NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state durin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Stem cells (Dayton, Ohio) Ročník 31; číslo 7; s. 1278 - 1286
Hlavní autori: Luo, Min, Ling, Te, Xie, Wenbing, Sun, He, Zhou, Yonggang, Zhu, Qiaoyun, Shen, Meili, Zong, Le, Lyu, Guoliang, Zhao, Yun, Ye, Tao, Gu, Jun, Tao, Wei, Lu, Zhigang, Grummt, Ingrid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2013
Oxford University Press
Predmet:
ISSN:1066-5099, 1549-4918, 1549-4918
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell‐specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c‐Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug‐induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. STEM Cells2013;31:1278–1286
AbstractList Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell‐specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c‐Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug‐induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. STEM Cells2013;31:1278–1286
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming.
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. STEM Cells2013;31:1278-1286 [PUBLICATION ABSTRACT]
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming.Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming.
Author Luo, Min
Tao, Wei
Ling, Te
Zong, Le
Zhao, Yun
Shen, Meili
Xie, Wenbing
Lu, Zhigang
Zhou, Yonggang
Lyu, Guoliang
Sun, He
Grummt, Ingrid
Zhu, Qiaoyun
Gu, Jun
Ye, Tao
Author_xml – sequence: 1
  givenname: Min
  surname: Luo
  fullname: Luo, Min
– sequence: 2
  givenname: Te
  surname: Ling
  fullname: Ling, Te
– sequence: 3
  givenname: Wenbing
  surname: Xie
  fullname: Xie, Wenbing
– sequence: 4
  givenname: He
  surname: Sun
  fullname: Sun, He
– sequence: 5
  givenname: Yonggang
  surname: Zhou
  fullname: Zhou, Yonggang
– sequence: 6
  givenname: Qiaoyun
  surname: Zhu
  fullname: Zhu, Qiaoyun
– sequence: 7
  givenname: Meili
  surname: Shen
  fullname: Shen, Meili
– sequence: 8
  givenname: Le
  surname: Zong
  fullname: Zong, Le
– sequence: 9
  givenname: Guoliang
  surname: Lyu
  fullname: Lyu, Guoliang
– sequence: 10
  givenname: Yun
  surname: Zhao
  fullname: Zhao, Yun
– sequence: 11
  givenname: Tao
  surname: Ye
  fullname: Ye, Tao
– sequence: 12
  givenname: Jun
  surname: Gu
  fullname: Gu, Jun
– sequence: 13
  givenname: Wei
  surname: Tao
  fullname: Tao, Wei
  email: weitao@pku.edu.cn
– sequence: 14
  givenname: Zhigang
  surname: Lu
  fullname: Lu, Zhigang
  email: luzg@pkusz.edu.cn
– sequence: 15
  givenname: Ingrid
  surname: Grummt
  fullname: Grummt, Ingrid
  email: i.grummt@dkfz.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23533168$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PwyAcxonROKce_AKGxIseqlCghaPO-ZLMl7h5JoxSg7ZlQhuzby9182I0niDwex4e_s8QbDauMQAcYHSKEUrPQmvqU0xyugF2MKMioQLzzbhHWZYwJMQADEN4RQhTxvk2GKSEEYIzvgMm993TJbyonH4L8MksvHvxqq5t8wJdCe9cFwyculq1VsORqaoAbdM6-Fh13i5ca5oWTuPrq7s9sFWqKpj99boLnq_Gs9FNMnm4vh2dTxJNU0yTkoksL2NwXgiSiRznJhWUcGIUp2KOcjTHRKlS6QKJeMw0JoVKmSiM1oxrsguOV74x7ntnQitrG3RMoBoTE0tMCY3ueYb-R4kQiDGOSUSPfqCvrvNN_EhPcdwnxZE6XFPdvDaFXHhbK7-U3yONwNkK0N6F4E0ptW3j_FzTemUriZHsS5N9abIvLSpOfii-TX9j1-4ftjLLv0E5nY3vvhSfQFWj_Q
CitedBy_id crossref_primary_10_1038_nature12749
crossref_primary_10_3389_fgene_2014_00428
crossref_primary_10_1016_j_ajpath_2013_09_026
crossref_primary_10_1111_jcmm_12805
crossref_primary_10_3389_fcell_2017_00049
crossref_primary_10_15252_embj_201490649
crossref_primary_10_1016_j_gde_2013_12_007
crossref_primary_10_1242_dev_182170
crossref_primary_10_1016_j_bbrc_2017_06_058
crossref_primary_10_1016_j_tig_2015_11_001
crossref_primary_10_1016_j_scr_2014_03_007
crossref_primary_10_1016_j_jmb_2019_12_018
crossref_primary_10_1038_nature12587
crossref_primary_10_7554_eLife_31023
crossref_primary_10_1134_S000629791413001X
crossref_primary_10_1016_j_tibs_2022_06_002
crossref_primary_10_1089_cell_2019_0008
crossref_primary_10_1371_journal_pone_0081622
crossref_primary_10_3897_rrpharmacology_5_34710
crossref_primary_10_1186_s13619_015_0024_9
crossref_primary_10_1016_j_stem_2013_11_001
crossref_primary_10_1038_s41467_023_38543_0
crossref_primary_10_3390_cells10113252
crossref_primary_10_1016_j_tcb_2015_12_003
crossref_primary_10_1038_nrm_2016_6
crossref_primary_10_1111_imr_12209
crossref_primary_10_1038_s41540_023_00326_0
crossref_primary_10_1242_dev_122424
crossref_primary_10_1073_pnas_1722219115
crossref_primary_10_1371_journal_pone_0094735
crossref_primary_10_3389_fgene_2016_00115
crossref_primary_10_1016_j_gene_2016_02_019
crossref_primary_10_1093_nar_gkae025
crossref_primary_10_1016_j_jmb_2016_04_025
crossref_primary_10_1089_cell_2021_0128
crossref_primary_10_1111_asj_13272
crossref_primary_10_3389_fcell_2014_00032
crossref_primary_10_1186_s13287_016_0369_1
crossref_primary_10_3390_cells11030529
crossref_primary_10_1016_j_stem_2014_05_006
crossref_primary_10_1016_j_gde_2014_08_003
crossref_primary_10_1074_jbc_M114_558940
crossref_primary_10_1038_srep07519
crossref_primary_10_1101_gad_348897_121
crossref_primary_10_1007_s40778_016_0050_8
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_1038_nature12561
crossref_primary_10_15252_embr_202051644
crossref_primary_10_1016_j_cell_2014_01_020
crossref_primary_10_1002_rmv_1831
crossref_primary_10_1016_j_gde_2014_09_006
crossref_primary_10_1089_scd_2014_0167
crossref_primary_10_1016_j_reth_2024_12_014
crossref_primary_10_3390_cells10112888
crossref_primary_10_1016_j_stem_2018_07_004
crossref_primary_10_1073_pnas_2104841118
crossref_primary_10_1038_s41418_021_00902_z
crossref_primary_10_1161_CIRCULATIONAHA_119_042371
crossref_primary_10_1074_jbc_M115_707018
crossref_primary_10_1002_wdev_206
crossref_primary_10_1016_j_bbagrm_2015_03_006
crossref_primary_10_3389_fcell_2023_1097780
crossref_primary_10_1016_j_stem_2013_09_012
crossref_primary_10_1038_srep22656
crossref_primary_10_1016_j_stem_2014_04_019
crossref_primary_10_1038_srep10114
crossref_primary_10_1007_s12015_019_09931_1
crossref_primary_10_1016_j_trsl_2014_05_003
Cites_doi 10.1016/j.stem.2008.10.004
10.1016/S0092-8674(03)00393-3
10.1016/j.cell.2009.07.039
10.1016/j.cell.2006.07.024
10.1016/S0092-8674(00)81758-4
10.1038/nature10953
10.1074/jbc.M110.139436
10.1016/j.stem.2011.03.001
10.1038/ncb1680
10.1016/j.cell.2010.04.037
10.1242/dev.02802
10.1016/j.stem.2009.09.012
10.1016/S0092-8674(03)00392-1
10.1038/nature06008
10.1016/j.stem.2012.02.020
10.1038/nbt1418
10.1016/j.stem.2009.12.001
10.1038/nbt.1502
10.1016/j.cell.2009.01.001
10.1016/j.cell.2011.11.054
10.1038/ncb1372
10.1038/emboj.2011.431
10.1016/j.stem.2010.03.018
10.1073/pnas.0801802105
10.1016/j.cell.2005.08.020
10.1016/j.cell.2007.11.019
10.1371/journal.pbio.0060253
10.1016/j.cub.2010.11.074
10.1073/pnas.1208533109
10.1016/j.stem.2007.05.014
10.1101/gad.13.15.1924
10.1038/nature07056
ContentType Journal Article
Copyright Copyright © 2013 AlphaMed Press
Copyright © 2013 AlphaMed Press.
Copyright_xml – notice: Copyright © 2013 AlphaMed Press
– notice: Copyright © 2013 AlphaMed Press.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/stem.1374
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Genetics Abstracts
MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 1286
ExternalDocumentID 3013072201
23533168
10_1002_stem_1374
STEM1374
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  funderid: XDA01010405
– fundername: National Basic Research Program of China
  funderid: 2013CB530700
– fundername: National Natural Science Foundation of China
  funderid: 30971453; 31171255; 3107116; 30700411; 91219101
– fundername: Shenzhen Bureau of Science Technology and Information
  funderid: JC201005260239A
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
AABZA
AACZT
AAESR
AAIHA
AAMMB
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABGNP
ABHFT
ABJNI
ABLJU
ABMNT
ABNHQ
ABPTD
ABVGC
ABXVV
ABXZS
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACVCV
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADMTO
ADQBN
ADVEK
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFFQV
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AGXDD
AHGBF
AHMBA
AHMMS
AIDQK
AIDYY
AIQQE
AIURR
AJAOE
AJBYB
AJDVS
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXQX
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NTU
NU-
O9-
OBFPC
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
SUPJJ
TEORI
TMA
TR2
WBKPD
WIN
WOHZO
WOQ
XV2
ZGI
ZXP
ZZTAW
~S-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4214-f5967f0028d9369717e294383ea849b070b13aafacd093835c13da259decc58c3
IEDL.DBID WIN
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321339000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-5099
1549-4918
IngestDate Mon Oct 06 18:03:17 EDT 2025
Sun Sep 28 07:44:01 EDT 2025
Sat Nov 29 14:46:44 EST 2025
Thu Apr 03 06:56:59 EDT 2025
Sat Nov 29 01:35:02 EST 2025
Tue Nov 18 22:28:34 EST 2025
Tue Nov 11 03:11:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Epigenetic regulation
Nanog
Induced pluripotent stem cells
Mbd3/NuRD
Reprogramming efficiency
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Copyright © 2013 AlphaMed Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4214-f5967f0028d9369717e294383ea849b070b13aafacd093835c13da259decc58c3
Notes Telephone: 86‐755‐26032949; Fax: 86‐755‐26035334
Disclosure of potential conflicts of interest is found at the end of this article.
C
XPRESS
E
March 26, 2013.
Author contributions: Z.L., W.T., and I.G.: conception and design, data analysis and interpretation, writing and approval of manuscript; Z.L., M.L., T.L., H.S., and W.X.: collection and assembly of data, data analysis and interpretation; Y.G.Z.: data analysis and interpretation; Q.Z., M.S., L.Z., and G.L.: collection and assembly of data; Y.Z., T.Y., J.G.: other (support of manuscript); M.L., T.L. W.X., and H.S. contributed equally to this article.
first published online in S
Telephone: 86‐10‐62767581; Fax: 86‐10‐62751526
TEM
ELLS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/stmcls/article-pdf/31/7/1278/41981280/stmcls_31_7_1278.pdf
PMID 23533168
PQID 1398169711
PQPubID 1046343
PageCount 9
ParticipantIDs proquest_miscellaneous_1434028760
proquest_miscellaneous_1399055813
proquest_journals_1398169711
pubmed_primary_23533168
crossref_citationtrail_10_1002_stem_1374
crossref_primary_10_1002_stem_1374
wiley_primary_10_1002_stem_1374_STEM1374
PublicationCentury 2000
PublicationDate July 2013
2013-07-01
2013-Jul
20130701
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: Oxford
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Oxford University Press
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Oxford University Press
References 2012; 483
2007; 448
2006; 8
2010; 141
2010; 285
2008; 105
2008; 10
2008; 6
2008; 3
2003; 113
2009; 136
2012; 10
2011; 8
2012; 31
2012; 109
2009; 138
2007; 134
2011; 147
2005; 122
2007; 131
1999; 13
2008; 26
2011; 21
2009; 6
2008; 454
2006; 126
2007; 1
1998; 95
2010; 6
Fidalgoa (2022011118252953300_bib19) 2012; 109
Anokye-Danso (2022011118252953300_bib32) 2011; 8
Huangfu (2022011118252953300_bib9) 2008; 26
Kaji (2022011118252953300_bib15) 2006; 8
Takahashi (2022011118252953300_bib2) 2007; 131
Onder (2022011118252953300_bib29) 2012; 483
Torres (2022011118252953300_bib23) 2008; 10
Chen (2022011118252953300_bib17) 2010; 285
Reynolds (2022011118252953300_bib14) 2012; 10
Silva (2022011118252953300_bib5) 2008; 6
Kaji (2022011118252953300_bib16) 2007; 134
Chambers (2022011118252953300_bib25) 2003; 113
Shi (2022011118252953300_bib8) 2008; 3
Gao (2022011118252953300_bib10) 2008; 105
Reynolds (2022011118252953300_bib30) 2012; 31
Yildirim (2022011118252953300_bib20) 2011; 147
Mitsui (2022011118252953300_bib26) 2003; 113
Hawkins (2022011118252953300_bib27) 2010; 6
Mikkelsen (2022011118252953300_bib28) 2007; 448
Sridharan (2022011118252953300_bib6) 2009; 136
Silva (2022011118252953300_bib22) 2009; 138
Takahashi (2022011118252953300_bib1) 2006; 126
Zhang (2022011118252953300_bib12) 1998; 95
Ichida (2022011118252953300_bib31) 2009; 6
Mikkelsen (2022011118252953300_bib4) 2008; 454
Theunissen (2022011118252953300_bib24) 2011; 21
Maherali (2022011118252953300_bib3) 2007; 1
Singhal (2022011118252953300_bib11) 2010; 141
Esteban (2022011118252953300_bib18) 2010; 6
Zhang (2022011118252953300_bib13) 1999; 13
Boyer (2022011118252953300_bib21) 2005; 122
Huangfu (2022011118252953300_bib7) 2008; 26
References_xml – volume: 95
  start-page: 279
  year: 1998
  end-page: 289
  article-title: The dermatomyositis‐specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities
  publication-title: Cell
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells
  publication-title: Nature
– volume: 8
  start-page: 376
  year: 2011
  end-page: 388
  article-title: Highly efficient miRNA‐mediated reprogramming of mouse and human somatic cells to pluripotency
  publication-title: Cell Stem Cell
– volume: 147
  start-page: 1498
  year: 2011
  end-page: 1510
  article-title: Mbd3/NURD complex regulates expression of 5‐hydroxymethylcytosine marked genes in embryonic stem cells
  publication-title: Cell
– volume: 8
  start-page: 285
  year: 2006
  end-page: 292
  article-title: The NuRD component Mbd3 is required for pluripotency of embryonic stem cells
  publication-title: Nat Cell Biol
– volume: 134
  start-page: 1123
  year: 2007
  end-page: 1132
  article-title: Mbd3, a component of the NuRD co‐repressor complex, is required for development of pluripotent cells
  publication-title: Development
– volume: 6
  start-page: e253
  year: 2008
  article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition
  publication-title: PLoS Biol
– volume: 122
  start-page: 947
  year: 2005
  end-page: 956
  article-title: Core transcriptional regulatory circuitry in human embryonic stem cells
  publication-title: Cell
– volume: 31
  start-page: 593
  year: 2012
  end-page: 605
  article-title: NuRD‐mediated deacetylation of H3K27 facilitates recruitment of polycomb repressive complex 2 to direct gene repression
  publication-title: EMBO J
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 454
  start-page: 49
  year: 2008
  end-page: 55
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
– volume: 3
  start-page: 568
  year: 2008
  end-page: 574
  article-title: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small‐molecule compounds
  publication-title: Cell Stem Cell
– volume: 13
  start-page: 1924
  year: 1999
  end-page: 1935
  article-title: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation
  publication-title: Genes Dev
– volume: 10
  start-page: 194
  year: 2008
  end-page: 201
  article-title: Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3
  publication-title: Nat Cell Biol
– volume: 109
  start-page: 16202
  year: 2012
  end-page: 16207
  article-title: Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 65
  year: 2011
  end-page: 71
  article-title: Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions
  publication-title: Curr Biol
– volume: 10
  start-page: 583
  year: 2012
  end-page: 594
  article-title: NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment
  publication-title: Cell Stem Cell
– volume: 136
  start-page: 364
  year: 2009
  end-page: 377
  article-title: Role of the murine reprogramming factors in the induction of pluripotency
  publication-title: Cell
– volume: 1
  start-page: 55
  year: 2007
  end-page: 70
  article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution
  publication-title: Cell Stem Cell
– volume: 141
  start-page: 943
  year: 2010
  end-page: 955
  article-title: Chromatin‐remodeling components of the BAF complex facilitate reprogramming
  publication-title: Cell
– volume: 285
  start-page: 31066
  year: 2010
  end-page: 31072
  article-title: Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells
  publication-title: J Biol Chem
– volume: 105
  start-page: 6656
  year: 2008
  end-page: 6661
  article-title: ES cell pluripotency and germ‐layer formation require the SWI/SNF chromatin remodeling component BAF250a
  publication-title: Proc Natl Acad Sci U S A
– volume: 6
  start-page: 479
  year: 2010
  end-page: 491
  article-title: Distinct epigenomic landscapes of pluripotent and lineage‐committed human cells
  publication-title: Cell Stem Cell
– volume: 483
  start-page: 598
  year: 2012
  end-page: 602
  article-title: Chromatin‐modifying enzymes as modulators of reprogramming
  publication-title: Nature
– volume: 113
  start-page: 643
  year: 2003
  end-page: 655
  article-title: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells
  publication-title: Cell
– volume: 6
  start-page: 491
  year: 2009
  end-page: 503
  article-title: A small‐molecule inhibitor of tgf‐beta signaling replaces Sox2 in reprogramming by inducing Nanog
  publication-title: Cell Stem Cell
– volume: 26
  start-page: 1269
  year: 2008
  end-page: 1275
  article-title: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2
  publication-title: Nat Biotechnol
– volume: 138
  start-page: 722
  year: 2009
  end-page: 737
  article-title: Nanog is the gateway to the pluripotent ground state
  publication-title: Cell
– volume: 6
  start-page: 71
  year: 2010
  end-page: 79
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 26
  start-page: 795
  year: 2008
  end-page: 797
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small‐molecule compounds
  publication-title: Nat Biotechnol
– volume: 113
  start-page: 631
  year: 2003
  end-page: 642
  article-title: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells
  publication-title: Cell
– volume: 3
  start-page: 568
  year: 2008
  ident: 2022011118252953300_bib8
  article-title: Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.10.004
– volume: 113
  start-page: 631
  year: 2003
  ident: 2022011118252953300_bib26
  article-title: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00393-3
– volume: 138
  start-page: 722
  year: 2009
  ident: 2022011118252953300_bib22
  article-title: Nanog is the gateway to the pluripotent ground state
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.039
– volume: 126
  start-page: 663
  year: 2006
  ident: 2022011118252953300_bib1
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 95
  start-page: 279
  year: 1998
  ident: 2022011118252953300_bib12
  article-title: The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81758-4
– volume: 483
  start-page: 598
  year: 2012
  ident: 2022011118252953300_bib29
  article-title: Chromatin-modifying enzymes as modulators of reprogramming
  publication-title: Nature
  doi: 10.1038/nature10953
– volume: 285
  start-page: 31066
  year: 2010
  ident: 2022011118252953300_bib17
  article-title: Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.139436
– volume: 8
  start-page: 376
  year: 2011
  ident: 2022011118252953300_bib32
  article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.03.001
– volume: 10
  start-page: 194
  year: 2008
  ident: 2022011118252953300_bib23
  article-title: Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1680
– volume: 141
  start-page: 943
  year: 2010
  ident: 2022011118252953300_bib11
  article-title: Chromatin-remodeling components of the BAF complex facilitate reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.037
– volume: 134
  start-page: 1123
  year: 2007
  ident: 2022011118252953300_bib16
  article-title: Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells
  publication-title: Development
  doi: 10.1242/dev.02802
– volume: 6
  start-page: 491
  year: 2009
  ident: 2022011118252953300_bib31
  article-title: A small-molecule inhibitor of tgf-beta signaling replaces Sox2 in reprogramming by inducing Nanog
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.09.012
– volume: 113
  start-page: 643
  year: 2003
  ident: 2022011118252953300_bib25
  article-title: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00392-1
– volume: 448
  start-page: 553
  year: 2007
  ident: 2022011118252953300_bib28
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 10
  start-page: 583
  year: 2012
  ident: 2022011118252953300_bib14
  article-title: NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.02.020
– volume: 26
  start-page: 795
  year: 2008
  ident: 2022011118252953300_bib9
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1418
– volume: 6
  start-page: 71
  year: 2010
  ident: 2022011118252953300_bib18
  article-title: Vitamin C enhances the generation of mouse and human induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.12.001
– volume: 26
  start-page: 1269
  year: 2008
  ident: 2022011118252953300_bib7
  article-title: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1502
– volume: 136
  start-page: 364
  year: 2009
  ident: 2022011118252953300_bib6
  article-title: Role of the murine reprogramming factors in the induction of pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.001
– volume: 147
  start-page: 1498
  year: 2011
  ident: 2022011118252953300_bib20
  article-title: Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.054
– volume: 8
  start-page: 285
  year: 2006
  ident: 2022011118252953300_bib15
  article-title: The NuRD component Mbd3 is required for pluripotency of embryonic stem cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1372
– volume: 31
  start-page: 593
  year: 2012
  ident: 2022011118252953300_bib30
  article-title: NuRD-mediated deacetylation of H3K27 facilitates recruitment of polycomb repressive complex 2 to direct gene repression
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.431
– volume: 6
  start-page: 479
  year: 2010
  ident: 2022011118252953300_bib27
  article-title: Distinct epigenomic landscapes of pluripotent and lineage-committed human cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.03.018
– volume: 105
  start-page: 6656
  year: 2008
  ident: 2022011118252953300_bib10
  article-title: ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0801802105
– volume: 122
  start-page: 947
  year: 2005
  ident: 2022011118252953300_bib21
  article-title: Core transcriptional regulatory circuitry in human embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.020
– volume: 131
  start-page: 861
  year: 2007
  ident: 2022011118252953300_bib2
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 6
  start-page: e253
  year: 2008
  ident: 2022011118252953300_bib5
  article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060253
– volume: 21
  start-page: 65
  year: 2011
  ident: 2022011118252953300_bib24
  article-title: Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2010.11.074
– volume: 109
  start-page: 16202
  year: 2012
  ident: 2022011118252953300_bib19
  article-title: Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1208533109
– volume: 1
  start-page: 55
  year: 2007
  ident: 2022011118252953300_bib3
  article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.014
– volume: 13
  start-page: 1924
  year: 1999
  ident: 2022011118252953300_bib13
  article-title: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation
  publication-title: Genes Dev
  doi: 10.1101/gad.13.15.1924
– volume: 454
  start-page: 49
  year: 2008
  ident: 2022011118252953300_bib4
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
  doi: 10.1038/nature07056
SSID ssj0014588
Score 2.4022315
Snippet Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1278
SubjectTerms Animals
Cell Differentiation - physiology
Cellular Reprogramming - physiology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - physiology
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Embryonic Stem Cells - physiology
Epigenetic regulation
Epigenetics
Epigenomics
Gene Expression
Gene Knockdown Techniques
Genes, myc
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - physiology
Mbd3/NuRD
Mi-2 Nucleosome Remodeling and Deacetylase Complex - genetics
Mi-2 Nucleosome Remodeling and Deacetylase Complex - metabolism
Mi-2 Nucleosome Remodeling and Deacetylase Complex - physiology
Mice
Mice, Inbred CBA
Nanog
Plasmids
Promoter Regions, Genetic
Reprogramming efficiency
SOXB1 Transcription Factors - genetics
Stem cells
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription Factors - physiology
Up-Regulation
Title NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.1374
https://www.ncbi.nlm.nih.gov/pubmed/23533168
https://www.proquest.com/docview/1398169711
https://www.proquest.com/docview/1399055813
https://www.proquest.com/docview/1434028760
Volume 31
WOSCitedRecordID wos000321339000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1549-4918
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014588
  issn: 1066-5099
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8B2iRe-NrYOqAyaA97CY3tfNjiCbpWm0QrtDKtb5EbOxJalyDSTOK_5y5pgxDbhLS3KD4r9tnnu4vt3w_go5DOhmmQoaUJSxRmgacwDvC0dC7mVgib1SCul_F4rKZTfbUGZ6u7MA0-RPvDjSyjXq_JwM2s7D2ChhLO8SmXMWGB8oATe8GPr-N2B4FuYNY7nVHkoVPUK1QhX_Tamk990bMA82m8Wjuc4fZ_NXUHtpZxJjtvJsYurLl8D143zJP3b-ByXH37zC7Qk_0sGQbhzSmtX-jHWJGxUVGVjk2KGs6V9d18XrKbfFGwq3mFi0yBcfaCTfBzTdlb-D4cXPe_eEtiBS8NBA-8LNRRnFG6ZYnPDzM6JzRhljqjAj3DVWDGpTGZSa2v8XWYcmkNJkoWBzxUqdyHjbzI3XtgoZV-RtdMXOQCoxXWihw30hepzox0Hfi0UnGSLlHHifxinjR4ySIh5SSknA6ctKK3DdTGn4QOV-OULK2txAKtOPWDd-C4LUY7oc0PkztUGsloPwwVl_-QCSSm0-gf_A68a-ZA2xIhMTDmkcIO1UP99yYmk-vBiB4-vFz0ADZFzbNB54APYWNxV7kjeJX-XtyUd11Yj6eqW8_vB0n8-6Y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xFL20vLuFFhdx4BKIH8nGEhdKQSB2I9TdqtwiEzsSYkkqsluJf89MshuEeAiptyieKPbY4_nGj28AdoR0NkhVhpYmLKUwU16EOMDT0rk2t0LYrCJx7bTjOLq81BdTcDC5C1PzQzQLbmQZ1XxNBk4L0vuPrKFEdLzHZVtNw6xCoEGJG_6cxc0eAt3BrPY6w9BDt6gnvEK-2G8-feqNnkHMp4i1cjknn_6vsovwcQw12WE9NpZgyuXLMF8nn7xfgU48-vWT_UBndlMyxOH1Qa1bdGWsyFi3GJWO9YqK0ZUducGgZNf5sGAXgxHOMwVC7SHr4e_qslX4fXLcPzr1xrkVvFQJrrws0GE7o4jLUko_DOqc0ERb6kyk9BVOBFdcGpOZ1PoaXwcpl9ZgrGSxz4MolWswkxe5-wwssNLP6KaJC50yOsKvQseN9EWqMyNdC3YnOk7SMfE45b8YJDVlskhIOQkppwXbjejfmm3jJaHNSUclY4MrsUBHnNrBW_C9KUZTof0PkztUGsloPwgiLt-QURIjanQRfgvW60HQ1ERIxMY8jLBBVV-_XsWk1z_u0sOX94tuwcJpv9tJOmfx-QZ8EFXaDToWvAkzw7uR-wpz6b_hdXn3rRrmDxMd_tw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED91g6G98DH2URhgJh72kjX-SBpLvMC2iok2qugm7S1yY1uq6JJpaZH477lL2qCJDyHxFsVnxT77fHc53-8A3gnpbJQrj5ImLJUwU0GCdkCgpXN9boWwvgZxHfbTNLm-1uMOvF_nwjT4EO0PN5KM-rwmAXe31vd-ooYS0PEJl321AQ9UjP445ZNcpG0MgXIw61hnHAeoFvUaVygUvbbrfW30i4l532KtVc7gyf8N9ik8Xpma7EOzN55BxxU7sNUUn_z-HIbp8ssZ-4jK7GvF0A5vLmrdoCpjpWejclk5NilrRFd26ubzis2KRcnG8yWeMyWa2gs2wc81bbtwNTi_PP0UrGorBLkSXAU-0nHfk8dlqaQfOnVOaIItdSZReooHwZRLY7zJbajxdZRzaQ36ShbXPEpyuQebRVm4A2CRlaGnTBMXO2V0gr1ix40MRa69ka4Lx2seZ_kKeJzqX8yzBjJZZMScjJjThaOW9LZB2_gd0eF6obKVwFXYoBNO8-BdeNs2o6hQ_MMUDplGNDqMooTLv9AoiR41qoiwC_vNJmhHIiTaxjxOcEL1Wv95iNnk8nxEDy_-nfQNPBqfDbLhRfr5JWyLuuoG3Qo-hM3F3dK9gof5t8Wsuntd7_Ifuk7-YA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NuRD+blocks+reprogramming+of+mouse+somatic+cells+into+pluripotent+stem+cells&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Luo%2C+Min&rft.au=Ling%2C+Te&rft.au=Xie%2C+Wenbing&rft.au=Sun%2C+He&rft.date=2013-07-01&rft.eissn=1549-4918&rft.volume=31&rft.issue=7&rft.spage=1278&rft_id=info:doi/10.1002%2Fstem.1374&rft_id=info%3Apmid%2F23533168&rft.externalDocID=23533168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon