Techno‐Economic Analysis of Methane Pyrolysis in Molten Metals: Decarbonizing Natural Gas

Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology Jg. 40; H. 6; S. 1022 - 1030
Hauptverfasser: Parkinson, Brett, Matthews, Joshua W., McConnaughy, Thomas B., Upham, D. Chester, McFarland, Eric W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frankfurt Wiley Subscription Services, Inc 01.06.2017
Wiley Blackwell (John Wiley & Sons)
Schlagworte:
ISSN:0930-7516, 1521-4125
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by‐product. The pyrolysis system at 1500 °C is competitive with a carbon tax of $78 t−1; however, if a catalytic process at 1000 °C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes. Methane pyrolysis using a molten metal‐based process to produce carbon and hydrogen is compared to steam methane reforming for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and steam methane reforming were applied to generate cash‐flow and production costs for several different pyrolysis systems making use of molten metals.
AbstractList Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by‐product. The pyrolysis system at 1500 °C is competitive with a carbon tax of $78 t −1 ; however, if a catalytic process at 1000 °C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes.
Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash‐flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by‐product. The pyrolysis system at 1500 °C is competitive with a carbon tax of $78 t−1; however, if a catalytic process at 1000 °C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes. Methane pyrolysis using a molten metal‐based process to produce carbon and hydrogen is compared to steam methane reforming for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and steam methane reforming were applied to generate cash‐flow and production costs for several different pyrolysis systems making use of molten metals.
Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen. Capital and operating cost models for pyrolysis and SMR were used to generate cash-flow and production costs for several different molten pyrolysis systems. The economics were most sensitive to the methane conversion and the value obtained for the solid carbon by-product. The pyrolysis system at 1500°C is competitive with a carbon tax of $78t-1; however, if a catalytic process at 1000°C were developed using a conventional fired heater, it would be competitive with SMR without a carbon dioxide cost penalty. Several pyrolysis alternatives become competitive with increasing carbon dioxide taxes.
Author Matthews, Joshua W.
Upham, D. Chester
McFarland, Eric W.
Parkinson, Brett
McConnaughy, Thomas B.
Author_xml – sequence: 1
  givenname: Brett
  surname: Parkinson
  fullname: Parkinson, Brett
  organization: University of Queensland
– sequence: 2
  givenname: Joshua W.
  surname: Matthews
  fullname: Matthews, Joshua W.
  organization: Loughborough University
– sequence: 3
  givenname: Thomas B.
  surname: McConnaughy
  fullname: McConnaughy, Thomas B.
  organization: University of Queensland
– sequence: 4
  givenname: D. Chester
  surname: Upham
  fullname: Upham, D. Chester
  organization: University of California
– sequence: 5
  givenname: Eric W.
  surname: McFarland
  fullname: McFarland, Eric W.
  email: ewmcfar@engineering.ucsb.edu
  organization: University of California
BackLink https://www.osti.gov/biblio/1400609$$D View this record in Osti.gov
BookMark eNqFkMFKAzEQhoMo2Favnhc9b51ks2nWW6m1Cq16qCcPIU2zNmWb1CRF6slH8Bl9EresKAjiaZiZ_5vh_9to3zqrETrB0MUA5FxpGbsEMAOgmO6hFs4JTikm-T5qQZFB2ssxO0TtEJYAgOumhR6nWi2s-3h7Hypn3cqopG9ltQ0mJK5MJjoupNXJ_da7ZmhsMnFV1Ha3k1W4SC61kn7mrHk19im5lXHjZZWMZDhCB2Wt0MdftYMerobTwXU6vhvdDPrjVFGCaYplUcw5U5JnAJzovMzzGe1l5VwxxRXnnBW8ZLpQjGheakZJSeY96OVzDGyWZR102tx1IRoRlIm1p9qN1SoKTAFY7b6DzhrR2rvnjQ5RLN3G11aDwAUBygCTnarbqJR3IXhdirU3K-m3AoPYpSx2KYvvlGuA_gLq9zIaZ6OXpvobKxrsxVR6-88TMRj2pz_sJ3iKk6o
CitedBy_id crossref_primary_10_1016_j_clce_2024_100139
crossref_primary_10_1039_D2SE00923D
crossref_primary_10_1016_j_enconman_2020_113125
crossref_primary_10_1016_j_ijhydene_2025_150466
crossref_primary_10_1016_j_ijhydene_2024_08_256
crossref_primary_10_1016_j_ijhydene_2024_03_159
crossref_primary_10_1016_j_ijhydene_2024_08_097
crossref_primary_10_1016_j_ijhydene_2020_11_150
crossref_primary_10_1126_science_adh8872
crossref_primary_10_1016_j_enconman_2022_116641
crossref_primary_10_1016_j_ijhydene_2025_05_021
crossref_primary_10_1016_j_ijhydene_2021_03_151
crossref_primary_10_1016_j_apcatb_2024_125009
crossref_primary_10_1093_ce_zkae112
crossref_primary_10_1016_j_carbon_2022_12_044
crossref_primary_10_1016_j_ijhydene_2021_12_089
crossref_primary_10_3390_chemengineering5010012
crossref_primary_10_1007_s11027_023_10100_6
crossref_primary_10_1016_j_apenergy_2020_116020
crossref_primary_10_1016_j_ijhydene_2023_02_006
crossref_primary_10_1016_j_cej_2024_150274
crossref_primary_10_1016_j_ijhydene_2019_11_143
crossref_primary_10_1016_j_grets_2023_100059
crossref_primary_10_1002_aic_16474
crossref_primary_10_1016_j_apenergy_2021_117481
crossref_primary_10_1039_D4EE06191H
crossref_primary_10_3390_en16207058
crossref_primary_10_1016_j_apenergy_2025_126170
crossref_primary_10_1039_D0EE03768K
crossref_primary_10_1016_j_enconman_2024_119414
crossref_primary_10_1016_j_fuel_2023_127478
crossref_primary_10_1016_j_ijhydene_2017_12_081
crossref_primary_10_1016_j_enconman_2022_116624
crossref_primary_10_1016_j_ijhydene_2023_07_308
crossref_primary_10_1039_D1SE01408K
crossref_primary_10_3390_en14238182
crossref_primary_10_1016_j_ijhydene_2019_03_023
crossref_primary_10_20517_energymater_2025_63
crossref_primary_10_1016_j_ijhydene_2024_12_361
crossref_primary_10_1080_17597269_2025_2524903
crossref_primary_10_1016_j_ijhydene_2023_08_186
crossref_primary_10_1016_j_ijhydene_2021_12_029
crossref_primary_10_1016_j_ijhydene_2022_12_169
crossref_primary_10_1126_science_aao5023
crossref_primary_10_1016_j_ijhydene_2025_05_353
crossref_primary_10_1002_advs_202203221
crossref_primary_10_1088_1748_9326_aca553
crossref_primary_10_1016_j_seta_2021_101434
crossref_primary_10_1039_D0SE01369B
crossref_primary_10_1016_j_fuel_2022_126697
crossref_primary_10_1016_j_enconman_2023_116707
crossref_primary_10_1016_j_ijhydene_2025_01_065
crossref_primary_10_1088_1742_6596_2893_1_012009
crossref_primary_10_1002_adma_202408466
crossref_primary_10_1016_j_enconman_2024_118224
crossref_primary_10_1002_cssc_201801356
crossref_primary_10_1016_j_ijhydene_2023_02_035
crossref_primary_10_1016_j_rser_2024_114999
crossref_primary_10_1063_5_0227299
crossref_primary_10_1016_j_rser_2023_113323
crossref_primary_10_1016_j_clce_2023_100103
crossref_primary_10_1016_j_ijhydene_2020_11_079
crossref_primary_10_1016_j_ijhydene_2025_150310
crossref_primary_10_1039_D5GC00946D
crossref_primary_10_1016_j_ijhydene_2024_07_225
crossref_primary_10_1016_j_cej_2021_128730
crossref_primary_10_1002_cssc_202402335
crossref_primary_10_1016_j_ijhydene_2023_06_292
crossref_primary_10_1039_D5RA03463A
crossref_primary_10_1016_j_ijhydene_2023_03_123
crossref_primary_10_1016_j_ijhydene_2022_11_160
crossref_primary_10_1016_j_apenergy_2025_125276
crossref_primary_10_3390_hydrogen6030066
crossref_primary_10_1016_j_ijhydene_2023_02_047
crossref_primary_10_1016_j_ijhydene_2023_11_124
crossref_primary_10_1016_j_apenergy_2024_123137
crossref_primary_10_1016_j_ijhydene_2024_04_213
crossref_primary_10_1016_j_ijhydene_2025_150724
crossref_primary_10_3390_catal15020145
crossref_primary_10_1016_j_ijhydene_2025_150168
crossref_primary_10_1039_D3SE00972F
crossref_primary_10_1016_j_enconman_2017_12_063
crossref_primary_10_1016_j_energy_2019_03_025
crossref_primary_10_1016_j_ijhydene_2024_04_056
crossref_primary_10_1039_C8EE02079E
crossref_primary_10_3390_app112110389
crossref_primary_10_1016_j_jeem_2024_103035
crossref_primary_10_1002_open_202300112
crossref_primary_10_1016_j_jcou_2020_101399
crossref_primary_10_1016_j_enconman_2023_117771
crossref_primary_10_1016_j_ijhydene_2024_05_142
crossref_primary_10_1002_sus2_157
crossref_primary_10_1016_j_cej_2020_127407
crossref_primary_10_1007_s11244_023_01799_3
crossref_primary_10_1016_j_ijhydene_2020_04_100
crossref_primary_10_1007_s10311_024_01732_4
crossref_primary_10_1016_j_jaap_2024_106727
crossref_primary_10_1016_j_coche_2023_100968
Cites_doi 10.1016/j.ijhydene.2006.06.030
10.2172/15002482
10.1016/j.ijhydene.2007.05.027
10.1287/inte.12.5.50
10.1016/S0921‐8009(99)00122‐6
10.1016/j.ijhydene.2005.04.005
10.1016/S0926‐860X(00)00845‐0
10.1016/j.cattod.2006.05.070
10.1016/j.ijhydene.2015.08.102
10.1016/j.ijhydene.2015.04.062
10.1016/j.ijhydene.2010.04.035
10.1016/j.compchemeng.2006.06.002
10.1002/9781119990048
10.1016/j.carbon.2004.06.003
10.1016/S1381‐1169(98)00050‐8
10.1021/ef020271q
10.2172/789770
10.1016/j.ijhydene.2015.11.164
10.2172/5558263
10.1109/TMAG.2002.1017772
10.1016/j.enpol.2011.05.050
10.1016/j.ijhydene.2008.07.079
10.1021/ef9701145
10.1007/978-3-319-03479-9
10.1016/j.ijhydene.2011.07.081
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7U5
8FD
L7M
OTOTI
DOI 10.1002/ceat.201600414
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4125
EndPage 1030
ExternalDocumentID 1400609
10_1002_ceat_201600414
CEAT201600414
Genre article
GrantInformation_xml – fundername: United States Department of Energy‐Basic Energy Sciences
  funderid: DEFG02‐89ER14048
– fundername: University of Queensland, Dow Centre for Sustainable Engineering Innovation
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7U5
8FD
L7M
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4214-1a99d86ca830082e5f55b473fdc6c8c888698f6e9c62e8fe642f2d7075d106b33
IEDL.DBID DRFUL
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405244800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0930-7516
IngestDate Thu May 18 22:31:15 EDT 2023
Sun Nov 30 05:06:08 EST 2025
Sat Nov 29 02:45:10 EST 2025
Tue Nov 18 22:19:36 EST 2025
Wed Jan 22 16:27:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4214-1a99d86ca830082e5f55b473fdc6c8c888698f6e9c62e8fe642f2d7075d106b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
DEFG02-89ER14048
USDOE
OpenAccessLink https://www.osti.gov/biblio/1400609
PQID 1920460129
PQPubID 2045181
PageCount 9
ParticipantIDs osti_scitechconnect_1400609
proquest_journals_1920460129
crossref_primary_10_1002_ceat_201600414
crossref_citationtrail_10_1002_ceat_201600414
wiley_primary_10_1002_ceat_201600414_CEAT201600414
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Frankfurt
PublicationPlace_xml – name: Frankfurt
– name: Germany
PublicationTitle Chemical engineering & technology
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2002; 38
1997; 136
2002; 17
2004; 42
2010; 35
2012
2011
2006; 32
2010
1997
2006
1995
2003
2011; 36
2002
2011; 39
2006; 116
2007; 31
2007; 32
1999
2009; 34
2001; 212
2001
2015; 40
2000; 32
2015; 41
1987
2005; 30
2016
2015
1982
2007; 2
2014
2013
1998; 12
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
Jain P. J. (e_1_2_7_33_1) 2003
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
Molburg J. C. (e_1_2_7_23_1) 2003
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Jones J. A. T. (e_1_2_7_43_1) 2015
Vignes A. (e_1_2_7_16_1) 2011
e_1_2_7_25_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Sinnot R. K. (e_1_2_7_21_1) 1999
(e_1_2_7_50_1) 2015
e_1_2_7_18_1
Taft R. T. (e_1_2_7_32_1) 1995
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
Taddeo M. (e_1_2_7_39_1) 2014
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
Golovanov N. (e_1_2_7_29_1) 1997
Abdallah M. (e_1_2_7_31_1) 2007; 2
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 136
  start-page: 185
  year: 1997
  end-page: 194
  publication-title: J. Mol. Catal. A: Chem.
– volume: 36
  start-page: 12877
  year: 2011
  end-page: 12886
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 14134
  year: 2015
  end-page: 14146
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  start-page: 1149
  year: 2005
  end-page: 1158
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 41
  year: 1998
  end-page: 48
  publication-title: Energy Fuels
– volume: 41
  start-page: 8159
  year: 2015
  end-page: 8167
  publication-title: Int. J. Hydrogen Energy
– year: 1987
– year: 2001
– year: 2003
– volume: 2
  start-page: 1178
  issue: 7
  year: 2007
  end-page: 1182
  publication-title: J. Eng. Appl. Sci.
– volume: 32
  start-page: 3797
  year: 2007
  end-page: 3810
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 8020
  year: 2015
  end-page: 8033
  publication-title: Int. J. Hydrogen Energy
– year: 2016
– volume: 32
  start-page: 32
  year: 2006
  end-page: 37
  publication-title: Int. J. Hydrogen Energy
– year: 2014
– year: 2010
– volume: 38
  start-page: 1789
  year: 2002
  end-page: 1796
  publication-title: IEEE Trans. Magn.
– year: 2012
– volume: 31
  start-page: 445
  year: 2007
  end-page: 455
  publication-title: Comput. Chem. Eng.
– volume: 116
  start-page: 281
  year: 2006
  end-page: 288
  publication-title: Catal. Today
– year: 1982
– volume: 34
  start-page: 4488
  year: 2009
  end-page: 4494
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 8371
  year: 2010
  end-page: 8384
  publication-title: Int. J. Hydrogen Energy
– volume: 17
  start-page: 705
  year: 2002
  end-page: 713
  publication-title: Energy Fuels
– year: 2002
– year: 2006
– volume: 32
  start-page: 395
  year: 2000
  end-page: 412
  publication-title: Ecol. Econ.
– year: 1997
– volume: 212
  start-page: 83
  year: 2001
  end-page: 96
  publication-title: Appl. Catal., A
– year: 1995
– volume: 42
  start-page: 2641
  year: 2004
  end-page: 2648
  publication-title: Carbon
– year: 2015
– volume: 39
  start-page: 5137
  year: 2011
  end-page: 5146
  publication-title: Energy Policy
– year: 1999
– year: 2013
– ident: e_1_2_7_34_1
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ijhydene.2006.06.030
– ident: e_1_2_7_25_1
  doi: 10.2172/15002482
– ident: e_1_2_7_51_1
– volume: 2
  start-page: 1178
  issue: 7
  year: 2007
  ident: e_1_2_7_31_1
  publication-title: J. Eng. Appl. Sci.
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ijhydene.2007.05.027
– ident: e_1_2_7_45_1
  doi: 10.1287/inte.12.5.50
– volume-title: Extractive Metallurgy 3: Processing Operations and Routes
  year: 2011
  ident: e_1_2_7_16_1
– ident: e_1_2_7_3_1
  doi: 10.1016/S0921‐8009(99)00122‐6
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ijhydene.2005.04.005
– ident: e_1_2_7_15_1
  doi: 10.1016/S0926‐860X(00)00845‐0
– ident: e_1_2_7_47_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cattod.2006.05.070
– volume-title: High Technology Melting
  year: 1995
  ident: e_1_2_7_32_1
– volume-title: Petroleum Coke: Global Industry Markets and Outlook
  year: 2015
  ident: e_1_2_7_50_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_41_1
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ijhydene.2015.08.102
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijhydene.2015.04.062
– ident: e_1_2_7_46_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ijhydene.2010.04.035
– ident: e_1_2_7_8_1
  doi: 10.1016/j.compchemeng.2006.06.002
– volume-title: Assessing the Effect a Refractory Insulation Lining has on EAF Energy Consumption
  year: 2014
  ident: e_1_2_7_39_1
– volume-title: Principles of Foundry Technology
  year: 2003
  ident: e_1_2_7_33_1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_27_1
  doi: 10.1002/9781119990048
– ident: e_1_2_7_11_1
  doi: 10.1016/j.carbon.2004.06.003
– ident: e_1_2_7_14_1
– ident: e_1_2_7_40_1
– ident: e_1_2_7_9_1
  doi: 10.1016/S1381‐1169(98)00050‐8
– ident: e_1_2_7_17_1
  doi: 10.1021/ef020271q
– ident: e_1_2_7_22_1
– ident: e_1_2_7_28_1
– volume-title: Electrothermal Conversion and Electrotechnologies Vol. 1: Electrothermal Conversion
  year: 1997
  ident: e_1_2_7_29_1
– ident: e_1_2_7_48_1
  doi: 10.2172/789770
– volume-title: Hydrogen from Steam‐Methane Reforming with CO2 Capture
  year: 2003
  ident: e_1_2_7_23_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ijhydene.2015.11.164
– ident: e_1_2_7_36_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_42_1
  doi: 10.2172/5558263
– volume-title: Chemical Engineering Volume 6: Chemical Engineering Design
  year: 1999
  ident: e_1_2_7_21_1
– ident: e_1_2_7_35_1
  doi: 10.1109/TMAG.2002.1017772
– ident: e_1_2_7_4_1
  doi: 10.1016/j.enpol.2011.05.050
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ijhydene.2008.07.079
– ident: e_1_2_7_10_1
  doi: 10.1021/ef9701145
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-319-03479-9
– ident: e_1_2_7_26_1
– volume-title: Electric Arc Furnace Steelmaking
  year: 2015
  ident: e_1_2_7_43_1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ijhydene.2011.07.081
SSID ssj0001516
Score 2.4960263
Snippet Methane pyrolysis using a molten metal process to produce hydrogen is compared to steam methane reforming (SMR) for the industrial production of hydrogen....
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1022
SubjectTerms Carbon
Carbon dioxide
Carbon tax
Catalysis
Cost engineering
Economic analysis
Hydrogen production
Industrial engineering
Liquid metals
Manufacturing engineering
Methane
Methane pyrolysis
Natural gas
Natural gas conversion
Production costs
Pyrolysis
Reforming
Steam methane reforming
Taxes
Title Techno‐Economic Analysis of Methane Pyrolysis in Molten Metals: Decarbonizing Natural Gas
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.201600414
https://www.proquest.com/docview/1920460129
https://www.osti.gov/biblio/1400609
Volume 40
WOSCitedRecordID wos000405244800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4125
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001516
  issn: 0930-7516
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCDb7FWJQfB02KbzWYTb1KtHrSIKAgeluxsFgTpSlsFPfkT_I3-Eif7sj2IoLd9ZB9kXt9Mki8A-8ZHispaeWik8ITVCflBEkiIuq3Q8gATkW82Efb76u5OX02s4i_4IeqCm7OM3F87Azfx6PCbNBTJV7mpWdJRRolZmOOkvEED5k6ue7cXtTemiJaPV2q_7YV0XBE3tvnh9BumAlMjIwObAp2T0DWPPb3l___1CiyVuJMdF4qyCjN2sAaLE2yE63BflNk_3z-q1cqsoixhWcourauyW3b1OsyKiw8Ddpk9Euh290iNj9iJRTOMyU280RtZ3-SkHuzMjDbgtnd60z33yr0XPBS8I7yO0TpREo3yHUqwQRoEsQj9NEGJCilvllql0mqU3KrUUhqT8iQkAJJQkhn7_iY0BtnAbgGLpZDKRzJ9w4XtCBNrGxLSMm7VbttgE7yq4yMsicnd_hiPUUGpzCPXaVHdaU04qNs_FZQcP7ZsOTlGBCYcIy66qUM4pmzHsdDoJuxU4o1Kwx1FBHjdUDGhoCbwXJC_fCPqnh7f1Gfbf3moBQvcgYW8trMDjfHw2e7CPL6MH0bDvVKhvwBw5fTD
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5Sp9D20PSRUDdJq0OhpyW2VtZKuYUkbkptE4oDgR6EdlYLgeANtltITv0J_Y39JZnZV-JDKJTc9qF9oHl9M5I-AXzyMVJUtiZCr1Wkgs3ID5JAErQ9g0EOMFPlZhPJZGLOz-1pPZuQ18JU_BBtwY0to_TXbOBckN67Yw1FclY8N0szZ5R6AuuKdImUfP3o-_Bs1LpjCmnlgKWNe1FCxw1zY0_urb5hJTJ1CrKwFdR5H7uWwWe48Qi__Qpe1shTHFSq8hrWwuwNvLjHR_gWflSF9r-__zTrlUVDWiKKXIwD19mDOL2eF9XFi5kYF5cEu_keKfK-OAro5yk5iht6o5j4ktZDfPGLTTgbHk8PT6J694UIleyrqO-tzYxGb2LGCWGQDwapSuI8Q40GKXPW1uQ6WNQymDxQIpPLLCEIklGamcbxFnRmxSy8A5FqpU2MZPxeqtBXPrUhIazled1uz2MXoqbnHdbU5LxDxqWrSJWl405zbad14XPb_qoi5Xiw5TYL0hGcYE5c5MlDuKR8h3lobBd2Gvm62nQXjiAvDxYTDuqCLCX5j2-4w-ODaXv2_n8e-gjPTqbjkRt9nXzbhueSoUNZ6dmBznL-M-zCU_y1vFjMP9TafQsmcviz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEC7iGkQPeam4apI-BHIa3O3p7en2Jq6bhOiyBAUhh6anpgcE2ZHdNZCc8hP8jf4Sq-YV9xACwds8eh50dVV9Vd39FcAHHyN5ZWsi9FpFKtiM7CAJJEHbMxjkADNVFptIxmNzeWkn9WpC3gtT8UO0CTfWjNJes4KHmyw_-MMaimSseG2WZs4otQKriivJdGB1-G10cdqaY3Jp5YSljXtRQscNc2NPHiy_YckzdQrSsCXU-Ri7ls5n9PIJfvsVvKiRpziqhspreBamb2DjER_hJnyvEu33v--a_cqiIS0RRS7OAufZg5j8nBXVxaupOCuuCXbzPRrIh2IY0M9SMhS_6I1i7EtaD_HJz7fgYnRyfvw5qqsvRKhkX0V9b21mNHoTM04Ig3wwSFUS5xlqNEiRs7Ym18GilsHkgQKZXGYJQZCMwsw0jrehMy2mYQdEqpU2MZLye6lCX_nUhoSwlud9uz2PXYianndYU5NzhYxrV5EqS8ed5tpO68LHtv1NRcrx15Z7LEhHcII5cZEXD-GC4h3mobFd2G_k62rVnTuCvDxZTDioC7KU5D--4Y5Pjs7bs93_eeg9rE2GI3f6Zfx1D9YlI4cy0bMPncXsNryF5_hjcTWfvasH9wO6fPgu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-Economic+Analysis+of+Methane+Pyrolysis+in+Molten+Metals%3A+Decarbonizing+Natural+Gas&rft.jtitle=Chemical+engineering+%26+technology&rft.au=Parkinson%2C+Brett&rft.au=Matthews%2C+Joshua+W&rft.au=McConnaughy%2C+Thomas+B&rft.au=Upham%2C+D+Chester&rft.date=2017-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=40&rft.issue=6&rft.spage=1022&rft_id=info:doi/10.1002%2Fceat.201600414&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon