-title: Science of the Total Environment
– year: 2016
– volume: 74
  start-page: 130
  issue: 1
  year: 1993
  end-page: 139
  article-title: Processes regulating soil emissions of NO and N O in a seasonally dry tropical forest
  publication-title: Ecology
– year: 2019
  article-title: The tyranny of small scales – on representing soil processes in global land surface models
  publication-title: Water Resources Research
– volume: 121
  start-page: 2476
  issue: 9
  year: 2016
  end-page: 2492
  article-title: Constrained partitioning of autotrophic and heterotrophic respiration reduces model uncertainties of forest ecosystem carbon fluxes but not stocks
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 62
  start-page: 4100
  issue: 11
  year: 1996
  end-page: 4107
  article-title: Dynamics of nitrification and denitrification in root‐oxygenated sediments and adaptation of ammonia‐oxidizing bacteria to low‐oxygen or anoxic habitats
  publication-title: Applied and Environment Microbiology
– volume: 6
  start-page: 117
  issue: 1
  year: 2019
  article-title: Six years of ecosystem‐atmosphere greenhouse gas fluxes measured in a sub‐boreal forest
  publication-title: Scientific Data
– volume: 252
  start-page: 155
  year: 2018
  end-page: 166
  article-title: Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA
  publication-title: Agricultural and Forest Meteorology
– volume: 34
  start-page: 1797
  issue: 11
  year: 2002
  end-page: 1806
  article-title: Low temperature control of soil denitrifying communities: Kinetics of N O production and reduction
  publication-title: Soil Biology and Biochemistry
– volume: 18
  start-page: 371
  issue: 1
  year: 2012
  end-page: 384
  article-title: The Dual Arrhenius and Michaelis‐Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales
  publication-title: Global Change Biology
– volume: 19
  start-page: 2929
  issue: 10
  year: 2013
  end-page: 2931
  article-title: An estimate of the global sink for nitrous oxide in soils
  publication-title: Global Change Biology
– volume: 63
  start-page: 1
  issue: 19
  year: 2015
  end-page: 25
  article-title: Bayesian spatial modelling with R‐INLA
  publication-title: Journal of Statistical Software
– volume: 39
  start-page: 715
  issue: 3
  year: 2007
  end-page: 726
  article-title: Estimation of parameters in complex N tracing models by Monte Carlo sampling
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 373
  issue: 2
  year: 2019
  end-page: 385
  article-title: Soil aggregates as biogeochemical reactors and implications for soil–atmosphere exchange of greenhouse gases—A concept
  publication-title: Global Change Biology
– volume: 8
  start-page: 315
  issue: 3
  year: 1994
  end-page: 323
  article-title: On the temperature dependence of soil respiration
  publication-title: Functional Ecology
– volume: 15
  start-page: 850
  issue: 4
  year: 2009
  end-page: 860
  article-title: Drought turns a Central European Norway spruce forest soil from an N O source to a transient N O sink
  publication-title: Global Change Biology
– volume: 11
  start-page: 1283
  issue: 8
  year: 2005
  end-page: 1297
  article-title: Oxygen effects on methane production and oxidation in humid tropical forest soils
  publication-title: Global Change Biology
– volume: 39
  start-page: 304
  issue: 1
  year: 2005
  end-page: 310
  article-title: New field method: Gas push−pull test for the in‐situ quantification of microbial activities in the vadose zone
  publication-title: Environmental Science & Technology
– volume: 73
  start-page: 317
  issue: 3
  year: 1993
  end-page: 328
  article-title: Estimating total soil mass, nutrient content, and trace metals in soils under a low elevation spruce‐fir forest
  publication-title: Canadian Journal of Soil Science
– year: 1899
– volume: 222
  start-page: 203
  issue: 1
  year: 2000
  end-page: 214
  article-title: Spatial heterogeneity of soil respiration and related properties at the plant scale
  publication-title: Plant and Soil
– volume: 6
  start-page: 36517
  year: 2016
  article-title: Disentangling gross N O production and consumption in soil
  publication-title: Scientific Reports
– volume: 46
  start-page: 507
  issue: 4
  year: 1995
  end-page: 517
  article-title: Simplified models of anoxia and denitrification in aggregated and simple‐structured soils
  publication-title: European Journal of Soil Science
– volume: 7
  start-page: 79
  issue: S1
  year: 2010
  end-page: 87
  article-title: Neglecting sinks for N O at the earth's surface: Does it matter?
  publication-title: Journal of Integrative Environmental Sciences
– start-page: 7
  year: 1989
  end-page: 21
– volume: 25
  start-page: 1083
  issue: 5
  year: 1986
  end-page: 1088
  article-title: Nitrous oxide as a substrate and as a competitive inhibitor of nitrogenase
  publication-title: Biochemistry
– volume: 140
  start-page: 53
  issue: 1
  year: 2018
  end-page: 63
  article-title: Partitioning soil respiration: Quantifying the artifacts of the trenching method
  publication-title: Biogeochemistry
– volume: 173
  start-page: 15
  year: 2017
  end-page: 23
  article-title: Visual analysis and X‐ray computed tomography for assessing the spatial variability of soil structure in a cultivated Oxisol
  publication-title: Soil and Tillage Research
– start-page: 465
  year: 2014
  end-page: 570
– start-page: 103
  year: 1994
  end-page: 117
– start-page: 219
  year: 1991
  end-page: 235
– volume: 57
  start-page: 635
  year: 2013
  end-page: 643
  article-title: Using N tracers to estimate N O and N emissions from nitrification and denitrification in coastal plain wetlands under contrasting land‐uses
  publication-title: Soil Biology and Biochemistry
– year: 2018
– volume: 23
  start-page: 2090
  issue: 5
  year: 2017
  end-page: 2103
  article-title: The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale
  publication-title: Global Change Biology
– volume: 3
  start-page: 41
  issue: 1
  year: 2000
  end-page: 56
  article-title: Land‐use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia
  publication-title: Ecosystems
– volume: 56
  start-page: 207
  issue: 1
  year: 2018
  end-page: 250
  article-title: Methane feedbacks to the global climate system in a warmer world
  publication-title: Reviews of Geophysics
– volume: 25
  start-page: 640
  issue: 2
  year: 2019
  end-page: 659
  article-title: Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty
  publication-title: Global Change Biology
– volume: 50
  start-page: 667
  issue: 8
  year: 2000
  end-page: 680
  article-title: Testing a conceptual model of soil emissions of nitrous and nitric oxides: Using two functions based on soil nitrogen availability and soil water content, the hole‐in‐the‐pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils
  publication-title: BioScience
– volume: 49
  start-page: 2132
  issue: 4
  year: 2015
  end-page: 2139
  article-title: Modeling Nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics
  publication-title: Environmental Science & Technology
– volume: 20
  start-page: 3610
  issue: 12
  year: 2014
  end-page: 3620
  article-title: A big‐microsite framework for soil carbon modeling
  publication-title: Global Change Biology
– volume: 123
  start-page: 193
  issue: 1
  year: 2018
  end-page: 206
  article-title: Lorenz curve and gini coefficient reveal hot spots and hot moments for nitrous oxide emissions
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 29
  start-page: 1627
  issue: 14
  year: 1995
  end-page: 1635
  article-title: Studies on NO and N O fluxes from a wheat field
  publication-title: Atmospheric Environment
– start-page: 151
  year: 2014
– volume: 27
  start-page: 893
  issue: 7
  year: 1995
  end-page: 903
  article-title: CH production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO From acid rain
  publication-title: Soil Biology and Biochemistry
– volume: 26
  start-page: 321
  issue: 1–4
  year: 1993
  end-page: 328
  article-title: Temperature regulation of methanogenesis in wetlands
  publication-title: Chemosphere
– volume: 12
  start-page: 2089
  year: 2015
  end-page: 2099
  article-title: Using O to study the relationships between soil CO efflux and soil respiration
  publication-title: Biogeosciences
– volume: 22
  start-page: 1000
  issue: 6
  year: 2008
  end-page: 1007
  article-title: A conceptual and practical approach to data quality and analysis procedures for high‐frequency soil respiration measurements
  publication-title: Functional Ecology
– volume: 35
  start-page: 433
  issue: 3
  year: 1996
  end-page: 445
  article-title: Modeling the temperature response of nitrification
  publication-title: Biogeochemistry
– volume: 36
  start-page: 4113
  issue: 16
  year: 2002
  end-page: 4127
  article-title: Practical identifiability of ASM2d parameters—Systematic selection and tuning of parameter subsets
  publication-title: Water Research
– volume: 13
  start-page: 3735
  issue: 12
  year: 2016
  end-page: 3755
  article-title: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems
  publication-title: Biogeosciences
– volume: 101
  start-page: 1361
  issue: D1
  year: 1996
  end-page: 1377
  article-title: Process modeling of controls on nitrogen trace gas emissions from soils worldwide
  publication-title: Journal of Geophysical Research: Atmospheres
– year: 2015
– volume: 37
  start-page: 1015
  issue: 4
  year: 2001
  end-page: 1030
  article-title: Practical identifiability analysis of large environmental simulation models
  publication-title: Water Resources Research
– volume: 167
  start-page: 587
  issue: 3
  year: 2011
  article-title: The model–data fusion pitfall: Assuming certainty in an uncertain world
  publication-title: Oecologia
– volume: 20
  start-page: 1379
  issue: 13
  year: 1993
  end-page: 1382
  article-title: Seasonal variation of N O fluxes at a tropical savannah site: Soil consumption of N O during the dry season
  publication-title: Geophysical Research Letters
– volume: 33
  start-page: 1
  issue: 3
  year: 2010
  end-page: 28
  article-title: Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME
  publication-title: Journal of Statistical Software
– volume: 127
  start-page: 239
  year: 2018
  end-page: 251
  article-title: Impacts of moisture, soil respiration, and agricultural practices on methanogenesis in upland soils as measured with stable isotope pool dilution
  publication-title: Soil Biology and Biochemistry
– volume: 1
  start-page: 285
  issue: 5
  year: 2009
  end-page: 292
  article-title: The global methane cycle: Recent advances in understanding the microbial processes involved
  publication-title: Environmental Microbiology Reports
– volume: 20
  start-page: 665
  issue: 4
  year: 2017
  end-page: 682
  article-title: Control points in ecosystems: Moving beyond the hot spot hot moment concept
  publication-title: Ecosystems
– volume: 28
  start-page: 263
  issue: 2
  year: 1987
  end-page: 271
  article-title: N O reduction by with emphasis on kinetic nitrogen isotope effects
  publication-title: Plant and Cell Physiology
– volume: 41
  start-page: 2370
  issue: 12
  year: 2009
  end-page: 2386
  article-title: Using the ecosys mathematical model to simulate temporal variability of nitrous oxide emissions from a fertilized agricultural soil
  publication-title: Soil Biology and Biochemistry
– volume: 1
  start-page: 11
  issue: 1
  year: 2012
  article-title: Terrestrial denitrification: Challenges and opportunities
  publication-title: Ecological Processes
– volume: 111
  start-page: 372
  issue: 6
  year: 1971
  end-page: 378
  article-title: Diffusion in aggregated porous media
  publication-title: Soil Science
– volume: 59
  start-page: 72
  year: 2013
  end-page: 85
  article-title: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models
  publication-title: Soil Biology and Biochemistry
– volume: 22
  start-page: 409
  issue: 3
  year: 1993
  end-page: 417
  article-title: Spatial variability of microbial processes in soil—A review
  publication-title: Journal of Environmental Quality
– volume: 4
  start-page: 927
  issue: 5
  year: 2007
  end-page: 939
  article-title: Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest
  publication-title: Biogeosciences
– volume: 36
  start-page: 102
  issue: 2
  year: 2002
  end-page: 108
  article-title: Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO , CH , N O, and NO in eastern Amazonia
  publication-title: Biology and Fertility of Soils
– volume: 54
  start-page: 891
  issue: 384
  year: 2003
  end-page: 899
  article-title: A comparison of manual and automated systems for soil CO flux measurements: Trade‐offs between spatial and temporal resolution
  publication-title: Journal of Experimental Botany
– volume: 51
  start-page: 1194
  issue: 5
  year: 1987
  end-page: 1199
  article-title: Soil microsites as a source of denitrification variability
  publication-title: Soil Science Society of America Journal
– volume: 131
  start-page: 121
  issue: 1
  year: 2016
  end-page: 134
  article-title: Pore‐scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils
  publication-title: Biogeochemistry
– volume: 122
  start-page: 2418
  issue: 9
  year: 2017
  end-page: 2434
  article-title: A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 84
  start-page: 129
  issue: 1
  year: 1995
  end-page: 145
  article-title: Soil‐solution chemistry in a low‐elevation spruce‐fir ecosystem, Howland, Maine
  publication-title: Water, Air, and Soil Pollution
– volume: 31
  start-page: 1435
  issue: 9
  year: 2017
  end-page: 1453
  article-title: Evaluating the classical versus an emerging conceptual model of peatland methane dynamics
  publication-title: Global Biogeochemical Cycles
– ident: e_1_2_7_80_1
  doi: 10.1002/2017JG004041
– ident: e_1_2_7_14_1
  doi: 10.1098/rstb.2013.0122
– ident: e_1_2_7_4_1
  doi: 10.5194/bg-12-2089-2015
– ident: e_1_2_7_28_1
  doi: 10.1038/nature04514
– ident: e_1_2_7_53_1
  doi: 10.1016/j.soilbio.2017.12.002
– ident: e_1_2_7_10_1
  doi: 10.1128/AEM.62.11.4100-4107.1996
– start-page: 465
  volume-title: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_7_21_1
– ident: e_1_2_7_64_1
  doi: 10.1016/j.soilbio.2013.01.002
– ident: e_1_2_7_36_1
  doi: 10.1029/93GL01537
– ident: e_1_2_7_34_1
  doi: 10.1002/2017RG000559
– ident: e_1_2_7_67_1
  doi: 10.1016/0038-0717(86)90076-3
– ident: e_1_2_7_39_1
  doi: 10.5194/bg-4-927-2007
– ident: e_1_2_7_57_1
  doi: 10.18637/jss.v063.i19
– ident: e_1_2_7_91_1
  doi: 10.1007/BF02183035
– ident: e_1_2_7_92_1
  doi: 10.1016/S0038-0717(96)00133-2
– ident: e_1_2_7_108_1
  doi: 10.1007/s10533-016-0270-0
– ident: e_1_2_7_56_1
  doi: 10.1016/j.fcr.2009.06.007
– ident: e_1_2_7_90_1
  doi: 10.18637/jss.v033.i03
– ident: e_1_2_7_37_1
  doi: 10.1002/2014wr015897
– ident: e_1_2_7_97_1
  doi: 10.1021/es0495720
– ident: e_1_2_7_65_1
  doi: 10.1016/j.soilbio.2006.09.021
– ident: e_1_2_7_79_1
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: e_1_2_7_87_1
  doi: 10.1016/j.agrformet.2018.01.026
– ident: e_1_2_7_82_1
  doi: 10.1007/s10533-018-0472-8
– ident: e_1_2_7_61_1
  doi: 10.1016/j.soilbio.2009.03.007
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2486.2011.02546.x
– ident: e_1_2_7_102_1
  doi: 10.1111/gcb.14515
– ident: e_1_2_7_86_1
  doi: 10.1111/j.1574-6968.1992.tb05331.x
– ident: e_1_2_7_41_1
  doi: 10.4141/cjss93-034
– ident: e_1_2_7_78_1
  doi: 10.1007/s00442-010-1628-y
– ident: e_1_2_7_66_1
  doi: 10.1016/j.scitotenv.2017.12.202
– ident: e_1_2_7_2_1
  doi: 10.1002/2017JG003796
– ident: e_1_2_7_93_1
  doi: 10.1023/a:1004757405147
– ident: e_1_2_7_38_1
  doi: 10.1029/2017JG004347
– ident: e_1_2_7_45_1
  doi: 10.1186/2192-1709-1-11
– ident: e_1_2_7_55_1
  doi: 10.1128/AEM.55.7.1670-1676.1989
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1758-2229.2009.00038.x
– volume-title: R: A language and environment for statistical computing
  year: 2018
  ident: e_1_2_7_74_1
– volume-title: Lectures on theoretical and physical chemistry. Part 1. Chemical dynamics
  year: 1899
  ident: e_1_2_7_98_1
– ident: e_1_2_7_95_1
  doi: 10.1111/j.1365-2486.2005.00983.x
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1365-2389.1995.tb01347.x
– ident: e_1_2_7_89_1
– ident: e_1_2_7_50_1
  doi: 10.1017/CBO9781107415416.008
– volume-title: N2O reduction in soils
  year: 2008
  ident: e_1_2_7_101_1
– ident: e_1_2_7_107_1
  doi: 10.1016/1352-2310(95)00059-8
– ident: e_1_2_7_110_1
  doi: 10.1093/oxfordjournals.pcp.a077292
– ident: e_1_2_7_3_1
  doi: 10.1007/s10533-017-0409-7
– ident: e_1_2_7_11_1
  doi: 10.1016/j.soilbio.2018.09.014
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1747-0765.2007.00195.x
– ident: e_1_2_7_71_1
  doi: 10.2136/sssaj1987.03615995005100050019x
– ident: e_1_2_7_7_1
  doi: 10.1515/zpch-1889-0416
– ident: e_1_2_7_35_1
  doi: 10.1016/B978-044450486-9/50018-2
– ident: e_1_2_7_9_1
– volume-title: Temporal and spatial trends in the abundance of functional denitrification genes and observed soil moisture and potential denitrification rates
  year: 2016
  ident: e_1_2_7_60_1
– ident: e_1_2_7_24_1
  doi: 10.1016/0038-0717(94)90214-3
– ident: e_1_2_7_68_1
  doi: 10.1016/0038-0717(95)00018-A
– ident: e_1_2_7_77_1
  doi: 10.1038/s41597-019-0119-1
– ident: e_1_2_7_106_1
  doi: 10.1093/oxfordjournals.pcp.a077292
– ident: e_1_2_7_109_1
  doi: 10.1002/2017GB005622
– ident: e_1_2_7_15_1
  doi: 10.5194/bg-11-309-2014
– ident: e_1_2_7_83_1
  doi: 10.1111/j.1365-2435.2008.01414.x
– ident: e_1_2_7_103_1
  doi: 10.1038/srep36517
– ident: e_1_2_7_31_1
  doi: 10.2307/1939508
– ident: e_1_2_7_5_1
  doi: 10.1016/S1352-2310(98)00052-1
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-2486.2005.01065.x
– ident: e_1_2_7_70_1
  doi: 10.1029/2019wr024846
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2486.2006.01280.x
– ident: e_1_2_7_62_1
  doi: 10.1097/00010694-197106000-00007
– ident: e_1_2_7_84_1
  doi: 10.5194/bg-11-2709-2014
– ident: e_1_2_7_33_1
  doi: 10.1111/gcb.12718
– ident: e_1_2_7_51_1
  doi: 10.1021/bi00353a021
– ident: e_1_2_7_104_1
  doi: 10.1016/0045-6535(93)90428-8
– ident: e_1_2_7_48_1
  doi: 10.1016/S0038-0717(02)00169-4
– ident: e_1_2_7_49_1
  doi: 10.1111/gcb.13489
– ident: e_1_2_7_81_1
  doi: 10.1093/jxb/erg121
– ident: e_1_2_7_99_1
  doi: 10.1007/s100210000009
– ident: e_1_2_7_19_1
  doi: 10.1021/es0710757
– ident: e_1_2_7_30_1
  doi: 10.1641/0006-3568(2000)050[0667:Tacmos]2.0.Co;2
– ident: e_1_2_7_12_1
  doi: 10.1016/S0043-1354(02)00104-5
– ident: e_1_2_7_13_1
  doi: 10.1029/2000WR900350
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1365-2486.2008.01752.x
– ident: e_1_2_7_26_1
  doi: 10.1046/j.1365-2486.1998.00128.x
– ident: e_1_2_7_27_1
  doi: 10.1046/j.1365-2486.2003.00592.x
– ident: e_1_2_7_63_1
  doi: 10.1016/j.soilbio.2012.07.025
– start-page: 7
  volume-title: Exchange of trace gases between terrestrial ecosystems and the atmosphere
  year: 1989
  ident: e_1_2_7_42_1
– ident: e_1_2_7_54_1
  doi: 10.1007/978-1-4615-2524-0_7
– ident: e_1_2_7_16_1
  doi: 10.1002/2016JG003386
– ident: e_1_2_7_111_1
  doi: 10.1029/2012WR011894
– ident: e_1_2_7_17_1
  doi: 10.1016/j.still.2016.03.006
– ident: e_1_2_7_76_1
– ident: e_1_2_7_40_1
  doi: 10.1007/bf00479593
– ident: e_1_2_7_73_1
  doi: 10.1029/95jd02028
– ident: e_1_2_7_88_1
  doi: 10.1007/bf00996995
– ident: e_1_2_7_105_1
  doi: 10.5194/bg-13-3735-2016
– ident: e_1_2_7_52_1
  doi: 10.1007/s00442-011-2106-x
– ident: e_1_2_7_59_1
  doi: 10.2307/2389824
– ident: e_1_2_7_18_1
  doi: 10.1007/s00374-002-0517-x
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2486.2005.01056.x
– ident: e_1_2_7_96_1
  doi: 10.1111/gcb.14514
– ident: e_1_2_7_85_1
  doi: 10.1111/gcb.12239
– ident: e_1_2_7_46_1
  doi: 10.1007/s10533-008-9277-5
– ident: e_1_2_7_58_1
  doi: 10.2136/sssaj1984.03615995004800060013x
– start-page: 219
  volume-title: Microbial production and consumption of greenhouse gases: Methane, nitrous oxide, and halomethanes
  year: 1991
  ident: e_1_2_7_25_1
– ident: e_1_2_7_112_1
  doi: 10.1021/es504513v
– ident: e_1_2_7_94_1
  doi: 10.1080/1943815x.2010.497492
– ident: e_1_2_7_69_1
  doi: 10.1016/S0304-3800(01)00257-5
– ident: e_1_2_7_75_1
  doi: 10.2136/sssaj2009.0055
– ident: e_1_2_7_22_1
  doi: 10.1128/MMBR.60.4.609-640.1996
– ident: e_1_2_7_8_1
  doi: 10.1007/s10021-016-0103-y
– ident: e_1_2_7_72_1
  doi: 10.2134/jeq1993.00472425002200030004x
– ident: e_1_2_7_100_1
  doi: 10.1007/978-1-4615-8219-9_4
SSID ssj0003206
Score 2.5201187
Snippet Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and...
Production and consumption of nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) are affected by complex interactions of temperature, moisture,...
Production and consumption of nitrous oxide (N O), methane (CH ), and carbon dioxide (CO ) are affected by complex interactions of temperature, moisture, and...
Production and consumption of nitrous oxide (N2 O), methane (CH4 ), and carbon dioxide (CO2 ) are affected by complex interactions of temperature, moisture,...
Production and consumption of nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) are affected by complex interactions of temperature, moisture, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 200
SubjectTerms Bivariate analysis
Carbon
Carbon Dioxide
CH4
CO2
Computer simulation
Constraint modelling
Consumption
DAMM
DAMM‐GHG
Diffusion
Distribution
Distribution functions
enzyme kinetics
Fluxes
forests
Gases
Greenhouse effect
greenhouse gas
Greenhouse gases
Heterogeneity
Maine
Mathematical models
Methane
Moisture content
N2O
Nitrous Oxide
Oxidation
oxygen
Oxygen consumption
Patchiness
Probability
Probability distribution
probability distribution function
Probability distribution functions
Probability theory
Representations
Simulation
Soil
soil microsite
Soils
Spatial heterogeneity
spatial variation
Substrate inhibition
temperature
Uptake
Water content
Title Simultaneous numerical representation of soil microsite production and consumption of carbon dioxide, methane, and nitrous oxide using probability distribution functions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14855
https://www.ncbi.nlm.nih.gov/pubmed/31580516
https://www.proquest.com/docview/2332024084
https://www.proquest.com/docview/2300597285
https://www.proquest.com/docview/2400520625
Volume 26
WOSCitedRecordID wos000493883500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD60WwVfvKxWo7WMIuJDA7nMbGbxSdeuPmgRtbBvIXMrgTVZkq7Yn-S_9JzJRYsXBN8S5iSZcG7fzJwLwJPYFQU6jgg5kGhcoEQunFsZhWLOZ8KSVzfKN5vITk7kajV_vwPPh1yYrj7EuOFGmuHtNSl4odqflPxMK1RzKcQu7CUot3wCe68-LE_fjoY4TXxrzTgVHK1NnPaFhSiQZ3z4sjv6BWNehqze5yxv_Ndsb8L1HmqyF51s3IIdW03hatd88mIK-8c_ctyQrFfydgrBOwTSdePJ2FO2WJeIav3dbfj2saQQxKKy9bZl1bY771kzXxtzyGOqWO1YW5dr9pnC_eh8mm26yrI0WFSGaZ_5uRmIddEovDJl_bU09ohRX2v8xpGnRaPT0Nf8GKNA_TN6neoqjF_gU-3YtouRn_aqdAdOl8efFm_CvttDqDnijlCkzmoEZxK9B8-44sbaSEjtjMs0SZTO9DyNU8eFK2YGkU4slEGEYRxXcWLSfZhUdWXvATNa6kQ5LR3CQVGYOfUAUNrENi6i2CQBPBuYnuu-FDp15Fjnw5II2ZV7dgXweCTddPU_fkd0MEhO3puANk9Sak3PI8kDeDQOo_LSiUzHJqSh5N8skeIvNNzHKuE6NYC7nVSOM0ljIdGqzvCHvPD9eYr568VLf3H_30kfwLWEdhf8htMBTM6brX0IV_SX87JtDmE3W8nDXue-A0dwM1A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UraIvXlar0aqjiPjQQCaZ2STgi65dK24X0Rb6FpK5lMCaLJuu2J_kv_ScyUWLFwTfEuYkmXBu38ycC8AzbvMcHUeAHAgVLlAC66cmCXyZiok05NV14ZpNxItFcnKSftiCl30uTFsfYthwI81w9poUnDakf9LyU1WgnidSXoJtgWIkR7D95uPseD5Y4ih0vTV5JAWaGx51lYUokmd4-KI_-gVkXsSszunMbvzfdG_C9Q5ssletdNyCLVON4UrbfvJ8DDv7P7LckKxT82YM3iFC6XrtyNhzNl2WiGvd3W349qmkIMS8MvWmYdWmPfFZMlcds89kqlhtWVOXS_aZAv7ohJqt2tqyNJhXmimX-7nqiVW-LvBKl_XXUps9Rp2t8Rt7jhbNzpq-5sYYheqf0uuKtsb4OT7VDI27GHlqp0x34Hi2fzQ98Lt-D74SiDx8GVmjEJ4l6D9ELAqhjQlkoqy2sSKZUrFKIx5ZIW0-0Yh1uCw0YgxtRcFDHe3AqKorcw-YVokKC6sSi4BQ5jqlLgCF0tzwPOA69OBFz_VMdcXQqSfHMusXRciuzLHLg6cD6aqtAPI7ot1edLLOCDRZGFFzehEkwoMnwzCqL53JtGxCGkr_jcNE_oVGuGglXKl6cLcVy2EmEZcJ2tUJ_pCTvj9PMXs7fe0u7v876WO4enB0OM_m7xbvH8C1kPYa3PbTLozO1hvzEC6rL2dls37Uqd53T042WA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVsUXL6vVaNVRRPrQQCaZ2STgi267KtalqIW-hWQuJbAmS9IV-5P8l54zuWjxguBbwpwkE87tm5lzAXjGbZ6j4wiQA6HCBUpg_dQkgS9TMZWGvLouXLOJeLFITk7Sow14MeTCdPUhxg030gxnr0nBzUrbn7T8VBWo54mUl2BLyHSKarm1_2F-fDha4ih0vTV5JAWaGx71lYUokmd8-KI_-gVkXsSszunMb_zfdG_C9R5sspeddNyCDVNN4ErXfvJ8AtsHP7LckKxX83YC3nuE0nXjyNhzNluWiGvd3W349rGkIMS8MvW6ZdW6O_FZMlcdc8hkqlhtWVuXS_aZAv7ohJqtutqyNJhXmimX-7kaiFXeFHily_prqc0eo87W-I09R4tmp6GvuTFGofqn9LqiqzF-jk-1Y-MuRp7aKdMdOJ4ffJq98ft-D74SiDx8GVmjEJ4l6D9ELAqhjQlkoqy2sSKZUrFKIx5ZIW0-1Yh1uCw0YgxtRcFDHW3DZlVX5h4wrRIVFlYlFgGhzHVKXQAKpbnhecB16MHuwPVM9cXQqSfHMhsWRciuzLHLg6cj6aqrAPI7op1BdLLeCLRZGFFzehEkwoMn4zCqL53JdGxCGkr_jcNE_oVGuGglXKl6cLcTy3EmEZcJ2tUp_pCTvj9PMXs9e-Uu7v876WO4erQ_zw7fLt49gGshbTW43acd2Dxr1uYhXFZfzsq2edRr3neMujXT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+numerical+representation+of+soil+microsite+production+and+consumption+of+carbon+dioxide%2C+methane%2C+and+nitrous+oxide+using+probability+distribution+functions&rft.jtitle=Global+change+biology&rft.au=Sihi%2C+Debjani&rft.au=Davidson%2C+Eric+A&rft.au=Savage%2C+Kathleen+E&rft.au=Liang%2C+Dong&rft.date=2020-01-01&rft.eissn=1365-2486&rft.volume=26&rft.issue=1&rft.spage=200&rft_id=info:doi/10.1111%2Fgcb.14855&rft_id=info%3Apmid%2F31580516&rft.externalDocID=31580516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon