NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state durin...
Uložené v:
| Vydané v: | Stem cells (Dayton, Ohio) Ročník 31; číslo 7; s. 1278 - 1286 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2013
Oxford University Press |
| Predmet: | |
| ISSN: | 1066-5099, 1549-4918, 1549-4918 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell‐specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c‐Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug‐induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. STEM Cells2013;31:1278–1286 |
|---|---|
| AbstractList | Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell‐specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c‐Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug‐induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. STEM Cells2013;31:1278–1286 Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. STEM Cells2013;31:1278-1286 [PUBLICATION ABSTRACT] Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming.Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. |
| Author | Luo, Min Tao, Wei Ling, Te Zong, Le Zhao, Yun Shen, Meili Xie, Wenbing Lu, Zhigang Zhou, Yonggang Lyu, Guoliang Sun, He Grummt, Ingrid Zhu, Qiaoyun Gu, Jun Ye, Tao |
| Author_xml | – sequence: 1 givenname: Min surname: Luo fullname: Luo, Min – sequence: 2 givenname: Te surname: Ling fullname: Ling, Te – sequence: 3 givenname: Wenbing surname: Xie fullname: Xie, Wenbing – sequence: 4 givenname: He surname: Sun fullname: Sun, He – sequence: 5 givenname: Yonggang surname: Zhou fullname: Zhou, Yonggang – sequence: 6 givenname: Qiaoyun surname: Zhu fullname: Zhu, Qiaoyun – sequence: 7 givenname: Meili surname: Shen fullname: Shen, Meili – sequence: 8 givenname: Le surname: Zong fullname: Zong, Le – sequence: 9 givenname: Guoliang surname: Lyu fullname: Lyu, Guoliang – sequence: 10 givenname: Yun surname: Zhao fullname: Zhao, Yun – sequence: 11 givenname: Tao surname: Ye fullname: Ye, Tao – sequence: 12 givenname: Jun surname: Gu fullname: Gu, Jun – sequence: 13 givenname: Wei surname: Tao fullname: Tao, Wei email: weitao@pku.edu.cn – sequence: 14 givenname: Zhigang surname: Lu fullname: Lu, Zhigang email: luzg@pkusz.edu.cn – sequence: 15 givenname: Ingrid surname: Grummt fullname: Grummt, Ingrid email: i.grummt@dkfz.de |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23533168$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1PwyAcxonROKce_AKGxIseqlCghaPO-ZLMl7h5JoxSg7ZlQhuzby9182I0niDwex4e_s8QbDauMQAcYHSKEUrPQmvqU0xyugF2MKMioQLzzbhHWZYwJMQADEN4RQhTxvk2GKSEEYIzvgMm993TJbyonH4L8MksvHvxqq5t8wJdCe9cFwyculq1VsORqaoAbdM6-Fh13i5ca5oWTuPrq7s9sFWqKpj99boLnq_Gs9FNMnm4vh2dTxJNU0yTkoksL2NwXgiSiRznJhWUcGIUp2KOcjTHRKlS6QKJeMw0JoVKmSiM1oxrsguOV74x7ntnQitrG3RMoBoTE0tMCY3ueYb-R4kQiDGOSUSPfqCvrvNN_EhPcdwnxZE6XFPdvDaFXHhbK7-U3yONwNkK0N6F4E0ptW3j_FzTemUriZHsS5N9abIvLSpOfii-TX9j1-4ftjLLv0E5nY3vvhSfQFWj_Q |
| CitedBy_id | crossref_primary_10_1038_nature12749 crossref_primary_10_3389_fgene_2014_00428 crossref_primary_10_1016_j_ajpath_2013_09_026 crossref_primary_10_1111_jcmm_12805 crossref_primary_10_3389_fcell_2017_00049 crossref_primary_10_15252_embj_201490649 crossref_primary_10_1016_j_gde_2013_12_007 crossref_primary_10_1242_dev_182170 crossref_primary_10_1016_j_bbrc_2017_06_058 crossref_primary_10_1016_j_tig_2015_11_001 crossref_primary_10_1016_j_scr_2014_03_007 crossref_primary_10_1016_j_jmb_2019_12_018 crossref_primary_10_1038_nature12587 crossref_primary_10_7554_eLife_31023 crossref_primary_10_1134_S000629791413001X crossref_primary_10_1016_j_tibs_2022_06_002 crossref_primary_10_1089_cell_2019_0008 crossref_primary_10_1371_journal_pone_0081622 crossref_primary_10_3897_rrpharmacology_5_34710 crossref_primary_10_1186_s13619_015_0024_9 crossref_primary_10_1016_j_stem_2013_11_001 crossref_primary_10_1038_s41467_023_38543_0 crossref_primary_10_3390_cells10113252 crossref_primary_10_1016_j_tcb_2015_12_003 crossref_primary_10_1038_nrm_2016_6 crossref_primary_10_1111_imr_12209 crossref_primary_10_1038_s41540_023_00326_0 crossref_primary_10_1242_dev_122424 crossref_primary_10_1073_pnas_1722219115 crossref_primary_10_1371_journal_pone_0094735 crossref_primary_10_3389_fgene_2016_00115 crossref_primary_10_1016_j_gene_2016_02_019 crossref_primary_10_1093_nar_gkae025 crossref_primary_10_1016_j_jmb_2016_04_025 crossref_primary_10_1089_cell_2021_0128 crossref_primary_10_1111_asj_13272 crossref_primary_10_3389_fcell_2014_00032 crossref_primary_10_1186_s13287_016_0369_1 crossref_primary_10_3390_cells11030529 crossref_primary_10_1016_j_stem_2014_05_006 crossref_primary_10_1016_j_gde_2014_08_003 crossref_primary_10_1074_jbc_M114_558940 crossref_primary_10_1038_srep07519 crossref_primary_10_1101_gad_348897_121 crossref_primary_10_1007_s40778_016_0050_8 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_1038_nature12561 crossref_primary_10_15252_embr_202051644 crossref_primary_10_1016_j_cell_2014_01_020 crossref_primary_10_1002_rmv_1831 crossref_primary_10_1016_j_gde_2014_09_006 crossref_primary_10_1089_scd_2014_0167 crossref_primary_10_1016_j_reth_2024_12_014 crossref_primary_10_3390_cells10112888 crossref_primary_10_1016_j_stem_2018_07_004 crossref_primary_10_1073_pnas_2104841118 crossref_primary_10_1038_s41418_021_00902_z crossref_primary_10_1161_CIRCULATIONAHA_119_042371 crossref_primary_10_1074_jbc_M115_707018 crossref_primary_10_1002_wdev_206 crossref_primary_10_1016_j_bbagrm_2015_03_006 crossref_primary_10_3389_fcell_2023_1097780 crossref_primary_10_1016_j_stem_2013_09_012 crossref_primary_10_1038_srep22656 crossref_primary_10_1016_j_stem_2014_04_019 crossref_primary_10_1038_srep10114 crossref_primary_10_1007_s12015_019_09931_1 crossref_primary_10_1016_j_trsl_2014_05_003 |
| Cites_doi | 10.1016/j.stem.2008.10.004 10.1016/S0092-8674(03)00393-3 10.1016/j.cell.2009.07.039 10.1016/j.cell.2006.07.024 10.1016/S0092-8674(00)81758-4 10.1038/nature10953 10.1074/jbc.M110.139436 10.1016/j.stem.2011.03.001 10.1038/ncb1680 10.1016/j.cell.2010.04.037 10.1242/dev.02802 10.1016/j.stem.2009.09.012 10.1016/S0092-8674(03)00392-1 10.1038/nature06008 10.1016/j.stem.2012.02.020 10.1038/nbt1418 10.1016/j.stem.2009.12.001 10.1038/nbt.1502 10.1016/j.cell.2009.01.001 10.1016/j.cell.2011.11.054 10.1038/ncb1372 10.1038/emboj.2011.431 10.1016/j.stem.2010.03.018 10.1073/pnas.0801802105 10.1016/j.cell.2005.08.020 10.1016/j.cell.2007.11.019 10.1371/journal.pbio.0060253 10.1016/j.cub.2010.11.074 10.1073/pnas.1208533109 10.1016/j.stem.2007.05.014 10.1101/gad.13.15.1924 10.1038/nature07056 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 AlphaMed Press Copyright © 2013 AlphaMed Press. |
| Copyright_xml | – notice: Copyright © 2013 AlphaMed Press – notice: Copyright © 2013 AlphaMed Press. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
| DOI | 10.1002/stem.1374 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1549-4918 |
| EndPage | 1286 |
| ExternalDocumentID | 3013072201 23533168 10_1002_stem_1374 STEM1374 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: XDA01010405 – fundername: National Basic Research Program of China funderid: 2013CB530700 – fundername: National Natural Science Foundation of China funderid: 30971453; 31171255; 3107116; 30700411; 91219101 – fundername: Shenzhen Bureau of Science Technology and Information funderid: JC201005260239A |
| GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 AABZA AACZT AAESR AAIHA AAMMB AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABGNP ABHFT ABJNI ABLJU ABMNT ABNHQ ABPTD ABVGC ABXVV ABXZS ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACVCV ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADMTO ADQBN ADVEK ADXAS ADZMN AEFGJ AENEX AFBPY AFFQV AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AGXDD AHGBF AHMBA AHMMS AIDQK AIDYY AIQQE AIURR AJAOE AJBYB AJDVS AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQN ALXQX AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NTU NU- O9- OBFPC OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W PALCI PQQKQ RAO RIWAO RJQFR ROL ROX SUPJJ TEORI TMA TR2 WBKPD WIN WOHZO WOQ XV2 ZGI ZXP ZZTAW ~S- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4214-f5967f0028d9369717e294383ea849b070b13aafacd093835c13da259decc58c3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321339000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-5099 1549-4918 |
| IngestDate | Mon Oct 06 18:03:17 EDT 2025 Sun Sep 28 07:44:01 EDT 2025 Sat Nov 29 14:46:44 EST 2025 Thu Apr 03 06:56:59 EDT 2025 Sat Nov 29 01:35:02 EST 2025 Tue Nov 18 22:28:34 EST 2025 Tue Nov 11 03:11:26 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Epigenetic regulation Nanog Induced pluripotent stem cells Mbd3/NuRD Reprogramming efficiency |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Copyright © 2013 AlphaMed Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4214-f5967f0028d9369717e294383ea849b070b13aafacd093835c13da259decc58c3 |
| Notes | Telephone: 86‐755‐26032949; Fax: 86‐755‐26035334 Disclosure of potential conflicts of interest is found at the end of this article. C XPRESS E March 26, 2013. Author contributions: Z.L., W.T., and I.G.: conception and design, data analysis and interpretation, writing and approval of manuscript; Z.L., M.L., T.L., H.S., and W.X.: collection and assembly of data, data analysis and interpretation; Y.G.Z.: data analysis and interpretation; Q.Z., M.S., L.Z., and G.L.: collection and assembly of data; Y.Z., T.Y., J.G.: other (support of manuscript); M.L., T.L. W.X., and H.S. contributed equally to this article. first published online in S Telephone: 86‐10‐62767581; Fax: 86‐10‐62751526 TEM ELLS ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://academic.oup.com/stmcls/article-pdf/31/7/1278/41981280/stmcls_31_7_1278.pdf |
| PMID | 23533168 |
| PQID | 1398169711 |
| PQPubID | 1046343 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1434028760 proquest_miscellaneous_1399055813 proquest_journals_1398169711 pubmed_primary_23533168 crossref_citationtrail_10_1002_stem_1374 crossref_primary_10_1002_stem_1374 wiley_primary_10_1002_stem_1374_STEM1374 |
| PublicationCentury | 2000 |
| PublicationDate | July 2013 2013-07-01 2013-Jul 20130701 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States – name: Oxford |
| PublicationTitle | Stem cells (Dayton, Ohio) |
| PublicationTitleAlternate | Stem Cells |
| PublicationYear | 2013 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Oxford University Press |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Oxford University Press |
| References | 2012; 483 2007; 448 2006; 8 2010; 141 2010; 285 2008; 105 2008; 10 2008; 6 2008; 3 2003; 113 2009; 136 2012; 10 2011; 8 2012; 31 2012; 109 2009; 138 2007; 134 2011; 147 2005; 122 2007; 131 1999; 13 2008; 26 2011; 21 2009; 6 2008; 454 2006; 126 2007; 1 1998; 95 2010; 6 Fidalgoa (2022011118252953300_bib19) 2012; 109 Anokye-Danso (2022011118252953300_bib32) 2011; 8 Huangfu (2022011118252953300_bib9) 2008; 26 Kaji (2022011118252953300_bib15) 2006; 8 Takahashi (2022011118252953300_bib2) 2007; 131 Onder (2022011118252953300_bib29) 2012; 483 Torres (2022011118252953300_bib23) 2008; 10 Chen (2022011118252953300_bib17) 2010; 285 Reynolds (2022011118252953300_bib14) 2012; 10 Silva (2022011118252953300_bib5) 2008; 6 Kaji (2022011118252953300_bib16) 2007; 134 Chambers (2022011118252953300_bib25) 2003; 113 Shi (2022011118252953300_bib8) 2008; 3 Gao (2022011118252953300_bib10) 2008; 105 Reynolds (2022011118252953300_bib30) 2012; 31 Yildirim (2022011118252953300_bib20) 2011; 147 Mitsui (2022011118252953300_bib26) 2003; 113 Hawkins (2022011118252953300_bib27) 2010; 6 Mikkelsen (2022011118252953300_bib28) 2007; 448 Sridharan (2022011118252953300_bib6) 2009; 136 Silva (2022011118252953300_bib22) 2009; 138 Takahashi (2022011118252953300_bib1) 2006; 126 Zhang (2022011118252953300_bib12) 1998; 95 Ichida (2022011118252953300_bib31) 2009; 6 Mikkelsen (2022011118252953300_bib4) 2008; 454 Theunissen (2022011118252953300_bib24) 2011; 21 Maherali (2022011118252953300_bib3) 2007; 1 Singhal (2022011118252953300_bib11) 2010; 141 Esteban (2022011118252953300_bib18) 2010; 6 Zhang (2022011118252953300_bib13) 1999; 13 Boyer (2022011118252953300_bib21) 2005; 122 Huangfu (2022011118252953300_bib7) 2008; 26 |
| References_xml | – volume: 95 start-page: 279 year: 1998 end-page: 289 article-title: The dermatomyositis‐specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities publication-title: Cell – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 448 start-page: 553 year: 2007 end-page: 560 article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells publication-title: Nature – volume: 8 start-page: 376 year: 2011 end-page: 388 article-title: Highly efficient miRNA‐mediated reprogramming of mouse and human somatic cells to pluripotency publication-title: Cell Stem Cell – volume: 147 start-page: 1498 year: 2011 end-page: 1510 article-title: Mbd3/NURD complex regulates expression of 5‐hydroxymethylcytosine marked genes in embryonic stem cells publication-title: Cell – volume: 8 start-page: 285 year: 2006 end-page: 292 article-title: The NuRD component Mbd3 is required for pluripotency of embryonic stem cells publication-title: Nat Cell Biol – volume: 134 start-page: 1123 year: 2007 end-page: 1132 article-title: Mbd3, a component of the NuRD co‐repressor complex, is required for development of pluripotent cells publication-title: Development – volume: 6 start-page: e253 year: 2008 article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition publication-title: PLoS Biol – volume: 122 start-page: 947 year: 2005 end-page: 956 article-title: Core transcriptional regulatory circuitry in human embryonic stem cells publication-title: Cell – volume: 31 start-page: 593 year: 2012 end-page: 605 article-title: NuRD‐mediated deacetylation of H3K27 facilitates recruitment of polycomb repressive complex 2 to direct gene repression publication-title: EMBO J – volume: 131 start-page: 861 year: 2007 end-page: 872 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 454 start-page: 49 year: 2008 end-page: 55 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature – volume: 3 start-page: 568 year: 2008 end-page: 574 article-title: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small‐molecule compounds publication-title: Cell Stem Cell – volume: 13 start-page: 1924 year: 1999 end-page: 1935 article-title: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation publication-title: Genes Dev – volume: 10 start-page: 194 year: 2008 end-page: 201 article-title: Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3 publication-title: Nat Cell Biol – volume: 109 start-page: 16202 year: 2012 end-page: 16207 article-title: Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 65 year: 2011 end-page: 71 article-title: Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions publication-title: Curr Biol – volume: 10 start-page: 583 year: 2012 end-page: 594 article-title: NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment publication-title: Cell Stem Cell – volume: 136 start-page: 364 year: 2009 end-page: 377 article-title: Role of the murine reprogramming factors in the induction of pluripotency publication-title: Cell – volume: 1 start-page: 55 year: 2007 end-page: 70 article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution publication-title: Cell Stem Cell – volume: 141 start-page: 943 year: 2010 end-page: 955 article-title: Chromatin‐remodeling components of the BAF complex facilitate reprogramming publication-title: Cell – volume: 285 start-page: 31066 year: 2010 end-page: 31072 article-title: Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells publication-title: J Biol Chem – volume: 105 start-page: 6656 year: 2008 end-page: 6661 article-title: ES cell pluripotency and germ‐layer formation require the SWI/SNF chromatin remodeling component BAF250a publication-title: Proc Natl Acad Sci U S A – volume: 6 start-page: 479 year: 2010 end-page: 491 article-title: Distinct epigenomic landscapes of pluripotent and lineage‐committed human cells publication-title: Cell Stem Cell – volume: 483 start-page: 598 year: 2012 end-page: 602 article-title: Chromatin‐modifying enzymes as modulators of reprogramming publication-title: Nature – volume: 113 start-page: 643 year: 2003 end-page: 655 article-title: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells publication-title: Cell – volume: 6 start-page: 491 year: 2009 end-page: 503 article-title: A small‐molecule inhibitor of tgf‐beta signaling replaces Sox2 in reprogramming by inducing Nanog publication-title: Cell Stem Cell – volume: 26 start-page: 1269 year: 2008 end-page: 1275 article-title: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 publication-title: Nat Biotechnol – volume: 138 start-page: 722 year: 2009 end-page: 737 article-title: Nanog is the gateway to the pluripotent ground state publication-title: Cell – volume: 6 start-page: 71 year: 2010 end-page: 79 article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 26 start-page: 795 year: 2008 end-page: 797 article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small‐molecule compounds publication-title: Nat Biotechnol – volume: 113 start-page: 631 year: 2003 end-page: 642 article-title: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells publication-title: Cell – volume: 3 start-page: 568 year: 2008 ident: 2022011118252953300_bib8 article-title: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.10.004 – volume: 113 start-page: 631 year: 2003 ident: 2022011118252953300_bib26 article-title: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells publication-title: Cell doi: 10.1016/S0092-8674(03)00393-3 – volume: 138 start-page: 722 year: 2009 ident: 2022011118252953300_bib22 article-title: Nanog is the gateway to the pluripotent ground state publication-title: Cell doi: 10.1016/j.cell.2009.07.039 – volume: 126 start-page: 663 year: 2006 ident: 2022011118252953300_bib1 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 95 start-page: 279 year: 1998 ident: 2022011118252953300_bib12 article-title: The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities publication-title: Cell doi: 10.1016/S0092-8674(00)81758-4 – volume: 483 start-page: 598 year: 2012 ident: 2022011118252953300_bib29 article-title: Chromatin-modifying enzymes as modulators of reprogramming publication-title: Nature doi: 10.1038/nature10953 – volume: 285 start-page: 31066 year: 2010 ident: 2022011118252953300_bib17 article-title: Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells publication-title: J Biol Chem doi: 10.1074/jbc.M110.139436 – volume: 8 start-page: 376 year: 2011 ident: 2022011118252953300_bib32 article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.03.001 – volume: 10 start-page: 194 year: 2008 ident: 2022011118252953300_bib23 article-title: Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3 publication-title: Nat Cell Biol doi: 10.1038/ncb1680 – volume: 141 start-page: 943 year: 2010 ident: 2022011118252953300_bib11 article-title: Chromatin-remodeling components of the BAF complex facilitate reprogramming publication-title: Cell doi: 10.1016/j.cell.2010.04.037 – volume: 134 start-page: 1123 year: 2007 ident: 2022011118252953300_bib16 article-title: Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells publication-title: Development doi: 10.1242/dev.02802 – volume: 6 start-page: 491 year: 2009 ident: 2022011118252953300_bib31 article-title: A small-molecule inhibitor of tgf-beta signaling replaces Sox2 in reprogramming by inducing Nanog publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.09.012 – volume: 113 start-page: 643 year: 2003 ident: 2022011118252953300_bib25 article-title: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells publication-title: Cell doi: 10.1016/S0092-8674(03)00392-1 – volume: 448 start-page: 553 year: 2007 ident: 2022011118252953300_bib28 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature doi: 10.1038/nature06008 – volume: 10 start-page: 583 year: 2012 ident: 2022011118252953300_bib14 article-title: NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.02.020 – volume: 26 start-page: 795 year: 2008 ident: 2022011118252953300_bib9 article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds publication-title: Nat Biotechnol doi: 10.1038/nbt1418 – volume: 6 start-page: 71 year: 2010 ident: 2022011118252953300_bib18 article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.12.001 – volume: 26 start-page: 1269 year: 2008 ident: 2022011118252953300_bib7 article-title: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 publication-title: Nat Biotechnol doi: 10.1038/nbt.1502 – volume: 136 start-page: 364 year: 2009 ident: 2022011118252953300_bib6 article-title: Role of the murine reprogramming factors in the induction of pluripotency publication-title: Cell doi: 10.1016/j.cell.2009.01.001 – volume: 147 start-page: 1498 year: 2011 ident: 2022011118252953300_bib20 article-title: Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2011.11.054 – volume: 8 start-page: 285 year: 2006 ident: 2022011118252953300_bib15 article-title: The NuRD component Mbd3 is required for pluripotency of embryonic stem cells publication-title: Nat Cell Biol doi: 10.1038/ncb1372 – volume: 31 start-page: 593 year: 2012 ident: 2022011118252953300_bib30 article-title: NuRD-mediated deacetylation of H3K27 facilitates recruitment of polycomb repressive complex 2 to direct gene repression publication-title: EMBO J doi: 10.1038/emboj.2011.431 – volume: 6 start-page: 479 year: 2010 ident: 2022011118252953300_bib27 article-title: Distinct epigenomic landscapes of pluripotent and lineage-committed human cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.03.018 – volume: 105 start-page: 6656 year: 2008 ident: 2022011118252953300_bib10 article-title: ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0801802105 – volume: 122 start-page: 947 year: 2005 ident: 2022011118252953300_bib21 article-title: Core transcriptional regulatory circuitry in human embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2005.08.020 – volume: 131 start-page: 861 year: 2007 ident: 2022011118252953300_bib2 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 6 start-page: e253 year: 2008 ident: 2022011118252953300_bib5 article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060253 – volume: 21 start-page: 65 year: 2011 ident: 2022011118252953300_bib24 article-title: Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions publication-title: Curr Biol doi: 10.1016/j.cub.2010.11.074 – volume: 109 start-page: 16202 year: 2012 ident: 2022011118252953300_bib19 article-title: Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1208533109 – volume: 1 start-page: 55 year: 2007 ident: 2022011118252953300_bib3 article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.05.014 – volume: 13 start-page: 1924 year: 1999 ident: 2022011118252953300_bib13 article-title: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation publication-title: Genes Dev doi: 10.1101/gad.13.15.1924 – volume: 454 start-page: 49 year: 2008 ident: 2022011118252953300_bib4 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature doi: 10.1038/nature07056 |
| SSID | ssj0014588 |
| Score | 2.4022315 |
| Snippet | Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1278 |
| SubjectTerms | Animals Cell Differentiation - physiology Cellular Reprogramming - physiology DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-Binding Proteins - physiology Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Embryonic Stem Cells - physiology Epigenetic regulation Epigenetics Epigenomics Gene Expression Gene Knockdown Techniques Genes, myc Induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - physiology Mbd3/NuRD Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism Mi-2 Nucleosome Remodeling and Deacetylase Complex - physiology Mice Mice, Inbred CBA Nanog Plasmids Promoter Regions, Genetic Reprogramming efficiency SOXB1 Transcription Factors - genetics Stem cells Transcription Factors - genetics Transcription Factors - metabolism Transcription Factors - physiology Up-Regulation |
| Title | NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.1374 https://www.ncbi.nlm.nih.gov/pubmed/23533168 https://www.proquest.com/docview/1398169711 https://www.proquest.com/docview/1399055813 https://www.proquest.com/docview/1434028760 |
| Volume | 31 |
| WOSCitedRecordID | wos000321339000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1549-4918 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014588 issn: 1066-5099 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B2iRe-NrYOqAyaA97CY3tfNjiCbpWm0QrtDKtb5EbOxJalyDSTOK_5y5pgxDbhLS3KD4r9tnnu4vt3w_go5DOhmmQoaUJSxRmgacwDvC0dC7mVgib1SCul_F4rKZTfbUGZ6u7MA0-RPvDjSyjXq_JwM2s7D2ChhLO8SmXMWGB8oATe8GPr-N2B4FuYNY7nVHkoVPUK1QhX_Tamk990bMA82m8Wjuc4fZ_NXUHtpZxJjtvJsYurLl8D143zJP3b-ByXH37zC7Qk_0sGQbhzSmtX-jHWJGxUVGVjk2KGs6V9d18XrKbfFGwq3mFi0yBcfaCTfBzTdlb-D4cXPe_eEtiBS8NBA-8LNRRnFG6ZYnPDzM6JzRhljqjAj3DVWDGpTGZSa2v8XWYcmkNJkoWBzxUqdyHjbzI3XtgoZV-RtdMXOQCoxXWihw30hepzox0Hfi0UnGSLlHHifxinjR4ySIh5SSknA6ctKK3DdTGn4QOV-OULK2txAKtOPWDd-C4LUY7oc0PkztUGsloPwwVl_-QCSSm0-gf_A68a-ZA2xIhMTDmkcIO1UP99yYmk-vBiB4-vFz0ADZFzbNB54APYWNxV7kjeJX-XtyUd11Yj6eqW8_vB0n8-6Y |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xFL20vLuFFhdx4BKIH8nGEhdKQSB2I9TdqtwiEzsSYkkqsluJf89MshuEeAiptyieKPbY4_nGj28AdoR0NkhVhpYmLKUwU16EOMDT0rk2t0LYrCJx7bTjOLq81BdTcDC5C1PzQzQLbmQZ1XxNBk4L0vuPrKFEdLzHZVtNw6xCoEGJG_6cxc0eAt3BrPY6w9BDt6gnvEK-2G8-feqNnkHMp4i1cjknn_6vsovwcQw12WE9NpZgyuXLMF8nn7xfgU48-vWT_UBndlMyxOH1Qa1bdGWsyFi3GJWO9YqK0ZUducGgZNf5sGAXgxHOMwVC7SHr4e_qslX4fXLcPzr1xrkVvFQJrrws0GE7o4jLUko_DOqc0ERb6kyk9BVOBFdcGpOZ1PoaXwcpl9ZgrGSxz4MolWswkxe5-wwssNLP6KaJC50yOsKvQseN9EWqMyNdC3YnOk7SMfE45b8YJDVlskhIOQkppwXbjejfmm3jJaHNSUclY4MrsUBHnNrBW_C9KUZTof0PkztUGsloPwgiLt-QURIjanQRfgvW60HQ1ERIxMY8jLBBVV-_XsWk1z_u0sOX94tuwcJpv9tJOmfx-QZ8EFXaDToWvAkzw7uR-wpz6b_hdXn3rRrmDxMd_tw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED91g6G98DH2URhgJh72kjX-SBpLvMC2iok2qugm7S1yY1uq6JJpaZH477lL2qCJDyHxFsVnxT77fHc53-8A3gnpbJQrj5ImLJUwU0GCdkCgpXN9boWwvgZxHfbTNLm-1uMOvF_nwjT4EO0PN5KM-rwmAXe31vd-ooYS0PEJl321AQ9UjP445ZNcpG0MgXIw61hnHAeoFvUaVygUvbbrfW30i4l532KtVc7gyf8N9ik8Xpma7EOzN55BxxU7sNUUn_z-HIbp8ssZ-4jK7GvF0A5vLmrdoCpjpWejclk5NilrRFd26ubzis2KRcnG8yWeMyWa2gs2wc81bbtwNTi_PP0UrGorBLkSXAU-0nHfk8dlqaQfOnVOaIItdSZReooHwZRLY7zJbajxdZRzaQ36ShbXPEpyuQebRVm4A2CRlaGnTBMXO2V0gr1ix40MRa69ka4Lx2seZ_kKeJzqX8yzBjJZZMScjJjThaOW9LZB2_gd0eF6obKVwFXYoBNO8-BdeNs2o6hQ_MMUDplGNDqMooTLv9AoiR41qoiwC_vNJmhHIiTaxjxOcEL1Wv95iNnk8nxEDy_-nfQNPBqfDbLhRfr5JWyLuuoG3Qo-hM3F3dK9gof5t8Wsuntd7_Ifuk7-YA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NuRD+blocks+reprogramming+of+mouse+somatic+cells+into+pluripotent+stem+cells&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Luo%2C+Min&rft.au=Ling%2C+Te&rft.au=Xie%2C+Wenbing&rft.au=Sun%2C+He&rft.date=2013-07-01&rft.eissn=1549-4918&rft.volume=31&rft.issue=7&rft.spage=1278&rft_id=info:doi/10.1002%2Fstem.1374&rft_id=info%3Apmid%2F23533168&rft.externalDocID=23533168 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |