Computational complexity and black hole horizons

Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find that while creating firewalls is possible, it is extremely d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fortschritte der Physik Jg. 64; H. 1; S. 24 - 43
1. Verfasser: Susskind, Leonard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Blackwell Publishing Ltd 01.01.2016
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0015-8208, 1521-3978
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find that while creating firewalls is possible, it is extremely difficult and probably impossible for black holes that form in sudden collapse, and then evaporate. On the other hand if the radiation is bottled up then after an exponentially long period of time firewalls may be common. It is possible that gravity will provide tools to study problems of complexity; especially the range of complexity between scrambling and exponential complexity. Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find black holes that form in sudden collapse, and then evaporate. On the other hand if the radiation is bottled up then after an exponentially long period of time firewalls may be common. It is possible that gravity will provide tools to study problems of complexity; especially the range of complexity between scrambling and exponential complexity.
AbstractList Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find that while creating firewalls is possible, it is extremely difficult and probably impossible for black holes that form in sudden collapse, and then evaporate. On the other hand if the radiation is bottled up then after an exponentially long period of time firewalls may be common. It is possible that gravity will provide tools to study problems of complexity; especially the range of complexity between scrambling and exponential complexity.
Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find that while creating firewalls is possible, it is extremely difficult and probably impossible for black holes that form in sudden collapse, and then evaporate. On the other hand if the radiation is bottled up then after an exponentially long period of time firewalls may be common. It is possible that gravity will provide tools to study problems of complexity; especially the range of complexity between scrambling and exponential complexity. Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find black holes that form in sudden collapse, and then evaporate. On the other hand if the radiation is bottled up then after an exponentially long period of time firewalls may be common. It is possible that gravity will provide tools to study problems of complexity; especially the range of complexity between scrambling and exponential complexity.
Author Susskind, Leonard
Author_xml – sequence: 1
  givenname: Leonard
  surname: Susskind
  fullname: Susskind, Leonard
  email: susskind@stanford.edu
  organization: Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, CA, 94305-4060, Stanford, USA
BookMark eNqFkNFLwzAQxoNMcJu--lzwuTNJkyZ9lKJTGG6Ksr2FrEkxW9fUpMPNv96MyhBBvIc77vh-x903AL3a1hqASwRHCEJ83TjbjDBEFEKY4RPQRxSjOMkY74E-DPOYY8jPwMD7VZBglKE-gLndNNtWtsbWsoqK0FV6Z9p9JGsVLStZrKM3W-mQnPm0tT8Hp6WsvL74rkPwenf7kt_Hk-n4Ib-ZxAXBCMcaMUl0oYjECqecK7kkvCRUQYR0uDDRIQgsaYlVkUjGU82UooRQWCqVlMkQXHV7w1vvW-1bsbJbF270AjHKUsayLAsq0qkKZ713uhSF6Z5pnTSVQFAcvBEHb8TRm4CNfmGNMxvp9n8DWQd8mErv_1GL2fN09pONO9b4Vu-OrHRrkbKEUTF_HIs5XqDFGD-JPPkCThmJAw
CitedBy_id crossref_primary_10_1007_JHEP04_2024_010
crossref_primary_10_1103_PhysRevD_111_L101902
crossref_primary_10_1007_JHEP01_2024_055
crossref_primary_10_1007_JHEP04_2025_059
crossref_primary_10_1103_PhysRevD_111_044017
crossref_primary_10_1007_JHEP02_2022_180
crossref_primary_10_1007_JHEP09_2020_102
crossref_primary_10_1088_1361_6382_ab9145
crossref_primary_10_1007_JHEP06_2024_041
crossref_primary_10_1007_JHEP06_2024_155
crossref_primary_10_1007_JHEP12_2022_065
crossref_primary_10_1007_JHEP01_2023_120
crossref_primary_10_1140_epjc_s10052_024_12485_3
crossref_primary_10_1088_1367_2630_aac5b5
crossref_primary_10_1088_1361_6382_aa8122
crossref_primary_10_1007_JHEP01_2023_007
crossref_primary_10_1007_JHEP09_2025_038
crossref_primary_10_1016_j_nuclphysb_2022_115948
crossref_primary_10_1007_JHEP12_2021_135
crossref_primary_10_1007_JHEP09_2019_102
crossref_primary_10_1088_1361_6382_ab6d09
crossref_primary_10_1155_2019_2635917
crossref_primary_10_1140_epjc_s10052_022_10151_0
crossref_primary_10_1140_epjc_s10052_022_10382_1
crossref_primary_10_1007_JHEP01_2023_134
crossref_primary_10_1007_JHEP05_2022_131
crossref_primary_10_1007_JHEP06_2021_062
crossref_primary_10_1016_j_aop_2018_03_013
crossref_primary_10_1103_PhysRevX_14_011024
crossref_primary_10_1007_JHEP08_2022_235
crossref_primary_10_1016_j_nuclphysb_2023_116401
crossref_primary_10_1007_s00220_023_04720_x
crossref_primary_10_1007_JHEP04_2022_081
crossref_primary_10_1007_JHEP09_2021_165
crossref_primary_10_1007_JHEP02_2021_152
crossref_primary_10_1140_epjc_s10052_024_12780_z
crossref_primary_10_1016_j_physletb_2023_137691
crossref_primary_10_1007_JHEP06_2024_066
crossref_primary_10_1103_PhysRevA_111_032208
crossref_primary_10_1103_PRXQuantum_2_010329
crossref_primary_10_1140_epjc_s10052_023_11967_0
crossref_primary_10_1007_JHEP10_2024_107
crossref_primary_10_1007_JHEP10_2024_228
crossref_primary_10_1007_JHEP05_2017_009
crossref_primary_10_1007_JHEP07_2021_016
crossref_primary_10_1007_JHEP08_2022_002
crossref_primary_10_1007_JHEP08_2022_123
crossref_primary_10_1007_JHEP10_2024_101
crossref_primary_10_1007_JHEP07_2022_151
crossref_primary_10_1007_JHEP07_2022_031
crossref_primary_10_1007_JHEP05_2021_226
crossref_primary_10_1007_JHEP11_2018_138
crossref_primary_10_1007_JHEP10_2022_072
crossref_primary_10_1007_JHEP12_2024_217
crossref_primary_10_1103_PhysRevResearch_3_013248
crossref_primary_10_1103_PhysRevD_111_106013
crossref_primary_10_1007_JHEP05_2023_191
crossref_primary_10_1088_1742_5468_ac7aa6
crossref_primary_10_1007_JHEP07_2021_010
crossref_primary_10_1007_JHEP07_2021_011
crossref_primary_10_1140_epjc_s10052_019_7339_6
crossref_primary_10_1016_j_physletb_2021_136731
crossref_primary_10_1016_j_physletb_2021_136732
crossref_primary_10_1007_JHEP01_2023_154
crossref_primary_10_1007_JHEP07_2023_083
crossref_primary_10_1016_j_nuclphysb_2024_116567
crossref_primary_10_1007_JHEP06_2016_001
crossref_primary_10_1140_epjd_e2020_100571_8
crossref_primary_10_1007_JHEP11_2023_222
crossref_primary_10_1007_JHEP10_2021_028
crossref_primary_10_1007_JHEP06_2018_114
crossref_primary_10_1007_JHEP08_2024_086
crossref_primary_10_1007_s10773_024_05873_8
crossref_primary_10_1007_JHEP11_2024_026
crossref_primary_10_1007_JHEP12_2021_104
crossref_primary_10_1007_s00220_016_2706_8
crossref_primary_10_21468_SciPostPhys_19_1_007
crossref_primary_10_1002_prop_202400014
crossref_primary_10_1007_JHEP09_2016_044
crossref_primary_10_1016_j_physletb_2018_12_067
crossref_primary_10_1007_JHEP09_2016_161
crossref_primary_10_1007_JHEP09_2022_037
crossref_primary_10_1007_JHEP01_2025_174
crossref_primary_10_1088_1361_6382_aa6ad0
crossref_primary_10_1007_JHEP08_2023_213
crossref_primary_10_1103_PhysRevA_106_062417
crossref_primary_10_1038_s41567_024_02621_x
crossref_primary_10_1007_JHEP07_2024_125
crossref_primary_10_1088_0264_9381_33_21_215008
crossref_primary_10_1007_JHEP04_2021_090
crossref_primary_10_1007_JHEP12_2023_085
crossref_primary_10_1007_JHEP07_2021_030
crossref_primary_10_1140_epjc_s10052_022_10064_y
crossref_primary_10_1007_JHEP04_2017_121
crossref_primary_10_1002_prop_70031
crossref_primary_10_1007_JHEP08_2023_104
crossref_primary_10_1007_JHEP08_2025_059
crossref_primary_10_1016_j_nuclphysb_2019_114647
crossref_primary_10_1007_JHEP11_2023_040
crossref_primary_10_1007_JHEP12_2024_208
crossref_primary_10_1007_JHEP12_2024_209
crossref_primary_10_1103_PRXQuantum_5_040306
crossref_primary_10_1140_epjc_s10052_023_11327_y
crossref_primary_10_1088_1361_6382_aa6925
crossref_primary_10_1140_epjc_s10052_022_10936_3
crossref_primary_10_1038_s41567_022_01539_6
crossref_primary_10_1088_1361_6382_ac4118
crossref_primary_10_1007_JHEP06_2022_056
crossref_primary_10_1073_pnas_2004976117
crossref_primary_10_1007_JHEP05_2022_119
crossref_primary_10_1016_j_physletb_2016_12_006
crossref_primary_10_1103_PhysRevX_9_031009
crossref_primary_10_1007_JHEP08_2023_115
crossref_primary_10_1007_JHEP02_2022_118
crossref_primary_10_1007_JHEP07_2022_073
crossref_primary_10_1007_JHEP07_2020_020
crossref_primary_10_1007_JHEP08_2024_053
crossref_primary_10_1038_s41567_022_01884_6
crossref_primary_10_1007_JHEP11_2016_129
crossref_primary_10_1007_JHEP01_2021_092
crossref_primary_10_1140_epjc_s10052_021_09033_8
crossref_primary_10_3390_sym15010031
crossref_primary_10_1007_JHEP06_2025_215
crossref_primary_10_1002_prop_202200199
crossref_primary_10_1088_1361_6382_aba843
crossref_primary_10_1209_0295_5075_129_11006
crossref_primary_10_1016_j_nuclphysb_2018_11_003
crossref_primary_10_1007_JHEP07_2025_275
crossref_primary_10_1016_j_nuclphysb_2023_116223
crossref_primary_10_1007_s10714_024_03328_3
crossref_primary_10_1007_JHEP10_2021_187
crossref_primary_10_1140_epjc_s10052_019_7000_4
crossref_primary_10_3390_sym15030655
crossref_primary_10_1007_s10773_023_05280_5
crossref_primary_10_1007_JHEP10_2024_131
crossref_primary_10_1016_j_nuclphysb_2020_114988
crossref_primary_10_1088_1361_6382_aab32d
crossref_primary_10_1140_epjc_s10052_019_6639_1
crossref_primary_10_1007_JHEP06_2025_003
crossref_primary_10_1007_JHEP08_2021_135
crossref_primary_10_1088_1361_6382_acafd0
crossref_primary_10_1007_JHEP05_2024_264
crossref_primary_10_59973_ipil_214
crossref_primary_10_1007_JHEP05_2025_072
crossref_primary_10_1007_JHEP02_2020_051
crossref_primary_10_1002_prop_201800034
crossref_primary_10_1007_JHEP06_2018_046
crossref_primary_10_1140_epjc_s10052_017_5466_5
crossref_primary_10_1088_1361_6382_adb535
crossref_primary_10_1007_JHEP10_2024_048
crossref_primary_10_1007_JHEP12_2024_077
crossref_primary_10_1088_1361_6382_ad2f14
crossref_primary_10_1016_j_nuclphysb_2025_116913
crossref_primary_10_1140_epjc_s10052_017_5395_3
crossref_primary_10_1007_JHEP08_2022_181
crossref_primary_10_1007_JHEP09_2023_167
crossref_primary_10_1007_JHEP06_2025_251
crossref_primary_10_1140_epjc_s10052_020_7661_z
crossref_primary_10_1007_JHEP09_2023_029
crossref_primary_10_4236_jhepgc_2025_112030
crossref_primary_10_3390_systems4040032
crossref_primary_10_1007_JHEP03_2022_084
crossref_primary_10_1007_s00220_023_04675_z
crossref_primary_10_1016_j_nuclphysb_2018_02_010
crossref_primary_10_1007_JHEP06_2017_131
crossref_primary_10_1103_PhysRevResearch_2_043438
crossref_primary_10_1140_epjc_s10052_020_08503_9
crossref_primary_10_1007_s10773_021_04714_2
crossref_primary_10_1016_j_physletb_2017_04_011
crossref_primary_10_1140_epjc_s10052_022_10376_z
crossref_primary_10_1088_1361_6382_ac3e75
crossref_primary_10_1007_JHEP08_2022_197
crossref_primary_10_1140_epjc_s10052_017_5247_1
crossref_primary_10_1088_1361_6382_aa5c69
crossref_primary_10_1088_1475_7516_2025_04_050
crossref_primary_10_1093_ptep_ptz058
crossref_primary_10_1007_JHEP10_2024_033
crossref_primary_10_1140_epjc_s10052_020_7864_3
crossref_primary_10_1140_epjc_s10052_023_12260_w
crossref_primary_10_1007_JHEP07_2025_091
crossref_primary_10_1007_JHEP10_2019_276
crossref_primary_10_1007_JHEP09_2021_200
crossref_primary_10_3390_universe10090358
crossref_primary_10_1016_j_physletb_2024_138585
crossref_primary_10_1103_PhysRevD_111_046011
crossref_primary_10_1007_JHEP05_2024_001
crossref_primary_10_1016_j_physrep_2025_05_001
crossref_primary_10_1007_JHEP08_2025_056
crossref_primary_10_1103_PRXQuantum_4_027001
crossref_primary_10_1016_j_dark_2024_101422
crossref_primary_10_1140_epjc_s10052_017_4957_8
crossref_primary_10_1007_JHEP03_2023_214
crossref_primary_10_1007_JHEP07_2023_223
crossref_primary_10_1007_JHEP11_2024_122
crossref_primary_10_4236_jhepgc_2024_104110
crossref_primary_10_1088_1475_7516_2023_11_013
crossref_primary_10_1088_1361_648X_ad1a7b
crossref_primary_10_1007_JHEP06_2018_063
crossref_primary_10_1007_JHEP01_2022_071
crossref_primary_10_1088_1674_1137_ad57a5
crossref_primary_10_1007_JHEP10_2024_182
crossref_primary_10_1016_j_physletb_2023_137979
crossref_primary_10_1007_JHEP11_2024_014
crossref_primary_10_1007_JHEP11_2024_138
crossref_primary_10_1038_s41567_021_01464_0
crossref_primary_10_4236_jhepgc_2024_104109
crossref_primary_10_1007_JHEP06_2025_259
crossref_primary_10_1007_JHEP08_2025_164
crossref_primary_10_3390_sym13071301
crossref_primary_10_1007_JHEP05_2020_045
crossref_primary_10_1007_JHEP05_2024_137
crossref_primary_10_1088_1751_8121_ac5b8f
crossref_primary_10_1140_epjc_s10052_018_6226_x
crossref_primary_10_1140_epjc_s10052_022_10253_9
crossref_primary_10_1016_j_physleta_2023_128926
crossref_primary_10_1103_PRXQuantum_2_030316
crossref_primary_10_1007_JHEP07_2020_173
crossref_primary_10_1007_JHEP10_2024_059
crossref_primary_10_1016_j_physleta_2018_02_023
crossref_primary_10_1007_JHEP02_2022_204
crossref_primary_10_1088_1742_6596_1634_1_012088
crossref_primary_10_1007_JHEP09_2024_050
crossref_primary_10_1007_JHEP01_2025_025
crossref_primary_10_1007_JHEP08_2024_241
crossref_primary_10_1016_j_aop_2021_168398
crossref_primary_10_1007_JHEP02_2023_245
crossref_primary_10_1007_JHEP05_2023_226
crossref_primary_10_1007_JHEP06_2025_141
crossref_primary_10_1007_JHEP06_2025_166
crossref_primary_10_1007_JHEP07_2022_007
crossref_primary_10_1119_1_5021360
crossref_primary_10_1140_epjp_s13360_021_02109_0
crossref_primary_10_1007_JHEP07_2019_104
crossref_primary_10_1038_s41567_022_01559_2
crossref_primary_10_1007_JHEP03_2024_160
crossref_primary_10_1140_epjc_s10052_023_11212_8
crossref_primary_10_1007_JHEP06_2020_061
crossref_primary_10_1103_PRXQuantum_6_010346
crossref_primary_10_1007_s10714_022_03044_w
crossref_primary_10_1007_JHEP06_2020_181
crossref_primary_10_1103_PhysRevResearch_2_033273
crossref_primary_10_1007_JHEP07_2023_178
crossref_primary_10_1007_JHEP09_2024_046
crossref_primary_10_1007_JHEP09_2018_043
crossref_primary_10_1103_PhysRevD_111_036036
crossref_primary_10_1007_JHEP01_2020_120
crossref_primary_10_1007_JHEP05_2025_024
crossref_primary_10_1007_JHEP11_2021_048
crossref_primary_10_1007_JHEP05_2021_009
crossref_primary_10_1007_JHEP04_2022_175
crossref_primary_10_1016_j_aop_2020_168244
crossref_primary_10_1209_0295_5075_128_30007
crossref_primary_10_1088_1402_4896_aceac4
crossref_primary_10_1007_JHEP08_2021_045
crossref_primary_10_1103_7p1r_r2p6
crossref_primary_10_1007_JHEP03_2017_118
crossref_primary_10_1007_JHEP05_2021_022
crossref_primary_10_1088_1751_8121_ade381
crossref_primary_10_1007_JHEP02_2021_187
crossref_primary_10_1007_JHEP03_2017_119
crossref_primary_10_1007_JHEP08_2023_190
crossref_primary_10_1016_j_physletb_2020_135919
crossref_primary_10_1140_epjc_s10052_023_11767_6
crossref_primary_10_1142_S0218271825420015
crossref_primary_10_1007_JHEP05_2022_174
crossref_primary_10_1016_j_physletb_2016_12_060
crossref_primary_10_1038_s41586_023_06460_3
crossref_primary_10_1088_1361_6382_aa8053
crossref_primary_10_1007_JHEP08_2020_121
crossref_primary_10_1140_epjc_s10052_019_6547_4
crossref_primary_10_1016_j_physletb_2019_01_032
crossref_primary_10_1007_JHEP07_2023_060
crossref_primary_10_1103_pfyl_hwf2
crossref_primary_10_1007_JHEP01_2017_062
crossref_primary_10_1007_JHEP06_2025_161
crossref_primary_10_1007_JHEP03_2018_031
crossref_primary_10_1007_JHEP05_2021_135
crossref_primary_10_1007_JHEP06_2018_016
crossref_primary_10_1140_epjc_s10052_020_08688_z
crossref_primary_10_1038_s42005_022_00985_1
crossref_primary_10_1007_JHEP05_2024_329
crossref_primary_10_1007_JHEP06_2023_213
crossref_primary_10_1007_JHEP10_2022_143
crossref_primary_10_1007_JHEP08_2021_156
crossref_primary_10_1007_JHEP03_2024_062
crossref_primary_10_1007_JHEP05_2024_201
crossref_primary_10_1103_PhysRevResearch_6_023178
crossref_primary_10_1007_JHEP04_2023_076
crossref_primary_10_3390_universe8010040
crossref_primary_10_1007_JHEP02_2022_198
crossref_primary_10_1007_JHEP11_2019_132
crossref_primary_10_1007_JHEP03_2024_179
crossref_primary_10_1007_JHEP08_2025_003
crossref_primary_10_1007_JHEP01_2022_150
crossref_primary_10_1007_JHEP01_2025_116
crossref_primary_10_1088_1742_5468_ad0032
crossref_primary_10_1016_j_nuclphysb_2019_114818
crossref_primary_10_1007_JHEP12_2021_091
crossref_primary_10_1007_JHEP06_2021_094
crossref_primary_10_1007_JHEP01_2022_159
crossref_primary_10_1007_s41114_023_00046_1
crossref_primary_10_1016_j_nuclphysb_2021_115615
crossref_primary_10_1007_JHEP03_2017_013
crossref_primary_10_22331_q_2025_02_10_1627
crossref_primary_10_1103_PhysRevD_111_076014
crossref_primary_10_1007_JHEP03_2024_173
crossref_primary_10_1002_prop_201700034
crossref_primary_10_1007_JHEP02_2022_093
crossref_primary_10_1007_JHEP07_2021_212
crossref_primary_10_1103_pyzr_jmvw
crossref_primary_10_1007_JHEP09_2020_156
crossref_primary_10_1088_1361_6633_ac51b5
crossref_primary_10_1002_prop_202200102
crossref_primary_10_1007_JHEP08_2020_102
crossref_primary_10_1007_JHEP09_2018_013
crossref_primary_10_1093_ptep_ptac038
crossref_primary_10_1016_j_nuclphysb_2025_117079
crossref_primary_10_1007_JHEP07_2023_162
crossref_primary_10_1016_j_physletb_2016_09_036
crossref_primary_10_1007_JHEP07_2020_090
crossref_primary_10_1088_1751_8121_add820
crossref_primary_10_1007_JHEP03_2022_211
crossref_primary_10_1007_JHEP11_2021_037
crossref_primary_10_1007_JHEP01_2022_040
crossref_primary_10_1038_s41467_017_01637_7
crossref_primary_10_1007_JHEP02_2019_160
crossref_primary_10_1016_j_nuclphysb_2019_114829
crossref_primary_10_1007_JHEP02_2021_173
crossref_primary_10_1007_JHEP08_2022_051
Cites_doi 10.1103/PhysRevD.48.3743
10.1088/1126-6708/2007/09/120
10.1016/0550-3213(88)90237-4
10.1103/PhysRevD.11.395
10.1142/9789814447232_0007
10.1007/JHEP04(2011)029
10.1016/S0370-2693(97)00357-2
10.1007/JHEP04(2013)022
10.1103/PhysRevD.73.086003
10.1007/JHEP05(2013)014
10.1103/PhysRevD.86.123509
10.1016/0375-9601(76)90178-X
10.1007/s10714-010-1034-0
10.1007/JHEP02(2013)062
10.1088/1126-6708/2008/10/065
10.1016/0550-3213(95)00537-2
10.1016/0550-3213(94)00532-J
10.1088/1126-6708/2002/10/011
10.1088/1126-6708/2003/04/021
10.1103/PhysRevD.85.063516
10.1088/0264-9381/29/23/235025
10.1103/PhysRevD.55.6189
10.1016/0550-3213(95)00063-X
10.1103/PhysRevLett.75.1260
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/prop.201500092
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3978
EndPage 43
ExternalDocumentID 3924030741
10_1002_prop_201500092
PROP201500092
ark_67375_WNG_W2X1XG2Q_C
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WGJPS
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
ALUQN
XJT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c4212-e17a4ecd4a2d2688dab48f45d011e5003eeee40f5f2dc3a786e7dd54450fdd3f3
IEDL.DBID DRFUL
ISICitedReferencesCount 509
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370142400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0015-8208
IngestDate Sun Jul 13 03:29:23 EDT 2025
Tue Nov 18 21:13:34 EST 2025
Sat Nov 29 02:13:15 EST 2025
Tue Jul 15 06:20:18 EDT 2025
Tue Nov 11 03:32:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4212-e17a4ecd4a2d2688dab48f45d011e5003eeee40f5f2dc3a786e7dd54450fdd3f3
Notes ArticleID:PROP201500092
ark:/67375/WNG-W2X1XG2Q-C
istex:6810ABB868C9AF87A753ABDA1817A78E10CE62BC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1757677999
PQPubID 866401
PageCount 20
ParticipantIDs proquest_journals_1757677999
crossref_citationtrail_10_1002_prop_201500092
crossref_primary_10_1002_prop_201500092
wiley_primary_10_1002_prop_201500092_PROP201500092
istex_primary_ark_67375_WNG_W2X1XG2Q_C
PublicationCentury 2000
PublicationDate 2016-01
January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Fortschritte der Physik
PublicationTitleAlternate Fortschr. Phys
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References E. P. Verlinde, "On the Origin of Gravity and the Laws of Newton," JHEP 1104, 029 (2011) [arXiv:1001.0785 [hep-th]].
A. Sen, "Black hole solutions in heterotic string theory on a torus," Nucl. Phys. B 440, 421 (1995) [hep-th/9411187].
L. Dyson, M. Kleban, and L. Susskind, "Disturbing implications of a cosmological constant," JHEP 0210, 011 (2002) [hep-th/0208013].
J. M. Maldacena, "Eternal black holes in anti-de Sitter," JHEP 0304, 021 (2003) [hep-th/0106112].
E. Halyo, B. Kol, A. Rajaraman, and L. Susskind, "Counting Schwarzschild and charged black holes," Phys. Lett. B 401, 15 (1997) [hep-th/9609075].
D. Harlow, S. H. Shenker, D. Stanford, and L. Susskind, "Tree-like structure of eternal inflation: A solvable model," Phys. Rev. D 85, 063516 (2012) [arXiv:1110.0496 [hep-th]].
A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, "Local bulk operators in AdS/CFT: A Boundary view of horizons and locality," Phys. Rev. D 73, 086003 (2006) [hep-th/0506118].
R. Bousso, "Vacuum Structure and the Arrow of Time," Phys. Rev. D 86, 123509 (2012) [arXiv:1112.3341 [hep-th]].
A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, "Black Holes: Complementarity or Firewalls?," JHEP 1302, 062 (2013) [arXiv:1207.3123 [hep-th]].
P. Hayden and J. Preskill, "Black holes as mirrors: Quantum information in random subsystems," JHEP 0709, 120 (2007) [arXiv:0708.4025 [hep-th]].
Y. Sekino and L. Susskind, "Fast Scramblers," JHEP 0810, 065 (2008) [arXiv:0808.2096 [hep-th]].
T. Hartman and J. Maldacena, "Time Evolution of Entanglement Entropy from Black Hole Interiors," JHEP 1305, 014 (2013) [arXiv:1303.1080 [hep-th]].
J. G. Russo and L. Susskind, "Asymptotic level density in heterotic string theory and rotating black holes," Nucl. Phys. B 437, 611 (1995) [hep-th/9405117].
A. W. Peet, "Entropy and supersymmetry of D-dimensional extremal electric black holes versus string states," Nucl. Phys. B 456, 732 (1995) [hep-th/9506200].
N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden, "Towards the Fast Scrambling Conjecture," JHEP 1304, 022 (2013) [arXiv:1111.6580 [hep-th]].
W. Israel, "Thermo field dynamics of black holes," Phys. Lett. A 57, 107 (1976).
I. R. Klebanov and L. Susskind, "Continuum Strings From Discrete Field Theories," Nucl. Phys. B 309, 175 (1988).
T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995) [gr-qc/9504004].
M. Van Raamsdonk, "Building up spacetime with quantum entanglement," Gen. Rel. Grav. 42, 2323 (2010) [Int. J. Mod. Phys. D 19, 2429 (2010)] [arXiv:1005.3035 [hep-th]].
L. Susskind, L. Thorlacius, and J. Uglum, "The Stretched horizon and black hole complementarity," Phys. Rev. D 48, 3743 (1993) [hep-th/9306069].
B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, "Rindler Quantum Gravity," Class. Quant. Grav. 29, 235025 (2012) [arXiv:1206.1323 [hep-th]].
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
G. T. Horowitz and J. Polchinski, "A Correspondence principle for black holes and strings," Phys. Rev. D 55, 6189 (1997) [hep-th/9612146].
1993; 48
1995; 75
2013; 1305
1997; 401
2002; 0210
2010; 42
1976; 57
2013; 1302
2003; 0304
2013; 1304
2006; 73
1997; 55
1995; 437
1995; 456
2012; 29
1975; 11
1995; 440
1988; 309
2011; 1104
2007; 0709
2008; 0810
2012; 86
2012; 85
e_1_2_14_30_1
e_1_2_14_31_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_10_1
e_1_2_14_35_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_12_1
e_1_2_14_33_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_16_1
e_1_2_14_37_1
e_1_2_14_29_1
e_1_2_14_6_1
e_1_2_14_5_1
e_1_2_14_8_1
e_1_2_14_7_1
e_1_2_14_9_1
e_1_2_14_2_1
e_1_2_14_41_1
e_1_2_14_20_1
e_1_2_14_42_1
e_1_2_14_4_1
e_1_2_14_3_1
e_1_2_14_40_1
e_1_2_14_23_1
e_1_2_14_24_1
e_1_2_14_21_1
e_1_2_14_22_1
e_1_2_14_27_1
e_1_2_14_28_1
e_1_2_14_25_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_18_1
References_xml – reference: A. Sen, "Black hole solutions in heterotic string theory on a torus," Nucl. Phys. B 440, 421 (1995) [hep-th/9411187].
– reference: Y. Sekino and L. Susskind, "Fast Scramblers," JHEP 0810, 065 (2008) [arXiv:0808.2096 [hep-th]].
– reference: R. Bousso, "Vacuum Structure and the Arrow of Time," Phys. Rev. D 86, 123509 (2012) [arXiv:1112.3341 [hep-th]].
– reference: I. R. Klebanov and L. Susskind, "Continuum Strings From Discrete Field Theories," Nucl. Phys. B 309, 175 (1988).
– reference: A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, "Local bulk operators in AdS/CFT: A Boundary view of horizons and locality," Phys. Rev. D 73, 086003 (2006) [hep-th/0506118].
– reference: J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
– reference: L. Dyson, M. Kleban, and L. Susskind, "Disturbing implications of a cosmological constant," JHEP 0210, 011 (2002) [hep-th/0208013].
– reference: N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden, "Towards the Fast Scrambling Conjecture," JHEP 1304, 022 (2013) [arXiv:1111.6580 [hep-th]].
– reference: E. Halyo, B. Kol, A. Rajaraman, and L. Susskind, "Counting Schwarzschild and charged black holes," Phys. Lett. B 401, 15 (1997) [hep-th/9609075].
– reference: T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995) [gr-qc/9504004].
– reference: L. Susskind, L. Thorlacius, and J. Uglum, "The Stretched horizon and black hole complementarity," Phys. Rev. D 48, 3743 (1993) [hep-th/9306069].
– reference: J. G. Russo and L. Susskind, "Asymptotic level density in heterotic string theory and rotating black holes," Nucl. Phys. B 437, 611 (1995) [hep-th/9405117].
– reference: G. T. Horowitz and J. Polchinski, "A Correspondence principle for black holes and strings," Phys. Rev. D 55, 6189 (1997) [hep-th/9612146].
– reference: M. Van Raamsdonk, "Building up spacetime with quantum entanglement," Gen. Rel. Grav. 42, 2323 (2010) [Int. J. Mod. Phys. D 19, 2429 (2010)] [arXiv:1005.3035 [hep-th]].
– reference: D. Harlow, S. H. Shenker, D. Stanford, and L. Susskind, "Tree-like structure of eternal inflation: A solvable model," Phys. Rev. D 85, 063516 (2012) [arXiv:1110.0496 [hep-th]].
– reference: W. Israel, "Thermo field dynamics of black holes," Phys. Lett. A 57, 107 (1976).
– reference: E. P. Verlinde, "On the Origin of Gravity and the Laws of Newton," JHEP 1104, 029 (2011) [arXiv:1001.0785 [hep-th]].
– reference: A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, "Black Holes: Complementarity or Firewalls?," JHEP 1302, 062 (2013) [arXiv:1207.3123 [hep-th]].
– reference: P. Hayden and J. Preskill, "Black holes as mirrors: Quantum information in random subsystems," JHEP 0709, 120 (2007) [arXiv:0708.4025 [hep-th]].
– reference: J. M. Maldacena, "Eternal black holes in anti-de Sitter," JHEP 0304, 021 (2003) [hep-th/0106112].
– reference: T. Hartman and J. Maldacena, "Time Evolution of Entanglement Entropy from Black Hole Interiors," JHEP 1305, 014 (2013) [arXiv:1303.1080 [hep-th]].
– reference: A. W. Peet, "Entropy and supersymmetry of D-dimensional extremal electric black holes versus string states," Nucl. Phys. B 456, 732 (1995) [hep-th/9506200].
– reference: B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, "Rindler Quantum Gravity," Class. Quant. Grav. 29, 235025 (2012) [arXiv:1206.1323 [hep-th]].
– volume: 0709
  start-page: 120
  year: 2007
  article-title: Black holes as mirrors: Quantum information in random subsystems
  publication-title: JHEP
– volume: 29
  start-page: 235025
  year: 2012
  article-title: Rindler Quantum Gravity
  publication-title: Class. Quant. Grav.
– volume: 48
  start-page: 3743
  year: 1993
  article-title: The Stretched horizon and black hole complementarity
  publication-title: Phys. Rev. D
– volume: 0810
  start-page: 065
  year: 2008
  article-title: Fast Scramblers
  publication-title: JHEP
– article-title: Quantum Computation vs. Firewalls
– volume: 437
  start-page: 611
  year: 1995
  article-title: Asymptotic level density in heterotic string theory and rotating black holes
  publication-title: Nucl. Phys. B
– volume: 309
  start-page: 175
  year: 1988
  article-title: Continuum Strings From Discrete Field Theories
  publication-title: Nucl. Phys. B
– volume: 73
  start-page: 086003
  year: 2006
  article-title: Local bulk operators in AdS/CFT: A Boundary view of horizons and locality
  publication-title: Phys. Rev. D
– volume: 401
  start-page: 15
  year: 1997
  article-title: Counting Schwarzschild and charged black holes
  publication-title: Phys. Lett. B
– volume: 0210
  start-page: 011
  year: 2002
  article-title: Disturbing implications of a cosmological constant
  publication-title: JHEP
– volume: 75
  start-page: 1260
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 1302
  start-page: 062
  year: 2013
  article-title: Black Holes: Complementarity or Firewalls?
  publication-title: JHEP
– volume: 55
  start-page: 6189
  year: 1997
  article-title: A Correspondence principle for black holes and strings
  publication-title: Phys. Rev. D
– volume: 86
  start-page: 123509
  year: 2012
  article-title: Vacuum Structure and the Arrow of Time
  publication-title: Phys. Rev. D
– volume: 42
  start-page: 2323
  year: 2010
  article-title: Building up spacetime with quantum entanglement
  publication-title: Gen. Rel. Grav.
– volume: 1104
  start-page: 029
  year: 2011
  article-title: On the Origin of Gravity and the Laws of Newton
  publication-title: JHEP
– article-title: Evaporating Firewalls
– volume: 0304
  start-page: 021
  year: 2003
  article-title: Eternal black holes in anti‐de Sitter
  publication-title: JHEP
– volume: 57
  start-page: 107
  year: 1976
  article-title: Thermo field dynamics of black holes
  publication-title: Phys. Lett. A
– article-title: Black holes and the butterfly effect
– volume: 1304
  start-page: 022
  year: 2013
  article-title: Towards the Fast Scrambling Conjecture
  publication-title: JHEP
– volume: 85
  start-page: 063516
  year: 2012
  article-title: Tree‐like structure of eternal inflation: A solvable model
  publication-title: Phys. Rev. D
– volume: 456
  start-page: 732
  year: 1995
  article-title: Entropy and supersymmetry of D‐dimensional extremal electric black holes versus string states
  publication-title: Nucl. Phys. B
– volume: 1305
  start-page: 014
  year: 2013
  article-title: Time Evolution of Entanglement Entropy from Black Hole Interiors
  publication-title: JHEP
– volume: 11
  start-page: 395
  year: 1975
  publication-title: Phys. Rev. D
– volume: 440
  start-page: 421
  year: 1995
  article-title: Black hole solutions in heterotic string theory on a torus
  publication-title: Nucl. Phys. B
– ident: e_1_2_14_13_1
  doi: 10.1103/PhysRevD.48.3743
– ident: e_1_2_14_38_1
– ident: e_1_2_14_14_1
  doi: 10.1088/1126-6708/2007/09/120
– ident: e_1_2_14_26_1
  doi: 10.1016/0550-3213(88)90237-4
– ident: e_1_2_14_19_1
  doi: 10.1103/PhysRevD.11.395
– ident: e_1_2_14_7_1
– ident: e_1_2_14_27_1
– ident: e_1_2_14_4_1
– ident: e_1_2_14_20_1
  doi: 10.1142/9789814447232_0007
– ident: e_1_2_14_31_1
  doi: 10.1007/JHEP04(2011)029
– ident: e_1_2_14_22_1
  doi: 10.1016/S0370-2693(97)00357-2
– ident: e_1_2_14_16_1
  doi: 10.1007/JHEP04(2013)022
– ident: e_1_2_14_29_1
  doi: 10.1103/PhysRevD.73.086003
– ident: e_1_2_14_32_1
  doi: 10.1007/JHEP05(2013)014
– ident: e_1_2_14_12_1
– ident: e_1_2_14_34_1
– ident: e_1_2_14_39_1
  doi: 10.1103/PhysRevD.86.123509
– ident: e_1_2_14_42_1
– ident: e_1_2_14_8_1
– ident: e_1_2_14_18_1
– ident: e_1_2_14_3_1
  doi: 10.1016/0375-9601(76)90178-X
– ident: e_1_2_14_35_1
  doi: 10.1007/s10714-010-1034-0
– ident: e_1_2_14_17_1
– ident: e_1_2_14_11_1
– ident: e_1_2_14_5_1
  doi: 10.1007/JHEP02(2013)062
– ident: e_1_2_14_28_1
– ident: e_1_2_14_6_1
– ident: e_1_2_14_15_1
  doi: 10.1088/1126-6708/2008/10/065
– ident: e_1_2_14_24_1
  doi: 10.1016/0550-3213(95)00537-2
– ident: e_1_2_14_23_1
  doi: 10.1016/0550-3213(94)00532-J
– ident: e_1_2_14_37_1
  doi: 10.1088/1126-6708/2002/10/011
– ident: e_1_2_14_2_1
  doi: 10.1088/1126-6708/2003/04/021
– ident: e_1_2_14_33_1
– ident: e_1_2_14_40_1
  doi: 10.1103/PhysRevD.85.063516
– ident: e_1_2_14_36_1
– ident: e_1_2_14_41_1
– ident: e_1_2_14_9_1
  doi: 10.1088/0264-9381/29/23/235025
– ident: e_1_2_14_25_1
  doi: 10.1103/PhysRevD.55.6189
– ident: e_1_2_14_10_1
– ident: e_1_2_14_21_1
  doi: 10.1016/0550-3213(95)00063-X
– ident: e_1_2_14_30_1
  doi: 10.1103/PhysRevLett.75.1260
SSID ssj0002191
Score 2.6184754
Snippet Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Astrophysics
Black holes
Complexity
Horizon
Title Computational complexity and black hole horizons
URI https://api.istex.fr/ark:/67375/WNG-W2X1XG2Q-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprop.201500092
https://www.proquest.com/docview/1757677999
Volume 64
WOSCitedRecordID wos000370142400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002191
  issn: 0015-8208
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kVfDiW6xWyUH0FJrdpNn0KNXWQ6m1WNrbstkHFKVKUqX4651N0tgeRNAcQgKbB_P8drL5BuDSCD-OPRG7iMYlTlBC4UaY91zlCWIQAHhGZTyzPdbvR5NJa7DyF3_OD1EW3KxnZPHaOriI08Y3aSgGGMs3STJGfwzCVYrGG1SgejvsjHplNEaPzLvmkaaL2S5aEjd6tLF-h7XEVLUyXqyhzlXsmiWfzu7_X3sPdgrg6dzklrIPG3p2AFvZAlCZHoKXt3coSoNOttJcLxCiO2KmnNiW-RzbShd3yfQTTfUIRp27p_a9W3RTcKX96utqwkSgpQoEVTSMIiXiIDJBU6GHa3wbX-MWeKZpqJK-YFGomVKWqwf1pXzjH0Nl9jrTJ-AQX_nSSEKYxgkPqjYMjSIYK1pUC-aLGrhLUXJZUI3bjhcvPCdJptxKgZdSqMF1Of4tJ9n4ceRVpplymEie7dI01uTjfpeP6YRMuvSRt2tQX6qOF16ZcoRKLGQMMXENaKakXx7HB8OHQXl2-peLzmAbj4uqTR0q8-Rdn8Om_JhP0-SisNYvH2jpxA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH5Iq-jFXaxrDqKn0MxkmXgUtVastZaW9jZMZoGiVGmrFH-9b5I02oMIYg6BhMnC2-abl5fvAZwY4SeJJxIX0bjEBUok3BjnPVd5ghgEAJ5RKc9sgzWbcb9_3sqrCe2_MBk_RJFws56Rxmvr4DYhXf1iDcUIYwknSUrpj1G4HKAthSUoX7Vr3UYRjtEls7Z5JHRxuotnzI0erc7fYW5mKlshT-dg53fwms4-tbV_eO91WM2hp3OR2coGLOjhJiylJaByvAVe1uAhTw46aa25niJId8RQOYlN9Dm2mS7uRoMPNNZt6NauO5d1N--n4Er73dfVhIlASxUIqmgUx0okQWyCUKGPa3wbX-MWeCY0VElfsDjSTCnL1oMaU77xd6A0fBnqXXCIr3xpJCFM45IHlRtFRhGMFudUC-aLCrgzWXKZk43bnhfPPKNJptxKgRdSqMBZMf41o9n4ceRpqppimBg92eI0FvJe84b3aJ_0b-gjv6zAwUx3PPfLMUewxCLGEBVXgKZa-uVxvNV-aBVHe3-56BiW6537Bm_cNu_2YQXP5zmcAyhNRm_6EBbl-2QwHh3lpvsJLhHttA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB7EqnjxLcZnDqKnYHbz2PQorVWxxCqW9rZs9gGiRGlVxF_vbJJGexBBzCGQsHkwszPz7WTyDcChEUGW-SLzEI1LXKDEwksw7nnKF8QgAPCNKnhmuyxNk-Gw2auqCe2_MCU_RJ1ws5ZR-Gtr4PpZmZMv1lD0MJZwkhSU_uiFG2HUjNE2G-3bTr9bu2M0ybJtHok8DHfJhLnRpyfTd5iKTA0r5Pcp2PkdvBbRp7P8D--9AksV9HRPy7myCjM6X4P5ogRUjtfBLxs8VMlBt6g11-8I0l2RKzeziT7XNtPF3ej-AyfrBvQ7Z3etC6_qp-BJ-93X04SJUEsVCqponCRKZGFiwkihjWt8m0DjFvomMlTJQLAk1kwpy9aDGlOBCTZhNn_K9Ra4JFCBNJIQpnHJg8qNY6MIeosm1YIFwgFvIksuK7Jx2_PikZc0yZRbKfBaCg4c1-OfS5qNH0ceFaqph4nRgy1OYxEfpOd8QIdkeE5veMuB3YnueGWXY45gicWMISp2gBZa-uVxvHd73auPtv9y0QEs9Nod3r1Mr3ZgEU9XKZxdmH0Zveo9mJNvL_fj0X41cz8B0sPtLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+complexity+and+black+hole+horizons&rft.jtitle=Fortschritte+der+Physik&rft.au=Susskind%2C+Leonard&rft.date=2016-01-01&rft.issn=0015-8208&rft.eissn=1521-3978&rft.volume=64&rft.issue=1&rft.spage=24&rft.epage=43&rft_id=info:doi/10.1002%2Fprop.201500092&rft.externalDBID=10.1002%252Fprop.201500092&rft.externalDocID=PROP201500092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-8208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-8208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-8208&client=summon