Techno‐Economic Analysis of Methane Pyrolysis in Molten Metals: Decarbonizing Natural Gas
Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolys...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering & technology Jg. 40; H. 6; S. 1022 - 1030 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frankfurt
Wiley Subscription Services, Inc
01.06.2017
Wiley Blackwell (John Wiley & Sons) |
| Schlagworte: | |
| ISSN: | 0930-7516, 1521-4125 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by‐product. The pyrolysis system at 1500 °C is competitive with a carbon tax of $78 t−1; however, if a catalytic process at 1000 °C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes.
Methane pyrolysis using a molten metal‐based process to produce carbon and hydrogen is compared to steam methane reforming for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and steam methane reforming were applied to generate cash‐flow and production costs for several different pyrolysis systems making use of molten metals. |
|---|---|
| AbstractList | Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by‐product. The pyrolysis system at 1500 °C is competitive with a carbon tax of $78 t
−1
; however, if a catalytic process at 1000 °C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes. Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by‐product. The pyrolysis system at 1500 °C is competitive with a carbon tax of $78 t−1; however, if a catalytic process at 1000 °C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes. Methane pyrolysis using a molten metal‐based process to produce carbon and hydrogen is compared to steam methane reforming for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and steam methane reforming were applied to generate cash‐flow and production costs for several different pyrolysis systems making use of molten metals. Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash-flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by-product. The pyrolysis system at 1500°C is competitive with a carbon tax of $78t-1; however, if a catalytic process at 1000°C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes. |
| Author | Matthews, Joshua W. Upham, D. Chester McFarland, Eric W. Parkinson, Brett McConnaughy, Thomas B. |
| Author_xml | – sequence: 1 givenname: Brett surname: Parkinson fullname: Parkinson, Brett organization: University of Queensland – sequence: 2 givenname: Joshua W. surname: Matthews fullname: Matthews, Joshua W. organization: Loughborough University – sequence: 3 givenname: Thomas B. surname: McConnaughy fullname: McConnaughy, Thomas B. organization: University of Queensland – sequence: 4 givenname: D. Chester surname: Upham fullname: Upham, D. Chester organization: University of California – sequence: 5 givenname: Eric W. surname: McFarland fullname: McFarland, Eric W. email: ewmcfar@engineering.ucsb.edu organization: University of California |
| BackLink | https://www.osti.gov/biblio/1400609$$D View this record in Osti.gov |
| BookMark | eNqFkMFKAzEQhoMo2Favnhc9b51ks2nWW6m1Cq16qCcPIU2zNmWb1CRF6slH8Bl9EresKAjiaZiZ_5vh_9to3zqrETrB0MUA5FxpGbsEMAOgmO6hFs4JTikm-T5qQZFB2ssxO0TtEJYAgOumhR6nWi2s-3h7Hypn3cqopG9ltQ0mJK5MJjoupNXJ_da7ZmhsMnFV1Ha3k1W4SC61kn7mrHk19im5lXHjZZWMZDhCB2Wt0MdftYMerobTwXU6vhvdDPrjVFGCaYplUcw5U5JnAJzovMzzGe1l5VwxxRXnnBW8ZLpQjGheakZJSeY96OVzDGyWZR102tx1IRoRlIm1p9qN1SoKTAFY7b6DzhrR2rvnjQ5RLN3G11aDwAUBygCTnarbqJR3IXhdirU3K-m3AoPYpSx2KYvvlGuA_gLq9zIaZ6OXpvobKxrsxVR6-88TMRj2pz_sJ3iKk6o |
| CitedBy_id | crossref_primary_10_1016_j_clce_2024_100139 crossref_primary_10_1039_D2SE00923D crossref_primary_10_1016_j_enconman_2020_113125 crossref_primary_10_1016_j_ijhydene_2025_150466 crossref_primary_10_1016_j_ijhydene_2024_08_256 crossref_primary_10_1016_j_ijhydene_2024_03_159 crossref_primary_10_1016_j_ijhydene_2024_08_097 crossref_primary_10_1016_j_ijhydene_2020_11_150 crossref_primary_10_1126_science_adh8872 crossref_primary_10_1016_j_enconman_2022_116641 crossref_primary_10_1016_j_ijhydene_2025_05_021 crossref_primary_10_1016_j_ijhydene_2021_03_151 crossref_primary_10_1016_j_apcatb_2024_125009 crossref_primary_10_1093_ce_zkae112 crossref_primary_10_1016_j_carbon_2022_12_044 crossref_primary_10_1016_j_ijhydene_2021_12_089 crossref_primary_10_3390_chemengineering5010012 crossref_primary_10_1007_s11027_023_10100_6 crossref_primary_10_1016_j_apenergy_2020_116020 crossref_primary_10_1016_j_ijhydene_2023_02_006 crossref_primary_10_1016_j_cej_2024_150274 crossref_primary_10_1016_j_ijhydene_2019_11_143 crossref_primary_10_1016_j_grets_2023_100059 crossref_primary_10_1002_aic_16474 crossref_primary_10_1016_j_apenergy_2021_117481 crossref_primary_10_1039_D4EE06191H crossref_primary_10_3390_en16207058 crossref_primary_10_1016_j_apenergy_2025_126170 crossref_primary_10_1039_D0EE03768K crossref_primary_10_1016_j_enconman_2024_119414 crossref_primary_10_1016_j_fuel_2023_127478 crossref_primary_10_1016_j_ijhydene_2017_12_081 crossref_primary_10_1016_j_enconman_2022_116624 crossref_primary_10_1016_j_ijhydene_2023_07_308 crossref_primary_10_1039_D1SE01408K crossref_primary_10_3390_en14238182 crossref_primary_10_1016_j_ijhydene_2019_03_023 crossref_primary_10_20517_energymater_2025_63 crossref_primary_10_1016_j_ijhydene_2024_12_361 crossref_primary_10_1080_17597269_2025_2524903 crossref_primary_10_1016_j_ijhydene_2023_08_186 crossref_primary_10_1016_j_ijhydene_2021_12_029 crossref_primary_10_1016_j_ijhydene_2022_12_169 crossref_primary_10_1126_science_aao5023 crossref_primary_10_1016_j_ijhydene_2025_05_353 crossref_primary_10_1002_advs_202203221 crossref_primary_10_1088_1748_9326_aca553 crossref_primary_10_1016_j_seta_2021_101434 crossref_primary_10_1039_D0SE01369B crossref_primary_10_1016_j_fuel_2022_126697 crossref_primary_10_1016_j_enconman_2023_116707 crossref_primary_10_1016_j_ijhydene_2025_01_065 crossref_primary_10_1088_1742_6596_2893_1_012009 crossref_primary_10_1002_adma_202408466 crossref_primary_10_1016_j_enconman_2024_118224 crossref_primary_10_1002_cssc_201801356 crossref_primary_10_1016_j_ijhydene_2023_02_035 crossref_primary_10_1016_j_rser_2024_114999 crossref_primary_10_1063_5_0227299 crossref_primary_10_1016_j_rser_2023_113323 crossref_primary_10_1016_j_clce_2023_100103 crossref_primary_10_1016_j_ijhydene_2020_11_079 crossref_primary_10_1016_j_ijhydene_2025_150310 crossref_primary_10_1039_D5GC00946D crossref_primary_10_1016_j_ijhydene_2024_07_225 crossref_primary_10_1016_j_cej_2021_128730 crossref_primary_10_1002_cssc_202402335 crossref_primary_10_1016_j_ijhydene_2023_06_292 crossref_primary_10_1039_D5RA03463A crossref_primary_10_1016_j_ijhydene_2023_03_123 crossref_primary_10_1016_j_ijhydene_2022_11_160 crossref_primary_10_1016_j_apenergy_2025_125276 crossref_primary_10_3390_hydrogen6030066 crossref_primary_10_1016_j_ijhydene_2023_02_047 crossref_primary_10_1016_j_ijhydene_2023_11_124 crossref_primary_10_1016_j_apenergy_2024_123137 crossref_primary_10_1016_j_ijhydene_2024_04_213 crossref_primary_10_1016_j_ijhydene_2025_150724 crossref_primary_10_3390_catal15020145 crossref_primary_10_1016_j_ijhydene_2025_150168 crossref_primary_10_1039_D3SE00972F crossref_primary_10_1016_j_enconman_2017_12_063 crossref_primary_10_1016_j_energy_2019_03_025 crossref_primary_10_1016_j_ijhydene_2024_04_056 crossref_primary_10_1039_C8EE02079E crossref_primary_10_3390_app112110389 crossref_primary_10_1016_j_jeem_2024_103035 crossref_primary_10_1002_open_202300112 crossref_primary_10_1016_j_jcou_2020_101399 crossref_primary_10_1016_j_enconman_2023_117771 crossref_primary_10_1016_j_ijhydene_2024_05_142 crossref_primary_10_1002_sus2_157 crossref_primary_10_1016_j_cej_2020_127407 crossref_primary_10_1007_s11244_023_01799_3 crossref_primary_10_1016_j_ijhydene_2020_04_100 crossref_primary_10_1007_s10311_024_01732_4 crossref_primary_10_1016_j_jaap_2024_106727 crossref_primary_10_1016_j_coche_2023_100968 |
| Cites_doi | 10.1016/j.ijhydene.2006.06.030 10.2172/15002482 10.1016/j.ijhydene.2007.05.027 10.1287/inte.12.5.50 10.1016/S0921‐8009(99)00122‐6 10.1016/j.ijhydene.2005.04.005 10.1016/S0926‐860X(00)00845‐0 10.1016/j.cattod.2006.05.070 10.1016/j.ijhydene.2015.08.102 10.1016/j.ijhydene.2015.04.062 10.1016/j.ijhydene.2010.04.035 10.1016/j.compchemeng.2006.06.002 10.1002/9781119990048 10.1016/j.carbon.2004.06.003 10.1016/S1381‐1169(98)00050‐8 10.1021/ef020271q 10.2172/789770 10.1016/j.ijhydene.2015.11.164 10.2172/5558263 10.1109/TMAG.2002.1017772 10.1016/j.enpol.2011.05.050 10.1016/j.ijhydene.2008.07.079 10.1021/ef9701145 10.1007/978-3-319-03479-9 10.1016/j.ijhydene.2011.07.081 |
| ContentType | Journal Article |
| Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7U5 8FD L7M OTOTI |
| DOI | 10.1002/ceat.201600414 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4125 |
| EndPage | 1030 |
| ExternalDocumentID | 1400609 10_1002_ceat_201600414 CEAT201600414 |
| Genre | article |
| GrantInformation_xml | – fundername: United States Department of Energy‐Basic Energy Sciences funderid: DEFG02‐89ER14048 – fundername: University of Queensland, Dow Centre for Sustainable Engineering Innovation |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7U5 8FD L7M ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
| ID | FETCH-LOGICAL-c4214-1a99d86ca830082e5f55b473fdc6c8c888698f6e9c62e8fe642f2d7075d106b33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405244800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0930-7516 |
| IngestDate | Thu May 18 22:31:15 EDT 2023 Sun Nov 30 05:06:08 EST 2025 Sat Nov 29 02:45:10 EST 2025 Tue Nov 18 22:19:36 EST 2025 Wed Jan 22 16:27:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4214-1a99d86ca830082e5f55b473fdc6c8c888698f6e9c62e8fe642f2d7075d106b33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 DEFG02-89ER14048 USDOE |
| OpenAccessLink | https://www.osti.gov/biblio/1400609 |
| PQID | 1920460129 |
| PQPubID | 2045181 |
| PageCount | 9 |
| ParticipantIDs | osti_scitechconnect_1400609 proquest_journals_1920460129 crossref_primary_10_1002_ceat_201600414 crossref_citationtrail_10_1002_ceat_201600414 wiley_primary_10_1002_ceat_201600414_CEAT201600414 |
| PublicationCentury | 2000 |
| PublicationDate | June 2017 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Frankfurt |
| PublicationPlace_xml | – name: Frankfurt – name: Germany |
| PublicationTitle | Chemical engineering & technology |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 2002; 38 1997; 136 2002; 17 2004; 42 2010; 35 2012 2011 2006; 32 2010 1997 2006 1995 2003 2011; 36 2002 2011; 39 2006; 116 2007; 31 2007; 32 1999 2009; 34 2001; 212 2001 2015; 40 2000; 32 2015; 41 1987 2005; 30 2016 2015 1982 2007; 2 2014 2013 1998; 12 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Jain P. J. (e_1_2_7_33_1) 2003 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 Molburg J. C. (e_1_2_7_23_1) 2003 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Jones J. A. T. (e_1_2_7_43_1) 2015 Vignes A. (e_1_2_7_16_1) 2011 e_1_2_7_25_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Sinnot R. K. (e_1_2_7_21_1) 1999 (e_1_2_7_50_1) 2015 e_1_2_7_18_1 Taft R. T. (e_1_2_7_32_1) 1995 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 Taddeo M. (e_1_2_7_39_1) 2014 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 Golovanov N. (e_1_2_7_29_1) 1997 Abdallah M. (e_1_2_7_31_1) 2007; 2 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – year: 2011 – volume: 136 start-page: 185 year: 1997 end-page: 194 publication-title: J. Mol. Catal. A: Chem. – volume: 36 start-page: 12877 year: 2011 end-page: 12886 publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 14134 year: 2015 end-page: 14146 publication-title: Int. J. Hydrogen Energy – volume: 30 start-page: 1149 year: 2005 end-page: 1158 publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 41 year: 1998 end-page: 48 publication-title: Energy Fuels – volume: 41 start-page: 8159 year: 2015 end-page: 8167 publication-title: Int. J. Hydrogen Energy – year: 1987 – year: 2001 – year: 2003 – volume: 2 start-page: 1178 issue: 7 year: 2007 end-page: 1182 publication-title: J. Eng. Appl. Sci. – volume: 32 start-page: 3797 year: 2007 end-page: 3810 publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 8020 year: 2015 end-page: 8033 publication-title: Int. J. Hydrogen Energy – year: 2016 – volume: 32 start-page: 32 year: 2006 end-page: 37 publication-title: Int. J. Hydrogen Energy – year: 2014 – year: 2010 – volume: 38 start-page: 1789 year: 2002 end-page: 1796 publication-title: IEEE Trans. Magn. – year: 2012 – volume: 31 start-page: 445 year: 2007 end-page: 455 publication-title: Comput. Chem. Eng. – volume: 116 start-page: 281 year: 2006 end-page: 288 publication-title: Catal. Today – year: 1982 – volume: 34 start-page: 4488 year: 2009 end-page: 4494 publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 8371 year: 2010 end-page: 8384 publication-title: Int. J. Hydrogen Energy – volume: 17 start-page: 705 year: 2002 end-page: 713 publication-title: Energy Fuels – year: 2002 – year: 2006 – volume: 32 start-page: 395 year: 2000 end-page: 412 publication-title: Ecol. Econ. – year: 1997 – volume: 212 start-page: 83 year: 2001 end-page: 96 publication-title: Appl. Catal., A – year: 1995 – volume: 42 start-page: 2641 year: 2004 end-page: 2648 publication-title: Carbon – year: 2015 – volume: 39 start-page: 5137 year: 2011 end-page: 5146 publication-title: Energy Policy – year: 1999 – year: 2013 – ident: e_1_2_7_34_1 – ident: e_1_2_7_13_1 doi: 10.1016/j.ijhydene.2006.06.030 – ident: e_1_2_7_25_1 doi: 10.2172/15002482 – ident: e_1_2_7_51_1 – volume: 2 start-page: 1178 issue: 7 year: 2007 ident: e_1_2_7_31_1 publication-title: J. Eng. Appl. Sci. – ident: e_1_2_7_24_1 doi: 10.1016/j.ijhydene.2007.05.027 – ident: e_1_2_7_45_1 doi: 10.1287/inte.12.5.50 – volume-title: Extractive Metallurgy 3: Processing Operations and Routes year: 2011 ident: e_1_2_7_16_1 – ident: e_1_2_7_3_1 doi: 10.1016/S0921‐8009(99)00122‐6 – ident: e_1_2_7_38_1 doi: 10.1016/j.ijhydene.2005.04.005 – ident: e_1_2_7_15_1 doi: 10.1016/S0926‐860X(00)00845‐0 – ident: e_1_2_7_47_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.cattod.2006.05.070 – volume-title: High Technology Melting year: 1995 ident: e_1_2_7_32_1 – volume-title: Petroleum Coke: Global Industry Markets and Outlook year: 2015 ident: e_1_2_7_50_1 – ident: e_1_2_7_2_1 – ident: e_1_2_7_41_1 – ident: e_1_2_7_19_1 doi: 10.1016/j.ijhydene.2015.08.102 – ident: e_1_2_7_18_1 doi: 10.1016/j.ijhydene.2015.04.062 – ident: e_1_2_7_46_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.ijhydene.2010.04.035 – ident: e_1_2_7_8_1 doi: 10.1016/j.compchemeng.2006.06.002 – volume-title: Assessing the Effect a Refractory Insulation Lining has on EAF Energy Consumption year: 2014 ident: e_1_2_7_39_1 – volume-title: Principles of Foundry Technology year: 2003 ident: e_1_2_7_33_1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_27_1 doi: 10.1002/9781119990048 – ident: e_1_2_7_11_1 doi: 10.1016/j.carbon.2004.06.003 – ident: e_1_2_7_14_1 – ident: e_1_2_7_40_1 – ident: e_1_2_7_9_1 doi: 10.1016/S1381‐1169(98)00050‐8 – ident: e_1_2_7_17_1 doi: 10.1021/ef020271q – ident: e_1_2_7_22_1 – ident: e_1_2_7_28_1 – volume-title: Electrothermal Conversion and Electrotechnologies Vol. 1: Electrothermal Conversion year: 1997 ident: e_1_2_7_29_1 – ident: e_1_2_7_48_1 doi: 10.2172/789770 – volume-title: Hydrogen from Steam‐Methane Reforming with CO2 Capture year: 2003 ident: e_1_2_7_23_1 – ident: e_1_2_7_20_1 doi: 10.1016/j.ijhydene.2015.11.164 – ident: e_1_2_7_36_1 – ident: e_1_2_7_44_1 – ident: e_1_2_7_42_1 doi: 10.2172/5558263 – volume-title: Chemical Engineering Volume 6: Chemical Engineering Design year: 1999 ident: e_1_2_7_21_1 – ident: e_1_2_7_35_1 doi: 10.1109/TMAG.2002.1017772 – ident: e_1_2_7_4_1 doi: 10.1016/j.enpol.2011.05.050 – ident: e_1_2_7_12_1 doi: 10.1016/j.ijhydene.2008.07.079 – ident: e_1_2_7_10_1 doi: 10.1021/ef9701145 – ident: e_1_2_7_30_1 doi: 10.1007/978-3-319-03479-9 – ident: e_1_2_7_26_1 – volume-title: Electric Arc Furnace Steelmaking year: 2015 ident: e_1_2_7_43_1 – ident: e_1_2_7_7_1 doi: 10.1016/j.ijhydene.2011.07.081 |
| SSID | ssj0001516 |
| Score | 2.4960263 |
| Snippet | Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen.... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1022 |
| SubjectTerms | Carbon Carbon dioxide Carbon tax Catalysis Cost engineering Economic analysis Hydrogen production Industrial engineering Liquid metals Manufacturing engineering Methane Methane pyrolysis Natural gas Natural gas conversion Production costs Pyrolysis Reforming Steam methane reforming Taxes |
| Title | Techno‐Economic Analysis of Methane Pyrolysis in Molten Metals: Decarbonizing Natural Gas |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.201600414 https://www.proquest.com/docview/1920460129 https://www.osti.gov/biblio/1400609 |
| Volume | 40 |
| WOSCitedRecordID | wos000405244800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4125 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001516 issn: 0930-7516 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCDb7FWJQfB02KbzWYTb1KtHrSIKAgeluxsFgTpSlsFPfkT_I3-Eif7sj2IoLd9ZB9kXt9Mki8A-8ZHispaeWik8ITVCflBEkiIuq3Q8gATkW82Efb76u5OX02s4i_4IeqCm7OM3F87Azfx6PCbNBTJV7mpWdJRRolZmOOkvEED5k6ue7cXtTemiJaPV2q_7YV0XBE3tvnh9BumAlMjIwObAp2T0DWPPb3l___1CiyVuJMdF4qyCjN2sAaLE2yE63BflNk_3z-q1cqsoixhWcourauyW3b1OsyKiw8Ddpk9Euh290iNj9iJRTOMyU280RtZ3-SkHuzMjDbgtnd60z33yr0XPBS8I7yO0TpREo3yHUqwQRoEsQj9NEGJCilvllql0mqU3KrUUhqT8iQkAJJQkhn7_iY0BtnAbgGLpZDKRzJ9w4XtCBNrGxLSMm7VbttgE7yq4yMsicnd_hiPUUGpzCPXaVHdaU04qNs_FZQcP7ZsOTlGBCYcIy66qUM4pmzHsdDoJuxU4o1Kwx1FBHjdUDGhoCbwXJC_fCPqnh7f1Gfbf3moBQvcgYW8trMDjfHw2e7CPL6MH0bDvVKhvwBw5fTD |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5Sp9D20PSRUDdJq0OhpyW2VtZKuYUkbkptE4oDgR6EdlYLgeANtltITv0J_Y39JZnZV-JDKJTc9qF9oHl9M5I-AXzyMVJUtiZCr1Wkgs3ID5JAErQ9g0EOMFPlZhPJZGLOz-1pPZuQ18JU_BBtwY0to_TXbOBckN67Yw1FclY8N0szZ5R6AuuKdImUfP3o-_Bs1LpjCmnlgKWNe1FCxw1zY0_urb5hJTJ1CrKwFdR5H7uWwWe48Qi__Qpe1shTHFSq8hrWwuwNvLjHR_gWflSF9r-__zTrlUVDWiKKXIwD19mDOL2eF9XFi5kYF5cEu_keKfK-OAro5yk5iht6o5j4ktZDfPGLTTgbHk8PT6J694UIleyrqO-tzYxGb2LGCWGQDwapSuI8Q40GKXPW1uQ6WNQymDxQIpPLLCEIklGamcbxFnRmxSy8A5FqpU2MZPxeqtBXPrUhIazled1uz2MXoqbnHdbU5LxDxqWrSJWl405zbad14XPb_qoi5Xiw5TYL0hGcYE5c5MlDuKR8h3lobBd2Gvm62nQXjiAvDxYTDuqCLCX5j2-4w-ODaXv2_n8e-gjPTqbjkRt9nXzbhueSoUNZ6dmBznL-M-zCU_y1vFjMP9TafQsmcviz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC7iGkQPeam4apI-BHIa3O3p7en2Jq6bhOiyBAUhh6anpgcE2ZHdNZCc8hP8jf4Sq-YV9xACwds8eh50dVV9Vd39FcAHHyN5ZWsi9FpFKtiM7CAJJEHbMxjkADNVFptIxmNzeWkn9WpC3gtT8UO0CTfWjNJes4KHmyw_-MMaimSseG2WZs4otQKriivJdGB1-G10cdqaY3Jp5YSljXtRQscNc2NPHiy_YckzdQrSsCXU-Ri7ls5n9PIJfvsVvKiRpziqhspreBamb2DjER_hJnyvEu33v--a_cqiIS0RRS7OAufZg5j8nBXVxaupOCuuCXbzPRrIh2IY0M9SMhS_6I1i7EtaD_HJz7fgYnRyfvw5qqsvRKhkX0V9b21mNHoTM04Ig3wwSFUS5xlqNEiRs7Ym18GilsHkgQKZXGYJQZCMwsw0jrehMy2mYQdEqpU2MZLye6lCX_nUhoSwlud9uz2PXYianndYU5NzhYxrV5EqS8ed5tpO68LHtv1NRcrx15Z7LEhHcII5cZEXD-GC4h3mobFd2G_k62rVnTuCvDxZTDioC7KU5D--4Y5Pjs7bs93_eeg9rE2GI3f6Zfx1D9YlI4cy0bMPncXsNryF5_hjcTWfvasH9wO6fPgu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-Economic+Analysis+of+Methane+Pyrolysis+in+Molten+Metals%3A+Decarbonizing+Natural+Gas&rft.jtitle=Chemical+engineering+%26+technology&rft.au=Parkinson%2C+Brett&rft.au=Matthews%2C+Joshua+W&rft.au=McConnaughy%2C+Thomas+B&rft.au=Upham%2C+D+Chester&rft.date=2017-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=40&rft.issue=6&rft.spage=1022&rft_id=info:doi/10.1002%2Fceat.201600414&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon |