Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach

Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in computer science (Lausanne) Ročník 3
Hlavní autoři: Ulicna, Kristina, Vallardi, Giulia, Charras, Guillaume, Lowe, Alan R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 20.10.2021
Témata:
ISSN:2624-9898, 2624-9898
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting reliable cell trajectories and lineage information over long time-scales and across several generations. Therefore, we developed a hybrid deep learning and Bayesian cell tracking approach to reconstruct lineage trees from live-cell microscopy data. We implemented a residual U-Net model coupled with a classification CNN to allow accurate instance segmentation of the cell nuclei. To track the cells over time and through cell divisions, we developed a Bayesian cell tracking methodology that uses input features from the images to enable the retrieval of multi-generational lineage information from a corpus of thousands of hours of live-cell imaging data. Using our approach, we extracted 20,000 + fully annotated single-cell trajectories from over 3,500 h of video footage, organised into multi-generational lineage trees spanning up to eight generations and fourth cousin distances. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results with our data, with minimal requirement for manual curation. To demonstrate the robustness of our minimally supervised cell tracking methodology, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships in 5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations across ancestral relatives, yet reveal correlated cyclings between cells sharing the same generation in extended lineages. These findings expand the depth and breadth of investigated cell lineage relationships in approximately two orders of magnitude more data than in previous studies of cell cycle heritability, which were reliant on semi-manual lineage data analysis.
AbstractList Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting reliable cell trajectories and lineage information over long time-scales and across several generations. Therefore, we developed a hybrid deep learning and Bayesian cell tracking approach to reconstruct lineage trees from live-cell microscopy data. We implemented a residual U-Net model coupled with a classification CNN to allow accurate instance segmentation of the cell nuclei. To track the cells over time and through cell divisions, we developed a Bayesian cell tracking methodology that uses input features from the images to enable the retrieval of multi-generational lineage information from a corpus of thousands of hours of live-cell imaging data. Using our approach, we extracted 20,000 + fully annotated single-cell trajectories from over 3,500 h of video footage, organised into multi-generational lineage trees spanning up to eight generations and fourth cousin distances. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results with our data, with minimal requirement for manual curation. To demonstrate the robustness of our minimally supervised cell tracking methodology, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships in 5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations across ancestral relatives, yet reveal correlated cyclings between cells sharing the same generation in extended lineages. These findings expand the depth and breadth of investigated cell lineage relationships in approximately two orders of magnitude more data than in previous studies of cell cycle heritability, which were reliant on semi-manual lineage data analysis.
Author Vallardi, Giulia
Lowe, Alan R.
Ulicna, Kristina
Charras, Guillaume
Author_xml – sequence: 1
  givenname: Kristina
  surname: Ulicna
  fullname: Ulicna, Kristina
– sequence: 2
  givenname: Giulia
  surname: Vallardi
  fullname: Vallardi, Giulia
– sequence: 3
  givenname: Guillaume
  surname: Charras
  fullname: Charras, Guillaume
– sequence: 4
  givenname: Alan R.
  surname: Lowe
  fullname: Lowe, Alan R.
BookMark eNp1kMtOwzAQRS1UJErpB7DzD7TYTpzYy1CeUiUWbdfWxJkUlzSO7LDo35O2ICEkVvO8d0bnmoxa3yIht5zNk0Tpu9r6fTcXTPB5nqRS6gsyFplIZ1ppNfqVX5FpjDvGmJCcS5WPyar47P0eeqzoA2JHl65F2CJdB0RatNAcoot0E127pUDv4YDRQUtXQ90gXWDTDKtgP47zouuCB_t-Qy5raCJOv-OEbJ4e14uX2fLt-XVRLGc2Fayf1YJxkUlQlSw14yXPQKYKeGmlTLIcwOo8y1JepSASFHWVs1opSKHSWIKQyYS8nn0rDzvTBbeHcDAenDk1fNgaCL2zDZrhUm21FlmSs1SVWCZc1yVnSg53hCoHr_zsZYOPMWBtrOuhd77tA7jGcGaOqM0JtTmiNmfUg5L_Uf588r_mCzT_g70
CitedBy_id crossref_primary_10_1038_s41568_023_00610_5
crossref_primary_10_1038_s41467_025_57193_y
crossref_primary_10_1016_j_stemcr_2025_102611
crossref_primary_10_1038_s41592_025_02778_0
crossref_primary_10_15252_msb_202211087
crossref_primary_10_1016_j_stem_2025_02_015
crossref_primary_10_1038_s41587_023_02082_2
crossref_primary_10_1038_s41598_024_66600_1
crossref_primary_10_7554_eLife_91150
crossref_primary_10_1063_5_0209547
crossref_primary_10_7554_eLife_91150_4
crossref_primary_10_1016_j_jbc_2023_104599
crossref_primary_10_1242_jcs_261887
crossref_primary_10_3390_mi14040826
crossref_primary_10_1091_mbc_E23_12_0463
crossref_primary_10_3389_fimag_2024_1443142
crossref_primary_10_1158_0008_5472_CAN_23_1100
crossref_primary_10_1117_1_JBO_29_S2_S22702
crossref_primary_10_7554_eLife_79812
crossref_primary_10_1016_j_isci_2025_112225
crossref_primary_10_1038_s41598_024_56081_7
crossref_primary_10_1186_s44330_025_00033_8
crossref_primary_10_1016_j_xcrp_2025_102522
crossref_primary_10_7554_eLife_80927
crossref_primary_10_1038_s41564_023_01501_z
crossref_primary_10_1242_dev_204561
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_1038_s42256_022_00503_6
crossref_primary_10_1371_journal_pbio_3003099
crossref_primary_10_1371_journal_pone_0305491
crossref_primary_10_1073_pnas_2405560121
crossref_primary_10_1038_s41467_023_43973_x
crossref_primary_10_1091_mbc_E24_10_0481
crossref_primary_10_1007_s12195_023_00773_z
crossref_primary_10_1016_j_cub_2024_08_013
crossref_primary_10_1186_s12915_022_01372_6
Cites_doi 10.7554/eLife.51002
10.1101/2021.02.26.432552
10.1038/s41592-019-0582-9
10.1091/mbc.E17-06-0368
10.1038/s41467-018-07788-5
10.1242/jcs.085803
10.1038/nmeth.3036
10.1016/j.softx.2019.02.007
10.1109/cvpr.2007.383446
10.1109/MARSS.2018.8481231
10.1115/1.3662552
10.1007/978-3-030-00934-2_30
10.1371/journal.pone.0027886
10.1073/pnas.0511111103
10.4161/cc.5.3.2426
10.1038/s41592-020-01023-0
10.1038/nbt.3626
10.1371/journal.pbio.2005970
10.1073/pnas.1007809109
10.1038/nrclinonc.2017.166
10.1371/journal.pcbi.1007673
10.1016/j.devcel.2015.12.028
10.12688/f1000research.27019.1
10.1109/ISBI.2011.5872571
10.1016/j.isci.2019.02.004
10.1093/bioinformatics/btu764
10.1109/TMI.2014.2370951
10.1038/nmeth.4473
10.1038/ncomms9674
10.1038/nmeth.1237
10.1007/978-3-319-24574-4_28
10.1101/803205
10.1371/journal.pcbi.1007054
10.1038/nbt.3713
10.1038/nature14318
10.14440/jbm.2014.36
10.1016/j.ymeth.2016.09.016
10.1101/2020.02.02.93123810.1038/s41592-020-01018-x
10.1101/385567
10.1016/j.cell.2014.04.005
10.7554/eLife.34410
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fcomp.2021.734559
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-9898
ExternalDocumentID oai_doaj_org_article_012fc992637048beb319fb10857aa28b
10_3389_fcomp_2021_734559
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c420t-f201265a8d5b901b16a548a1bc55367aac976641d4a23e2fd70f88a4ad9eba253
IEDL.DBID DOA
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000726176100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-9898
IngestDate Fri Oct 03 12:44:37 EDT 2025
Sat Nov 29 02:11:55 EST 2025
Tue Nov 18 21:40:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-f201265a8d5b901b16a548a1bc55367aac976641d4a23e2fd70f88a4ad9eba253
OpenAccessLink https://doaj.org/article/012fc992637048beb319fb10857aa28b
ParticipantIDs doaj_primary_oai_doaj_org_article_012fc992637048beb319fb10857aa28b
crossref_citationtrail_10_3389_fcomp_2021_734559
crossref_primary_10_3389_fcomp_2021_734559
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationTitle Frontiers in computer science (Lausanne)
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Puliafito (B34) 2012; 109
Berg (B8) 2019; 16
Fazeli (B16) 2021
Downey (B13) 2011; 6
Edelstein (B14) 2014; 1
Ronneberger (B35) 2015; 9351
Kalman (B23) 1960; 82
Hilsenbeck (B21) 2016; 34
Chakrabarti (B11) 2018; 9
Amat (B4) 2014; 11
Wolff (B49) 2018; 7
Schmidt (B38) 2018; 11071
Kuchen (B25) 2020; 9
Hernandez (B20) 2018
Tsai (B46) 2019; 9
Stringer (B42) 2020; 18
McQuin (B29) 2018; 16
Schiegg (B37) 2015; 31
Moen (B30) 2019
Sofroniew (B40) 2021
Sugawara (B43) 2021
Akram (B1) 2017
Mura (B31) 2019; 15
Al-Kofahi (B2) 2006; 5
He (B19) 2015
Jaqaman (B22) 2008; 5
Fazeli (B17) 2020
Bannon (B5) 2021; 18
Stegmaier (B41) 2016; 36
Dagogo-jack (B12) 2017; 15
Narayana (B32) 2007
Sandler (B36) 2015; 519
Bise (B9) 2011
Tinevez (B45) 2021
Bendall (B7) 2014; 157
Allan (B3) 2018
Faure (B15) 2016; 7
Mandal (B28) 2021
Ulman (B47) 2017; 14
Magnusson (B27) 2015; 34
Norman (B33) 2012; 125
Kingma (B24) 2015
Skylaki (B39) 2016; 34
Tinevez (B44) 2017; 115
Han (B18) 2019; 13
Lugagne (B26) 2020; 16
Bao (B6) 2006; 103
Bove (B10) 2017; 28
Wen (B48) 2018
References_xml – volume: 9
  start-page: e51002
  year: 2020
  ident: B25
  article-title: Hidden Long-Range Memories of Growth and Cycle Speed Correlate Cell Cycles in Lineage Trees
  publication-title: eLife
  doi: 10.7554/eLife.51002
– volume-title: Tracking Cell Lineages in 3D by Incremental Deep Learning
  year: 2021
  ident: B43
  doi: 10.1101/2021.02.26.432552
– volume: 16
  start-page: 1226
  year: 2019
  ident: B8
  article-title: Ilastik: Interactive Machine Learning for (Bio)image Analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 28
  start-page: 3215
  year: 2017
  ident: B10
  article-title: Local Cellular Neighborhood Controls Proliferation in Cell Competition
  publication-title: MBoC
  doi: 10.1091/mbc.E17-06-0368
– volume: 9
  start-page: 1
  year: 2018
  ident: B11
  article-title: Hidden Heterogeneity and Circadian-Controlled Cell Fate Inferred from Single Cell Lineages
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07788-5
– volume: 125
  start-page: 59
  year: 2012
  ident: B33
  article-title: Loss of Scribble Causes Cell Competition in Mammalian Cells
  publication-title: J. Cel Sci.
  doi: 10.1242/jcs.085803
– volume: 11
  start-page: 951
  year: 2014
  ident: B4
  article-title: Fast, Accurate Reconstruction of Cell Lineages from Large-Scale Fluorescence Microscopy Data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3036
– volume-title: Mastodon
  year: 2021
  ident: B45
– volume: 9
  start-page: 230
  year: 2019
  ident: B46
  article-title: Usiigaci: Instance-Aware Cell Tracking in Stain-free Phase Contrast Microscopy Enabled by Machine Learning
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2019.02.007
– start-page: 03386
  volume-title: Cell Tracking via Proposal Generation and Selection
  year: 2017
  ident: B1
– year: 2007
  ident: B32
  article-title: A Bayesian Algorithm for Tracking Multiple Moving Objects in Outdoor Surveillance Video
  doi: 10.1109/cvpr.2007.383446
– volume-title: Trackpy: Trackpy v0.4.1
  year: 2018
  ident: B3
– start-page: 1
  year: 2018
  ident: B20
  article-title: Cell Tracking with Deep Learning and the Viterbi Algorithm
  doi: 10.1109/MARSS.2018.8481231
– volume: 82
  start-page: 35
  year: 1960
  ident: B23
  article-title: A New Approach to Linear Filtering and Prediction Problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 11071
  start-page: 265
  year: 2018
  ident: B38
  article-title: Cell Detection with star-convex Polygons
  publication-title: Lecture Notes Computer Sci. (including subseries Lecture Notes Artif. Intelligence Lecture Notes Bioinformatics) 11071 LNCS
  doi: 10.1007/978-3-030-00934-2_30
– volume: 6
  start-page: e27886
  year: 2011
  ident: B13
  article-title: Extracting Fluorescent Reporter Time Courses of Cell Lineages from High-Throughput Microscopy at Low Temporal Resolution
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027886
– volume: 103
  start-page: 2707
  year: 2006
  ident: B6
  article-title: Automated Cell Lineage Tracing in Caenorhabditis elegans
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0511111103
– volume: 5
  start-page: 327
  year: 2006
  ident: B2
  article-title: Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.3.2426
– volume: 18
  start-page: 43
  year: 2021
  ident: B5
  article-title: DeepCell Kiosk: Scaling Deep Learning-Enabled Cellular Image Analysis with Kubernetes
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01023-0
– volume: 34
  start-page: 703
  year: 2016
  ident: B21
  article-title: Software Tools for Single-Cell Tracking and Quantification of Cellular and Molecular Properties
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3626
– volume: 16
  start-page: e2005970
  year: 2018
  ident: B29
  article-title: Cellprofiler 3.0: Next-Generation Image Processing for Biology
  publication-title: Plos Biol.
  doi: 10.1371/journal.pbio.2005970
– volume-title: Splinedist: Automated Cell Segmentation with Spline Curves
  year: 2021
  ident: B28
– start-page: 1
  year: 2015
  ident: B24
  article-title: Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations
– volume: 109
  start-page: 739
  year: 2012
  ident: B34
  article-title: Collective and Single Cell Behavior in Epithelial Contact Inhibition
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1007809109
– volume: 15
  start-page: 81
  year: 2017
  ident: B12
  article-title: Tumour Heterogeneity and Resistance to Cancer Therapies
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.166
– start-page: 1
  volume-title: Automated Cell Tracking Using StarDist and TrackMate [ Version 1 ; Peer Review : 2 Approved , 1 Approved with Reservations
  year: 2021
  ident: B16
– volume: 16
  start-page: e1007673
  year: 2020
  ident: B26
  article-title: DeLTA: Automated Cell Segmentation, Tracking, and Lineage Reconstruction Using Deep Learning
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1007673
– volume: 36
  start-page: 225
  year: 2016
  ident: B41
  article-title: Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos
  publication-title: Developmental Cel
  doi: 10.1016/j.devcel.2015.12.028
– volume-title: Automated Cell Tracking Using Stardist and Trackmate
  year: 2020
  ident: B17
  doi: 10.12688/f1000research.27019.1
– start-page: 1004
  year: 2011
  ident: B9
  article-title: Reliable Cell Tracking by Global Data Association
  doi: 10.1109/ISBI.2011.5872571
– volume: 13
  start-page: 1
  year: 2019
  ident: B18
  article-title: eDetect: A Fast Error Detection and Correction Tool for Live Cell Imaging Data Analysis
  publication-title: iScience
  doi: 10.1016/j.isci.2019.02.004
– volume: 31
  start-page: 948
  year: 2015
  ident: B37
  article-title: Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cells
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu764
– volume: 34
  start-page: 911
  year: 2015
  ident: B27
  article-title: Global Linking of Cell Tracks Using the Viterbi Algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2370951
– volume: 14
  start-page: 1141
  year: 2017
  ident: B47
  article-title: An Objective Comparison of Cell-Tracking Algorithms
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4473
– volume: 7
  year: 2016
  ident: B15
  article-title: A Workflow to Process 3D+time Microscopy Images of Developing Organisms and Reconstruct Their Cell Lineage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9674
– start-page: 03385
  volume-title: Deep Residual Learning for Image Recognition
  year: 2015
  ident: B19
– volume: 5
  start-page: 695
  year: 2008
  ident: B22
  article-title: Robust Single-Particle Tracking in Live-Cell Time-Lapse Sequences
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1237
– volume: 9351
  start-page: 234
  year: 2015
  ident: B35
  article-title: U-net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lecture Notes Computer Sci. (including subseries Lecture Notes Artif. Intelligence Lecture Notes Bioinformatics)
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: Accurate Cell Tracking and Lineage Construction in Live-Cell Imaging Experiments with Deep Learning
  year: 2019
  ident: B30
  doi: 10.1101/803205
– volume: 15
  start-page: e1007054
  year: 2019
  ident: B31
  article-title: Mathematical Modelling Reveals Unexpected Inheritance and Variability Patterns of Cell Cycle Parameters in Mammalian Cells
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1007054
– volume: 34
  start-page: 1137
  year: 2016
  ident: B39
  article-title: Challenges in Long-Term Imaging and Quantification of Single-Cell Dynamics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3713
– volume: 519
  start-page: 468
  year: 2015
  ident: B36
  article-title: Lineage Correlations of Single Cell Division Time as a Probe of Cell-Cycle Dynamics
  publication-title: Nature
  doi: 10.1038/nature14318
– volume: 1
  start-page: 10
  year: 2014
  ident: B14
  article-title: Advanced Methods of Microscope Control Using μManager Software
  publication-title: J. Biol. Methods
  doi: 10.14440/jbm.2014.36
– volume: 115
  start-page: 80
  year: 2017
  ident: B44
  article-title: TrackMate: An Open and Extensible Platform for Single-Particle Tracking
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 18
  start-page: 100
  year: 2020
  ident: B42
  article-title: Cellpose: a Generalist Algorithm for Cellular Segmentation
  publication-title: Nat. Methods
  doi: 10.1101/2020.02.02.93123810.1038/s41592-020-01018-x
– volume-title: Deep-learning-based Flexible Pipeline for Segmenting and Tracking Cells in 3D Image Time Series for Whole Brain Imaging
  year: 2018
  ident: B48
  doi: 10.1101/385567
– volume-title: Napari/Napari: 0.4.7rc1
  year: 2021
  ident: B40
– volume: 157
  start-page: 714
  year: 2014
  ident: B7
  article-title: Single-cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.005
– volume: 7
  start-page: 1
  year: 2018
  ident: B49
  article-title: Multi-view Light-Sheet Imaging and Tracking with the MaMuT Software Reveals the Cell Lineage of a Direct Developing Arthropod Limb
  publication-title: eLife
  doi: 10.7554/eLife.34410
SSID ssj0002511587
Score 2.4009776
Snippet Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms cell classification
lineage tree reconstruction
multi-object tracking
nuclei segmentation
single-cell heterogeneity
Title Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach
URI https://doaj.org/article/012fc992637048beb319fb10857aa28b
Volume 3
WOSCitedRecordID wos000726176100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2624-9898
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511587
  issn: 2624-9898
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-9898
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511587
  issn: 2624-9898
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kePDiW6wv9uBJiE32kc0eW614UQQVvIV9ghDaUlvBi7_dmSQtOenFSyBhE5ZvdmfmSybfEHIZjRM-iybR1qtEcAF7TgiRBMl1sKmKzjXNJtTjY_H2pp86rb6wJqyRB26AG4ADjU5rlnMFi80C98t0tFgzr4xhhUXvmyrdIVPogzFxloVqPmMCC9ODiCXawAdZdq24kKhN2glEHb3-OrDc7ZLtNiOkw2Yme2QjTPbJzqrbAm033wF5Hi4XU8gvg6e3IcwosMgAzoC-zEOgK20RWpcAUENH5ivg_5H0Gc6rQG9CVcFQ4_DVOB22SuKH5PVu_HJzn7QtERInWLpIIsRrlktTeGkhktssN0A5TGadlDwHRBykF7nIvDCMBxa9SmNRGGE8IG-Y5EekN5lOwjGhXLmM25Br46MAe2nntEQ9eA8cy7q8T9IVPqVr9cKxbUVVAm9ASMsa0hIhLRtI--RqfcusEcv4bfAIQV8PRJ3r-gJYv2ytX_5l_ZP_eMgp2cJ5YURi6RnpLebLcE423efi_WN-US8sOD58j38APcbSUA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Deep+Lineage+Tree+Analysis+Using+a+Bayesian+Single+Cell+Tracking+Approach&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Kristina+Ulicna&rft.au=Kristina+Ulicna&rft.au=Giulia+Vallardi&rft.au=Giulia+Vallardi&rft.date=2021-10-20&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9898&rft.volume=3&rft_id=info:doi/10.3389%2Ffcomp.2021.734559&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_012fc992637048beb319fb10857aa28b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon