A novel parallel algorithm for large-scale Fock matrix construction with small locally distributed memory architectures: RT parallel algorithm

We developed a novel parallel algorithm for large‐scale Fock matrix calculation with small locally distributed memory architectures, and named it the “RT parallel algorithm.” The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of comput...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 23; no. 14; pp. 1337 - 1346
Main Authors: Takashima, Hajime, Yamada, So, Obara, Shigeru, Kitamura, Kunihiro, Inabata, Shinjiro, Miyakawa, Nobuaki, Tanabe, Kazutoshi, Nagashima, Umpei
Format: Journal Article
Language:English
Published: New York Wiley Subscription Services, Inc., A Wiley Company 15.11.2002
Subjects:
ISSN:0192-8651, 1096-987X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We developed a novel parallel algorithm for large‐scale Fock matrix calculation with small locally distributed memory architectures, and named it the “RT parallel algorithm.” The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large‐scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well‐balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large‐scale biological molecules with more than thousands of basis functions. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1337–1346, 2002
AbstractList We developed a novel parallel algorithm for large-scale Fock matrix calculation with small locally distributed memory architectures, and named it the "RT parallel algorithm." The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large-scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well-balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large-scale biological molecules with more than thousands of basis functions.
We developed a novel parallel algorithm for large-scale Fock matrix calculation with small locally distributed memory architectures, and named it the "RT parallel algorithm." The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large-scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well-balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large-scale biological molecules with more than thousands of basis functions.We developed a novel parallel algorithm for large-scale Fock matrix calculation with small locally distributed memory architectures, and named it the "RT parallel algorithm." The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large-scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well-balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large-scale biological molecules with more than thousands of basis functions.
We developed a novel parallel algorithm for large‐scale Fock matrix calculation with small locally distributed memory architectures, and named it the “RT parallel algorithm.” The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large‐scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well‐balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large‐scale biological molecules with more than thousands of basis functions. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1337–1346, 2002
We developed a novel parallel algorithm for large‐scale Fock matrix calculation with small locally distributed memory architectures, and named it the “ RT parallel algorithm.” The RT parallel algorithm actively involves the concept of integral screening, which is indispensable for reduction of computing times with large‐scale biological molecules. The primary characteristic of this algorithm is parallel efficiency, which is achieved by well‐balanced reduction of both communicating and computing volume. Only the density matrix data necessary for Fock matrix calculations are communicated, and the data once communicated are reutilized for calculations as many times as possible. The RT parallel algorithm is a scalable method because required memory volume does not depend on the number of basis functions. This algorithm automatically includes a partial summing technique that is indispensable for maintaining computing accuracy, and can also include some conventional methods to reduce calculation times. In our analysis, the RT parallel algorithm had better performance than other methods for massively parallel processors. The RT parallel algorithm is most suitable for massively parallel and distributed Fock matrix calculations for large‐scale biological molecules with more than thousands of basis functions. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1337–1346, 2002
Author Takashima, Hajime
Tanabe, Kazutoshi
Nagashima, Umpei
Inabata, Shinjiro
Obara, Shigeru
Miyakawa, Nobuaki
Yamada, So
Kitamura, Kunihiro
Author_xml – sequence: 1
  givenname: Hajime
  surname: Takashima
  fullname: Takashima, Hajime
  email: hajime.takashima@po.rd.taisho.co.jp
  organization: Research Computer System Division, Taisho Pharmaceutical Co. Ltd., Saitama, 330-8530, Japan
– sequence: 2
  givenname: So
  surname: Yamada
  fullname: Yamada, So
  organization: Fuji Xerox Co. Ltd., Ebina, Kanagawa, 243-0494, Japan
– sequence: 3
  givenname: Shigeru
  surname: Obara
  fullname: Obara, Shigeru
  organization: Chemistry Laboratory, Kushiro Campus, Hokkaido University of Education, Kushiro, Hokkaido, 085-8580, Japan
– sequence: 4
  givenname: Kunihiro
  surname: Kitamura
  fullname: Kitamura, Kunihiro
  organization: Research Computer System Division, Taisho Pharmaceutical Co. Ltd., Saitama, 330-8530, Japan
– sequence: 5
  givenname: Shinjiro
  surname: Inabata
  fullname: Inabata, Shinjiro
  organization: Fuji Xerox Co. Ltd., Ebina, Kanagawa, 243-0494, Japan
– sequence: 6
  givenname: Nobuaki
  surname: Miyakawa
  fullname: Miyakawa, Nobuaki
  organization: Fuji Xerox Co. Ltd., Ebina, Kanagawa, 243-0494, Japan
– sequence: 7
  givenname: Kazutoshi
  surname: Tanabe
  fullname: Tanabe, Kazutoshi
  organization: Research Institute of Computational Sciences, National Institute for Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 307-8568, Japan
– sequence: 8
  givenname: Umpei
  surname: Nagashima
  fullname: Nagashima, Umpei
  organization: Tsukuba Advanced Computing Center, National Institute for Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 307-8561, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12214316$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9OFDEUhxuDkQW98AVMr0y4GOifmXbGO7ICiyGYEIzeNZ3OGSh0pmvbEfYlfGYKC5oYlaRJT3K-32lzvi20MfoREHpLyS4lhO1dGZMLyvkLNKOkEUVTy28baEZow4paVHQTbcV4RQjhlShfoU3KGC05FTP0cx-P_gc4vNRBO5cL7S58sOlywL0P2OlwAUU02gE-9OYaDzoFe4uNH2MKk0nWj_gm4zgOOY-dz6hb4c7mtm2nBB0eYPBhhXUwlzaBSVOA-AGfnf_lzdfoZa9dhDeP9zb6cnhwPl8UJ5-Pjuf7J4UpGeVF1fad6CvWdqYVddOURICAppe8ao1goElpmo4QKjRIw7TUrDdEQj6MUwp8G71fz10G_32CmNRgowHn9Ah-ikoyIgRrqmfBvMeaV5V4HiS0zt8rM_juEZzaATq1DHbQYaWenGRgZw2Y4GMM0P9GiLr3rbJv9eA7s3t_sMYmfS8lBW3d_xI31sHq36PVp_n8KVGsE1kp3P5K6HCthOSyUl9Pj9RiwU_52UemJL8DxAHNAw
CitedBy_id crossref_primary_10_1016_j_cplett_2012_12_021
crossref_primary_10_2477_jccj_4_179
crossref_primary_10_1002_jcc_20549
crossref_primary_10_1016_S0009_2614_03_01091_1
crossref_primary_10_1002_jcc_21108
crossref_primary_10_2477_jccj_5_179
crossref_primary_10_1002_jcc_21531
Cites_doi 10.1016/S0010-4655(01)00353-8
10.1007/BF01113269
10.1002/(SICI)1096-987X(19990130)20:2<185::AID-JCC1>3.0.CO;2-L
10.1002/qua.560400609
10.1002/jcc.540141112
10.1002/jcc.540160108
10.1002/jcc.540100111
10.1063/1.473833
10.1002/jcc.540141004
10.1002/(SICI)1096-987X(199903)20:4<443::AID-JCC5>3.0.CO;2-B
10.1063/1.1316012
10.1063/1.468836
10.1016/S0009-2614(01)00386-4
10.1002/jcc.540030314
10.1002/(SICI)1096-987X(19960115)17:1<124::AID-JCC10>3.0.CO;2-N
10.1021/bk-1995-0592
10.1002/(SICI)1097-461X(1997)61:1<137::AID-QUA16>3.0.CO;2-B
10.1002/(SICI)1096-987X(19960115)17:1<109::AID-JCC9>3.0.CO;2-V
10.1086/177668
10.1021/jp980260r
10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z
10.1016/S0927-0256(98)00086-X
10.1016/S0009-2614(01)00956-3
10.1002/jcc.540070305
ContentType Journal Article
Copyright Copyright © 2002 Wiley Periodicals, Inc.
Copyright 2002 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2002 Wiley Periodicals, Inc.
– notice: Copyright 2002 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/jcc.10133
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1346
ExternalDocumentID 640361
12214316
10_1002_jcc_10133
JCC10133
ark_67375_WNG_HH3N3RD2_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Grant‐in‐Aid for the Scientific Research from the Ministry of Education, Science, and Culture
– fundername: New Energy and Industrial Technology Development Organization
– fundername: Science and Technology Agency
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZCG
ZY4
ZZTAW
~IA
~KM
~WT
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
RWI
RWK
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4213-5bfd6f52bdcb6899406e6e9f735bc62ea04c9d0016ae7c2a7a2fc07e07e2311e3
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000178349800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
IngestDate Sun Nov 09 12:39:56 EST 2025
Thu Oct 02 10:17:43 EDT 2025
Thu Oct 02 10:50:43 EDT 2025
Wed Feb 19 01:25:10 EST 2025
Tue Nov 18 22:17:43 EST 2025
Sat Nov 29 02:55:16 EST 2025
Wed Jan 22 16:24:40 EST 2025
Tue Nov 11 03:31:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2002 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4213-5bfd6f52bdcb6899406e6e9f735bc62ea04c9d0016ae7c2a7a2fc07e07e2311e3
Notes ArticleID:JCC10133
Grant-in-Aid for the Scientific Research from the Ministry of Education, Science, and Culture
Science and Technology Agency
istex:82F8C3B9FB1C130D027E5567BD80ABE663B17CCA
ark:/67375/WNG-HH3N3RD2-7
New Energy and Industrial Technology Development Organization
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 12214316
PQID 20187354
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_72066295
proquest_miscellaneous_21483556
proquest_miscellaneous_20187354
pubmed_primary_12214316
crossref_primary_10_1002_jcc_10133
crossref_citationtrail_10_1002_jcc_10133
wiley_primary_10_1002_jcc_10133_JCC10133
istex_primary_ark_67375_WNG_HH3N3RD2_7
PublicationCentury 2000
PublicationDate 2002-11-15
15 November 2002
2002-Nov-15
20021115
PublicationDateYYYYMMDD 2002-11-15
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-15
  day: 15
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2002
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Panas, I.; Almlöf, J.; Feyereisen, M. W. Int J Quantum Chem 1991, 40, 797.
Furlani, T. R.; King, H. F. J Comput Chem 1995, 16, 91.
Harrison, R. J.; Guest, M. F.; Kendall, R. A.; Bernholdt, D. E.; Wong, A. T.; Stave, M.; Anchell, J. L.; Hess, A. C.; Littlefield, R. J.; Fann, G. L.; Nieplocha, J.; Thomas, G. S.; Tilson, J. L.; Shepard, R. L.; Wagner, A. F.; Foster, I. T.; Lusk, E.; Stevens, R. J Comput Chem 1996, 17, 124.
Strout, D. L.; Scuseria, G. E. J Chem Phys 1995, 102, 8448.
Tsuda, K.; Kaneko, H.; Shimada, J.; Takada, T. Comp Phys Comm 2001, 142, 140.
Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J Comput Chem 1993, 14, 1347.
Sato, F.; Yoshihiro, T.; Era, M.; Kashiwagi, H. Chem Phys Lett 2001, 346, 645.
Takashima, H.; Kitamura, K.; Tanabe, K.; Nagashima, U. J Comput Chem 1999, 20, 443.
Nagashima, U.; Obara, S.; Murakami, K.; Amisaki, T.; Kitamura, K.; Takashima, H.; Kitao, O.; Tanabe, K.; Inabata, S.; Yamada, S.; Miyakawa, N. JCPE Newslett (in Japanese) 1997, 9, 1.
Cremer, D.; Gauss, J. J Comput Chem 1986, 7, 274.
Stewart, J. J. P. Int J Quantum Chem 1996, 58, 133.
Fukushige, T.; Taiji, M.; Makino, J.; Ebisuzaki, T.; Sugimoto, D. Astrophys J 1996, 468, 51.
Brode, S.; Horn, H.; Ehrig, M.; Moldrup, D.; Rice, J. E.; Ahlrichs, R. J Comput Chem 1993, 14, 1142.
Mattson, T. G. Parallel Computing in Computational Chemistry; American Chemical Society: Washington, DC, 1995.
Challacombe, M. J Chem Phys 2000, 113, 10037.
Alsenoy, C. V.; Yu, C. H.; Peeters, A.; Martin, J. M. L.; Schäfer L. J Phys Chem A 1998, 102, 2246.
Almlöf, J.; Faegri, K.; Korsell, K. J Comput Chem 1982, 3, 385.
Foster, I. T.; Tilaon, J. L.; Wagner, A. F.; Shepard, R. L.; HarriSon., R. J.; Kendall, R. A.; Littlefield. R. J. J Comput Chem 1996, 17, 109.
Yoshihiro, T.; Sato, F.; Kashiwagi, H. Chem Phys Lett 2001, 346, 313.
Sakuma, T.; Kashiwagi, H.; Takada, T.; Nakamura, H. Int J Quantum Chem 1997, 61, 137.
Schwegler, E.; Challacombe, M.; Head-Gordon, M. J Chem Phys 1995, 106, 9708.
Colvin, M. E.; Janssen, C. L.; Whiteside, R. A.; Tong, C. H. Theor Chim Acta 1993, 84, 301.
Häser, M.; Ahlrichs, R. J Comput Chem 1989, 10, 104.
Nagashima, U.; Obara, S.; Murakami, K.; Yoshii, T.; Shirakawa, S.; Amisaki, T.; Kitamura, K.; Takashima, H.; Kitao, O.; Tanabe, K. Comput Mater Sci 1999, 14, 132.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. A.; Cui, Q.; Morokuma, K.; Malick, K. D.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johson, B. G.; Chen, W.; Wong, M.; Anders, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A1); Gaussian, Inc.: Pittsburgh, PA, 1998.
Toyoda, S.; Miyagawa, H.; Kitamura, K.; Amisaki, T.; Hashimoto, E.; Ikeda, H.; Kusumi, A.; Miyakawa, N. J Comput Chem 1999, 20, 185.
1997; 61
1996; 17
2001; 142
2000; 113
1993; 84
1995; 16
1998
1995
1999; 20
1996; 58
2001; 346
1997; 9
1996; 468
1993; 14
1989; 10
2001
1986; 7
2000; II
1982; 3
1991; 40
1999; 14
1995; 106
1995; 102
1998; 102
1993; IV
e_1_2_7_5_2
e_1_2_7_4_2
Nagashima U. (e_1_2_7_29_2) 1999; 14
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_12_2
Cioslowski J. (e_1_2_7_2_2) 1993
e_1_2_7_11_2
e_1_2_7_10_2
Frisch M. J. (e_1_2_7_19_2) 1998
e_1_2_7_27_2
e_1_2_7_28_2
Mattson T. G. (e_1_2_7_3_2) 1995
Nagashima U. (e_1_2_7_30_2) 1997; 9
Schwegler E. (e_1_2_7_13_2) 1995; 106
Sato F. (e_1_2_7_9_2) 2001; 346
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_20_2
(e_1_2_7_26_2) 2000
References_xml – reference: Yoshihiro, T.; Sato, F.; Kashiwagi, H. Chem Phys Lett 2001, 346, 313.
– reference: Alsenoy, C. V.; Yu, C. H.; Peeters, A.; Martin, J. M. L.; Schäfer L. J Phys Chem A 1998, 102, 2246.
– reference: Schwegler, E.; Challacombe, M.; Head-Gordon, M. J Chem Phys 1995, 106, 9708.
– reference: Stewart, J. J. P. Int J Quantum Chem 1996, 58, 133.
– reference: Strout, D. L.; Scuseria, G. E. J Chem Phys 1995, 102, 8448.
– reference: Sakuma, T.; Kashiwagi, H.; Takada, T.; Nakamura, H. Int J Quantum Chem 1997, 61, 137.
– reference: Nagashima, U.; Obara, S.; Murakami, K.; Yoshii, T.; Shirakawa, S.; Amisaki, T.; Kitamura, K.; Takashima, H.; Kitao, O.; Tanabe, K. Comput Mater Sci 1999, 14, 132.
– reference: Cremer, D.; Gauss, J. J Comput Chem 1986, 7, 274.
– reference: Fukushige, T.; Taiji, M.; Makino, J.; Ebisuzaki, T.; Sugimoto, D. Astrophys J 1996, 468, 51.
– reference: Foster, I. T.; Tilaon, J. L.; Wagner, A. F.; Shepard, R. L.; HarriSon., R. J.; Kendall, R. A.; Littlefield. R. J. J Comput Chem 1996, 17, 109.
– reference: Almlöf, J.; Faegri, K.; Korsell, K. J Comput Chem 1982, 3, 385.
– reference: Häser, M.; Ahlrichs, R. J Comput Chem 1989, 10, 104.
– reference: Furlani, T. R.; King, H. F. J Comput Chem 1995, 16, 91.
– reference: Challacombe, M. J Chem Phys 2000, 113, 10037.
– reference: Panas, I.; Almlöf, J.; Feyereisen, M. W. Int J Quantum Chem 1991, 40, 797.
– reference: Brode, S.; Horn, H.; Ehrig, M.; Moldrup, D.; Rice, J. E.; Ahlrichs, R. J Comput Chem 1993, 14, 1142.
– reference: Tsuda, K.; Kaneko, H.; Shimada, J.; Takada, T. Comp Phys Comm 2001, 142, 140.
– reference: Harrison, R. J.; Guest, M. F.; Kendall, R. A.; Bernholdt, D. E.; Wong, A. T.; Stave, M.; Anchell, J. L.; Hess, A. C.; Littlefield, R. J.; Fann, G. L.; Nieplocha, J.; Thomas, G. S.; Tilson, J. L.; Shepard, R. L.; Wagner, A. F.; Foster, I. T.; Lusk, E.; Stevens, R. J Comput Chem 1996, 17, 124.
– reference: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. A.; Cui, Q.; Morokuma, K.; Malick, K. D.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johson, B. G.; Chen, W.; Wong, M.; Anders, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A1); Gaussian, Inc.: Pittsburgh, PA, 1998.
– reference: Toyoda, S.; Miyagawa, H.; Kitamura, K.; Amisaki, T.; Hashimoto, E.; Ikeda, H.; Kusumi, A.; Miyakawa, N. J Comput Chem 1999, 20, 185.
– reference: Sato, F.; Yoshihiro, T.; Era, M.; Kashiwagi, H. Chem Phys Lett 2001, 346, 645.
– reference: Colvin, M. E.; Janssen, C. L.; Whiteside, R. A.; Tong, C. H. Theor Chim Acta 1993, 84, 301.
– reference: Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J Comput Chem 1993, 14, 1347.
– reference: Takashima, H.; Kitamura, K.; Tanabe, K.; Nagashima, U. J Comput Chem 1999, 20, 443.
– reference: Mattson, T. G. Parallel Computing in Computational Chemistry; American Chemical Society: Washington, DC, 1995.
– reference: Nagashima, U.; Obara, S.; Murakami, K.; Amisaki, T.; Kitamura, K.; Takashima, H.; Kitao, O.; Tanabe, K.; Inabata, S.; Yamada, S.; Miyakawa, N. JCPE Newslett (in Japanese) 1997, 9, 1.
– volume: 10
  start-page: 104
  year: 1989
  publication-title: J Comput Chem
– volume: 14
  start-page: 1347
  year: 1993
  publication-title: J Comput Chem
– volume: 106
  start-page: 9708
  year: 1995
  publication-title: J Chem Phys
– volume: 40
  start-page: 797
  year: 1991
  publication-title: Int J Quantum Chem
– volume: 468
  start-page: 51
  year: 1996
  publication-title: Astrophys J
– volume: 20
  start-page: 443
  year: 1999
  publication-title: J Comput Chem
– volume: 17
  start-page: 109
  year: 1996
  publication-title: J Comput Chem
– year: 2001
– volume: 102
  start-page: 2246
  year: 1998
  publication-title: J Phys Chem A
– volume: 14
  start-page: 1142
  year: 1993
  publication-title: J Comput Chem
– volume: 84
  start-page: 301
  year: 1993
  publication-title: Theor Chim Acta
– volume: 113
  start-page: 10037
  year: 2000
  publication-title: J Chem Phys
– year: 1998
– volume: 102
  start-page: 8448
  year: 1995
  publication-title: J Chem Phys
– volume: 346
  start-page: 645
  year: 2001
  publication-title: Chem Phys Lett
– volume: 14
  start-page: 132
  year: 1999
  publication-title: Comput Mater Sci
– volume: 58
  start-page: 133
  year: 1996
  publication-title: Int J Quantum Chem
– volume: 3
  start-page: 385
  year: 1982
  publication-title: J Comput Chem
– volume: 20
  start-page: 185
  year: 1999
  publication-title: J Comput Chem
– volume: 17
  start-page: 124
  year: 1996
  publication-title: J Comput Chem
– volume: IV
  start-page: 1
  year: 1993
– year: 1995
– volume: 16
  start-page: 91
  year: 1995
  publication-title: J Comput Chem
– volume: 9
  start-page: 1
  year: 1997
  publication-title: JCPE Newslett
– volume: 346
  start-page: 313
  year: 2001
  publication-title: Chem Phys Lett
– volume: 7
  start-page: 274
  year: 1986
  publication-title: J Comput Chem
– volume: 61
  start-page: 137
  year: 1997
  publication-title: Int J Quantum Chem
– volume: 142
  start-page: 140
  year: 2001
  publication-title: Comp Phys Comm
– volume: II
  year: 2000
– ident: e_1_2_7_14_2
  doi: 10.1016/S0010-4655(01)00353-8
– ident: e_1_2_7_22_2
  doi: 10.1007/BF01113269
– ident: e_1_2_7_31_2
  doi: 10.1002/(SICI)1096-987X(19990130)20:2<185::AID-JCC1>3.0.CO;2-L
– ident: e_1_2_7_27_2
– ident: e_1_2_7_18_2
  doi: 10.1002/qua.560400609
– ident: e_1_2_7_20_2
  doi: 10.1002/jcc.540141112
– volume: 9
  start-page: 1
  year: 1997
  ident: e_1_2_7_30_2
  publication-title: JCPE Newslett
– ident: e_1_2_7_23_2
  doi: 10.1002/jcc.540160108
– ident: e_1_2_7_17_2
  doi: 10.1002/jcc.540100111
– volume: 106
  start-page: 9708
  year: 1995
  ident: e_1_2_7_13_2
  publication-title: J Chem Phys
  doi: 10.1063/1.473833
– ident: e_1_2_7_4_2
  doi: 10.1002/jcc.540141004
– ident: e_1_2_7_21_2
  doi: 10.1002/(SICI)1096-987X(199903)20:4<443::AID-JCC5>3.0.CO;2-B
– ident: e_1_2_7_5_2
  doi: 10.1063/1.1316012
– ident: e_1_2_7_6_2
  doi: 10.1063/1.468836
– volume: 346
  start-page: 645
  year: 2001
  ident: e_1_2_7_9_2
  publication-title: Chem Phys Lett
  doi: 10.1016/S0009-2614(01)00386-4
– ident: e_1_2_7_15_2
  doi: 10.1002/jcc.540030314
– start-page: 1
  year: 1993
  ident: e_1_2_7_2_2
– ident: e_1_2_7_25_2
  doi: 10.1002/(SICI)1096-987X(19960115)17:1<124::AID-JCC10>3.0.CO;2-N
– volume-title: Parallel Computing in Computational Chemistry
  year: 1995
  ident: e_1_2_7_3_2
  doi: 10.1021/bk-1995-0592
– ident: e_1_2_7_10_2
  doi: 10.1002/(SICI)1097-461X(1997)61:1<137::AID-QUA16>3.0.CO;2-B
– ident: e_1_2_7_11_2
– volume-title: Gaussian 98
  year: 1998
  ident: e_1_2_7_19_2
– ident: e_1_2_7_24_2
  doi: 10.1002/(SICI)1096-987X(19960115)17:1<109::AID-JCC9>3.0.CO;2-V
– ident: e_1_2_7_32_2
  doi: 10.1086/177668
– ident: e_1_2_7_12_2
  doi: 10.1021/jp980260r
– year: 2000
  ident: e_1_2_7_26_2
– ident: e_1_2_7_7_2
  doi: 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z
– volume: 14
  start-page: 132
  year: 1999
  ident: e_1_2_7_29_2
  publication-title: Comput Mater Sci
  doi: 10.1016/S0927-0256(98)00086-X
– ident: e_1_2_7_8_2
  doi: 10.1016/S0009-2614(01)00956-3
– ident: e_1_2_7_16_2
  doi: 10.1002/jcc.540070305
– ident: e_1_2_7_28_2
SSID ssj0003564
Score 1.7459259
Snippet We developed a novel parallel algorithm for large‐scale Fock matrix calculation with small locally distributed memory architectures, and named it the “RT...
We developed a novel parallel algorithm for large‐scale Fock matrix calculation with small locally distributed memory architectures, and named it the “ RT...
We developed a novel parallel algorithm for large-scale Fock matrix calculation with small locally distributed memory architectures, and named it the "RT...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1337
SubjectTerms Algorithms
Biological materials
Calculations
Combinatorial Chemistry Techniques
Computer Simulation
Functions
integral screening
Large scale systems
large-scale SCF
massively parallel and distributed Fock matrix construction
Matrix algebra
Models, Theoretical
Molecules
parallel efficiency
RT parallel algorithm
Time Factors
Title A novel parallel algorithm for large-scale Fock matrix construction with small locally distributed memory architectures: RT parallel algorithm
URI https://api.istex.fr/ark:/67375/WNG-HH3N3RD2-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.10133
https://www.ncbi.nlm.nih.gov/pubmed/12214316
https://www.proquest.com/docview/20187354
https://www.proquest.com/docview/21483556
https://www.proquest.com/docview/72066295
Volume 23
WOSCitedRecordID wos000178349800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61u0j0Ut6wPIqFEOolamKv4wRO1bbLClUrtGphb5ZjO9CSTapNqdobP6G_kV_CONlkW2mLkJBy8GEmTjxj-xs_vgF4q_xEJCL1PYTaGKCIgHuJpsaLaGwFi6NIV7dcvxyI8TiaTuPPa_ChuQtT80O0C26uZ1TjtevgKil3lqShJ1q70JOxdehS9Fvege7eZHh00A7EjNfsUQhivCjkQUMs5NOdVvnGdNR1LXuxCmvehK7V3DO8919ffR82F5CT7NY-8gDWbP4Q7g6aTG-P4GqX5MW5zYjjAc8yLKjsWzE_Pvs-I4hpSeZOi__-dVWiPS0Z4ghKZo7Z_4LoYklAS9ySLiln-AZSzZDZJTGuBpdRyxoyc2d6L8n1nYvyPZkcrqj1MRwN9w8HI2-RqcHTfRowjyepCVNOE6OTECM4RAk2tHEqGE90SK3y-zo2Dl4qKzRVQtFU-8Lig_gysOwJdPIit8-AIF5IQ-srpjBQNDFVxjcmdbR9CjWU7cF2YzCpFzTmLptGJmsCZiqxiWXVxD1404qe1twdq4TeVVZvJdT8hzvsJrj8Ov4oRyM2ZpM9KkUPXjduIdE-bl9F5bb4WUrqEhsy3v-LBPYEBHbh7RLC0erTmPfgae1xyy-mqM0C1N2uHOv2X5GfBoOq8PzfRV_ARp3fJvAC_hI66DP2FdzR52fH5XwL1sU02lr0qz-RCCd1
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLlK58C4sr1oIoV6iJvY6ThCXasuywLJCqy30Zjm20xayCdqUqr3xE_ob-SWMk02WSluEhJSDDzNx4hnb3_jxDcAL5SciEanvIdTGAEUE3Es0NV5EYytYHEW6uuX6eSTG4-jgIP60Bq-buzA1P0S74OZ6RjVeuw7uFqR3lqyhX7V2sSdj16DTQzdC_-7sTQb7o3YkZrymj0IU40UhDxpmIZ_utMqX5qOOa9qzVWDzMnatJp_Brf_77NtwcwE6yW7tJXdgzeZ3YaPf5Hq7Bxe7JC9ObUYcE3iWYUFlh8X8-ORoRhDVksydF__186JEi1oywDGUzBy3_xnRxZKClrhFXVLO8A2kmiOzc2JcDS6nljVk5k71npM_9y7KV2QyXVHrfdgfvJn2h94iV4OnezRgHk9SE6acJkYnIcZwiBNsaONUMJ7okFrl93RsHMBUVmiqhKKp9oXFBxFmYNkmrOdFbh8CQcSQhtZXTGGoaGKqjG9M6oj7FGoo24XtxmJSL4jMXT6NTNYUzFRiE8uqibvwvBX9XrN3rBJ6WZm9lVDzb-64m-Dyy_itHA7ZmE32qBRd2Gr8QqJ93M6Kym3xo5TUpTZkvPcXCewLCO3CqyWEI9anMe_Cg9rlll9MUZsFqLtdedbVvyLf9_tV4dG_i27BxnD6cSRH78YfHsONOttN4AX8Cayj_9incF2fnhyX82eL7vUbM10qfQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXQRceD-WVy2EUC9RE3sTJ4hLtUtYYBVVqxZ6sxzbgUI2qTalam_8hP5GfgnjZJOl0hYhIeXgw0yceMb2N358A_BSuilPeeY6CLUxQOGe76SKaiekkeEsCkNV33L9NOVJEh4cRLsb8Ka9C9PwQ3QLbrZn1OO17eDmSGfbK9bQb0rZ2JOxK9Af2iQyPeiPZ_H-tBuJmd_QRyGKccLA91pmIZdud8oX5qO-bdrTdWDzInatJ5_41v999m24uQSdZKfxkjuwYYq7cH3U5nq7B-c7pChPTE4sE3ieY0HmX8rF4fHXOUFUS3J7XvzXz_MKLWpIjGMomVtu_1OiyhUFLbGLuqSa4xtIPUfmZ0TbGmxOLaPJ3J7qPSN_7l1Ur8lsb02t92E_frs3mjjLXA2OGlKPOX6a6SDzaapVGmAMhzjBBCbKOPNTFVAj3aGKtAWY0nBFJZc0Uy43-CDC9Ax7AL2iLMwjIIgYssC4kkkMFXVEpXa1zixxn0QNaQaw1VpMqCWRuc2nkYuGgpkKbGJRN_EAXnSiRw17xzqhV7XZOwm5-G6Pu3FffE7eicmEJWw2poIPYLP1C4H2sTsrsjDlj0pQm9qQ-cO_SGBfQGgXXC7BLbE-jfwBPGxcbvXFFLWZh7pbtWdd_iviw2hUFx7_u-gmXNsdx2L6Pvn4BG40yW48x_OfQg_dxzyDq-rk-LBaPF_2rt-Bxin4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+parallel+algorithm+for+large%E2%80%90scale+Fock+matrix+construction+with+small+locally+distributed+memory+architectures%3A+RT+parallel+algorithm&rft.jtitle=Journal+of+computational+chemistry&rft.au=Takashima%2C+Hajime&rft.au=Yamada%2C+So&rft.au=Obara%2C+Shigeru&rft.au=Kitamura%2C+Kunihiro&rft.date=2002-11-15&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=23&rft.issue=14&rft.spage=1337&rft.epage=1346&rft_id=info:doi/10.1002%2Fjcc.10133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcc_10133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon