Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach
Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting...
Uloženo v:
| Vydáno v: | Frontiers in computer science (Lausanne) Ročník 3 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Frontiers Media S.A
20.10.2021
|
| Témata: | |
| ISSN: | 2624-9898, 2624-9898 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting reliable cell trajectories and lineage information over long time-scales and across several generations. Therefore, we developed a hybrid deep learning and Bayesian cell tracking approach to reconstruct lineage trees from live-cell microscopy data. We implemented a residual U-Net model coupled with a classification CNN to allow accurate instance segmentation of the cell nuclei. To track the cells over time and through cell divisions, we developed a Bayesian cell tracking methodology that uses input features from the images to enable the retrieval of multi-generational lineage information from a corpus of thousands of hours of live-cell imaging data. Using our approach, we extracted 20,000 + fully annotated single-cell trajectories from over 3,500 h of video footage, organised into multi-generational lineage trees spanning up to eight generations and fourth cousin distances. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results with our data, with minimal requirement for manual curation. To demonstrate the robustness of our minimally supervised cell tracking methodology, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships in 5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations across ancestral relatives, yet reveal correlated cyclings between cells sharing the same generation in extended lineages. These findings expand the depth and breadth of investigated cell lineage relationships in approximately two orders of magnitude more data than in previous studies of cell cycle heritability, which were reliant on semi-manual lineage data analysis. |
|---|---|
| AbstractList | Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting reliable cell trajectories and lineage information over long time-scales and across several generations. Therefore, we developed a hybrid deep learning and Bayesian cell tracking approach to reconstruct lineage trees from live-cell microscopy data. We implemented a residual U-Net model coupled with a classification CNN to allow accurate instance segmentation of the cell nuclei. To track the cells over time and through cell divisions, we developed a Bayesian cell tracking methodology that uses input features from the images to enable the retrieval of multi-generational lineage information from a corpus of thousands of hours of live-cell imaging data. Using our approach, we extracted 20,000 + fully annotated single-cell trajectories from over 3,500 h of video footage, organised into multi-generational lineage trees spanning up to eight generations and fourth cousin distances. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results with our data, with minimal requirement for manual curation. To demonstrate the robustness of our minimally supervised cell tracking methodology, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships in 5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations across ancestral relatives, yet reveal correlated cyclings between cells sharing the same generation in extended lineages. These findings expand the depth and breadth of investigated cell lineage relationships in approximately two orders of magnitude more data than in previous studies of cell cycle heritability, which were reliant on semi-manual lineage data analysis. |
| Author | Vallardi, Giulia Lowe, Alan R. Ulicna, Kristina Charras, Guillaume |
| Author_xml | – sequence: 1 givenname: Kristina surname: Ulicna fullname: Ulicna, Kristina – sequence: 2 givenname: Giulia surname: Vallardi fullname: Vallardi, Giulia – sequence: 3 givenname: Guillaume surname: Charras fullname: Charras, Guillaume – sequence: 4 givenname: Alan R. surname: Lowe fullname: Lowe, Alan R. |
| BookMark | eNp1kMtOwzAQRS1UJErpB7DzD7TYTpzYy1CeUiUWbdfWxJkUlzSO7LDo35O2ICEkVvO8d0bnmoxa3yIht5zNk0Tpu9r6fTcXTPB5nqRS6gsyFplIZ1ppNfqVX5FpjDvGmJCcS5WPyar47P0eeqzoA2JHl65F2CJdB0RatNAcoot0E127pUDv4YDRQUtXQ90gXWDTDKtgP47zouuCB_t-Qy5raCJOv-OEbJ4e14uX2fLt-XVRLGc2Fayf1YJxkUlQlSw14yXPQKYKeGmlTLIcwOo8y1JepSASFHWVs1opSKHSWIKQyYS8nn0rDzvTBbeHcDAenDk1fNgaCL2zDZrhUm21FlmSs1SVWCZc1yVnSg53hCoHr_zsZYOPMWBtrOuhd77tA7jGcGaOqM0JtTmiNmfUg5L_Uf588r_mCzT_g70 |
| CitedBy_id | crossref_primary_10_1038_s41568_023_00610_5 crossref_primary_10_1038_s41467_025_57193_y crossref_primary_10_1016_j_stemcr_2025_102611 crossref_primary_10_1038_s41592_025_02778_0 crossref_primary_10_15252_msb_202211087 crossref_primary_10_1016_j_stem_2025_02_015 crossref_primary_10_1038_s41587_023_02082_2 crossref_primary_10_1038_s41598_024_66600_1 crossref_primary_10_7554_eLife_91150 crossref_primary_10_1063_5_0209547 crossref_primary_10_7554_eLife_91150_4 crossref_primary_10_1016_j_jbc_2023_104599 crossref_primary_10_1242_jcs_261887 crossref_primary_10_3390_mi14040826 crossref_primary_10_1091_mbc_E23_12_0463 crossref_primary_10_3389_fimag_2024_1443142 crossref_primary_10_1158_0008_5472_CAN_23_1100 crossref_primary_10_1117_1_JBO_29_S2_S22702 crossref_primary_10_7554_eLife_79812 crossref_primary_10_1016_j_isci_2025_112225 crossref_primary_10_1038_s41598_024_56081_7 crossref_primary_10_1186_s44330_025_00033_8 crossref_primary_10_1016_j_xcrp_2025_102522 crossref_primary_10_7554_eLife_80927 crossref_primary_10_1038_s41564_023_01501_z crossref_primary_10_1242_dev_204561 crossref_primary_10_1093_jmicro_dfad059 crossref_primary_10_1038_s42256_022_00503_6 crossref_primary_10_1371_journal_pbio_3003099 crossref_primary_10_1371_journal_pone_0305491 crossref_primary_10_1073_pnas_2405560121 crossref_primary_10_1038_s41467_023_43973_x crossref_primary_10_1091_mbc_E24_10_0481 crossref_primary_10_1007_s12195_023_00773_z crossref_primary_10_1016_j_cub_2024_08_013 crossref_primary_10_1186_s12915_022_01372_6 |
| Cites_doi | 10.7554/eLife.51002 10.1101/2021.02.26.432552 10.1038/s41592-019-0582-9 10.1091/mbc.E17-06-0368 10.1038/s41467-018-07788-5 10.1242/jcs.085803 10.1038/nmeth.3036 10.1016/j.softx.2019.02.007 10.1109/cvpr.2007.383446 10.1109/MARSS.2018.8481231 10.1115/1.3662552 10.1007/978-3-030-00934-2_30 10.1371/journal.pone.0027886 10.1073/pnas.0511111103 10.4161/cc.5.3.2426 10.1038/s41592-020-01023-0 10.1038/nbt.3626 10.1371/journal.pbio.2005970 10.1073/pnas.1007809109 10.1038/nrclinonc.2017.166 10.1371/journal.pcbi.1007673 10.1016/j.devcel.2015.12.028 10.12688/f1000research.27019.1 10.1109/ISBI.2011.5872571 10.1016/j.isci.2019.02.004 10.1093/bioinformatics/btu764 10.1109/TMI.2014.2370951 10.1038/nmeth.4473 10.1038/ncomms9674 10.1038/nmeth.1237 10.1007/978-3-319-24574-4_28 10.1101/803205 10.1371/journal.pcbi.1007054 10.1038/nbt.3713 10.1038/nature14318 10.14440/jbm.2014.36 10.1016/j.ymeth.2016.09.016 10.1101/2020.02.02.93123810.1038/s41592-020-01018-x 10.1101/385567 10.1016/j.cell.2014.04.005 10.7554/eLife.34410 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fcomp.2021.734559 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2624-9898 |
| ExternalDocumentID | oai_doaj_org_article_012fc992637048beb319fb10857aa28b 10_3389_fcomp_2021_734559 |
| GroupedDBID | 9T4 AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c420t-f201265a8d5b901b16a548a1bc55367aac976641d4a23e2fd70f88a4ad9eba253 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000726176100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-9898 |
| IngestDate | Fri Oct 03 12:44:37 EDT 2025 Sat Nov 29 02:11:55 EST 2025 Tue Nov 18 21:40:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-f201265a8d5b901b16a548a1bc55367aac976641d4a23e2fd70f88a4ad9eba253 |
| OpenAccessLink | https://doaj.org/article/012fc992637048beb319fb10857aa28b |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_012fc992637048beb319fb10857aa28b crossref_citationtrail_10_3389_fcomp_2021_734559 crossref_primary_10_3389_fcomp_2021_734559 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-20 |
| PublicationDateYYYYMMDD | 2021-10-20 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in computer science (Lausanne) |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Puliafito (B34) 2012; 109 Berg (B8) 2019; 16 Fazeli (B16) 2021 Downey (B13) 2011; 6 Edelstein (B14) 2014; 1 Ronneberger (B35) 2015; 9351 Kalman (B23) 1960; 82 Hilsenbeck (B21) 2016; 34 Chakrabarti (B11) 2018; 9 Amat (B4) 2014; 11 Wolff (B49) 2018; 7 Schmidt (B38) 2018; 11071 Kuchen (B25) 2020; 9 Hernandez (B20) 2018 Tsai (B46) 2019; 9 Stringer (B42) 2020; 18 McQuin (B29) 2018; 16 Schiegg (B37) 2015; 31 Moen (B30) 2019 Sofroniew (B40) 2021 Sugawara (B43) 2021 Akram (B1) 2017 Mura (B31) 2019; 15 Al-Kofahi (B2) 2006; 5 He (B19) 2015 Jaqaman (B22) 2008; 5 Fazeli (B17) 2020 Bannon (B5) 2021; 18 Stegmaier (B41) 2016; 36 Dagogo-jack (B12) 2017; 15 Narayana (B32) 2007 Sandler (B36) 2015; 519 Bise (B9) 2011 Tinevez (B45) 2021 Bendall (B7) 2014; 157 Allan (B3) 2018 Faure (B15) 2016; 7 Mandal (B28) 2021 Ulman (B47) 2017; 14 Magnusson (B27) 2015; 34 Norman (B33) 2012; 125 Kingma (B24) 2015 Skylaki (B39) 2016; 34 Tinevez (B44) 2017; 115 Han (B18) 2019; 13 Lugagne (B26) 2020; 16 Bao (B6) 2006; 103 Bove (B10) 2017; 28 Wen (B48) 2018 |
| References_xml | – volume: 9 start-page: e51002 year: 2020 ident: B25 article-title: Hidden Long-Range Memories of Growth and Cycle Speed Correlate Cell Cycles in Lineage Trees publication-title: eLife doi: 10.7554/eLife.51002 – volume-title: Tracking Cell Lineages in 3D by Incremental Deep Learning year: 2021 ident: B43 doi: 10.1101/2021.02.26.432552 – volume: 16 start-page: 1226 year: 2019 ident: B8 article-title: Ilastik: Interactive Machine Learning for (Bio)image Analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0582-9 – volume: 28 start-page: 3215 year: 2017 ident: B10 article-title: Local Cellular Neighborhood Controls Proliferation in Cell Competition publication-title: MBoC doi: 10.1091/mbc.E17-06-0368 – volume: 9 start-page: 1 year: 2018 ident: B11 article-title: Hidden Heterogeneity and Circadian-Controlled Cell Fate Inferred from Single Cell Lineages publication-title: Nat. Commun. doi: 10.1038/s41467-018-07788-5 – volume: 125 start-page: 59 year: 2012 ident: B33 article-title: Loss of Scribble Causes Cell Competition in Mammalian Cells publication-title: J. Cel Sci. doi: 10.1242/jcs.085803 – volume: 11 start-page: 951 year: 2014 ident: B4 article-title: Fast, Accurate Reconstruction of Cell Lineages from Large-Scale Fluorescence Microscopy Data publication-title: Nat. Methods doi: 10.1038/nmeth.3036 – volume-title: Mastodon year: 2021 ident: B45 – volume: 9 start-page: 230 year: 2019 ident: B46 article-title: Usiigaci: Instance-Aware Cell Tracking in Stain-free Phase Contrast Microscopy Enabled by Machine Learning publication-title: SoftwareX doi: 10.1016/j.softx.2019.02.007 – start-page: 03386 volume-title: Cell Tracking via Proposal Generation and Selection year: 2017 ident: B1 – year: 2007 ident: B32 article-title: A Bayesian Algorithm for Tracking Multiple Moving Objects in Outdoor Surveillance Video doi: 10.1109/cvpr.2007.383446 – volume-title: Trackpy: Trackpy v0.4.1 year: 2018 ident: B3 – start-page: 1 year: 2018 ident: B20 article-title: Cell Tracking with Deep Learning and the Viterbi Algorithm doi: 10.1109/MARSS.2018.8481231 – volume: 82 start-page: 35 year: 1960 ident: B23 article-title: A New Approach to Linear Filtering and Prediction Problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 11071 start-page: 265 year: 2018 ident: B38 article-title: Cell Detection with star-convex Polygons publication-title: Lecture Notes Computer Sci. (including subseries Lecture Notes Artif. Intelligence Lecture Notes Bioinformatics) 11071 LNCS doi: 10.1007/978-3-030-00934-2_30 – volume: 6 start-page: e27886 year: 2011 ident: B13 article-title: Extracting Fluorescent Reporter Time Courses of Cell Lineages from High-Throughput Microscopy at Low Temporal Resolution publication-title: PLoS ONE doi: 10.1371/journal.pone.0027886 – volume: 103 start-page: 2707 year: 2006 ident: B6 article-title: Automated Cell Lineage Tracing in Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0511111103 – volume: 5 start-page: 327 year: 2006 ident: B2 article-title: Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells publication-title: Cell Cycle doi: 10.4161/cc.5.3.2426 – volume: 18 start-page: 43 year: 2021 ident: B5 article-title: DeepCell Kiosk: Scaling Deep Learning-Enabled Cellular Image Analysis with Kubernetes publication-title: Nat. Methods doi: 10.1038/s41592-020-01023-0 – volume: 34 start-page: 703 year: 2016 ident: B21 article-title: Software Tools for Single-Cell Tracking and Quantification of Cellular and Molecular Properties publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3626 – volume: 16 start-page: e2005970 year: 2018 ident: B29 article-title: Cellprofiler 3.0: Next-Generation Image Processing for Biology publication-title: Plos Biol. doi: 10.1371/journal.pbio.2005970 – volume-title: Splinedist: Automated Cell Segmentation with Spline Curves year: 2021 ident: B28 – start-page: 1 year: 2015 ident: B24 article-title: Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations – volume: 109 start-page: 739 year: 2012 ident: B34 article-title: Collective and Single Cell Behavior in Epithelial Contact Inhibition publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1007809109 – volume: 15 start-page: 81 year: 2017 ident: B12 article-title: Tumour Heterogeneity and Resistance to Cancer Therapies publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.166 – start-page: 1 volume-title: Automated Cell Tracking Using StarDist and TrackMate [ Version 1 ; Peer Review : 2 Approved , 1 Approved with Reservations year: 2021 ident: B16 – volume: 16 start-page: e1007673 year: 2020 ident: B26 article-title: DeLTA: Automated Cell Segmentation, Tracking, and Lineage Reconstruction Using Deep Learning publication-title: Plos Comput. Biol. doi: 10.1371/journal.pcbi.1007673 – volume: 36 start-page: 225 year: 2016 ident: B41 article-title: Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos publication-title: Developmental Cel doi: 10.1016/j.devcel.2015.12.028 – volume-title: Automated Cell Tracking Using Stardist and Trackmate year: 2020 ident: B17 doi: 10.12688/f1000research.27019.1 – start-page: 1004 year: 2011 ident: B9 article-title: Reliable Cell Tracking by Global Data Association doi: 10.1109/ISBI.2011.5872571 – volume: 13 start-page: 1 year: 2019 ident: B18 article-title: eDetect: A Fast Error Detection and Correction Tool for Live Cell Imaging Data Analysis publication-title: iScience doi: 10.1016/j.isci.2019.02.004 – volume: 31 start-page: 948 year: 2015 ident: B37 article-title: Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cells publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu764 – volume: 34 start-page: 911 year: 2015 ident: B27 article-title: Global Linking of Cell Tracks Using the Viterbi Algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2370951 – volume: 14 start-page: 1141 year: 2017 ident: B47 article-title: An Objective Comparison of Cell-Tracking Algorithms publication-title: Nat. Methods doi: 10.1038/nmeth.4473 – volume: 7 year: 2016 ident: B15 article-title: A Workflow to Process 3D+time Microscopy Images of Developing Organisms and Reconstruct Their Cell Lineage publication-title: Nat. Commun. doi: 10.1038/ncomms9674 – start-page: 03385 volume-title: Deep Residual Learning for Image Recognition year: 2015 ident: B19 – volume: 5 start-page: 695 year: 2008 ident: B22 article-title: Robust Single-Particle Tracking in Live-Cell Time-Lapse Sequences publication-title: Nat. Methods doi: 10.1038/nmeth.1237 – volume: 9351 start-page: 234 year: 2015 ident: B35 article-title: U-net: Convolutional Networks for Biomedical Image Segmentation publication-title: Lecture Notes Computer Sci. (including subseries Lecture Notes Artif. Intelligence Lecture Notes Bioinformatics) doi: 10.1007/978-3-319-24574-4_28 – volume-title: Accurate Cell Tracking and Lineage Construction in Live-Cell Imaging Experiments with Deep Learning year: 2019 ident: B30 doi: 10.1101/803205 – volume: 15 start-page: e1007054 year: 2019 ident: B31 article-title: Mathematical Modelling Reveals Unexpected Inheritance and Variability Patterns of Cell Cycle Parameters in Mammalian Cells publication-title: Plos Comput. Biol. doi: 10.1371/journal.pcbi.1007054 – volume: 34 start-page: 1137 year: 2016 ident: B39 article-title: Challenges in Long-Term Imaging and Quantification of Single-Cell Dynamics publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3713 – volume: 519 start-page: 468 year: 2015 ident: B36 article-title: Lineage Correlations of Single Cell Division Time as a Probe of Cell-Cycle Dynamics publication-title: Nature doi: 10.1038/nature14318 – volume: 1 start-page: 10 year: 2014 ident: B14 article-title: Advanced Methods of Microscope Control Using μManager Software publication-title: J. Biol. Methods doi: 10.14440/jbm.2014.36 – volume: 115 start-page: 80 year: 2017 ident: B44 article-title: TrackMate: An Open and Extensible Platform for Single-Particle Tracking publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 18 start-page: 100 year: 2020 ident: B42 article-title: Cellpose: a Generalist Algorithm for Cellular Segmentation publication-title: Nat. Methods doi: 10.1101/2020.02.02.93123810.1038/s41592-020-01018-x – volume-title: Deep-learning-based Flexible Pipeline for Segmenting and Tracking Cells in 3D Image Time Series for Whole Brain Imaging year: 2018 ident: B48 doi: 10.1101/385567 – volume-title: Napari/Napari: 0.4.7rc1 year: 2021 ident: B40 – volume: 157 start-page: 714 year: 2014 ident: B7 article-title: Single-cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development publication-title: Cell doi: 10.1016/j.cell.2014.04.005 – volume: 7 start-page: 1 year: 2018 ident: B49 article-title: Multi-view Light-Sheet Imaging and Tracking with the MaMuT Software Reveals the Cell Lineage of a Direct Developing Arthropod Limb publication-title: eLife doi: 10.7554/eLife.34410 |
| SSID | ssj0002511587 |
| Score | 2.4009776 |
| Snippet | Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | cell classification lineage tree reconstruction multi-object tracking nuclei segmentation single-cell heterogeneity |
| Title | Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach |
| URI | https://doaj.org/article/012fc992637048beb319fb10857aa28b |
| Volume | 3 |
| WOSCitedRecordID | wos000726176100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2624-9898 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511587 issn: 2624-9898 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-9898 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511587 issn: 2624-9898 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kePDiW6wv9uBJiE32kc0eW614UQQVvIV9ghDaUlvBi7_dmSQtOenFSyBhE5ZvdmfmSybfEHIZjRM-iybR1qtEcAF7TgiRBMl1sKmKzjXNJtTjY_H2pp86rb6wJqyRB26AG4ADjU5rlnMFi80C98t0tFgzr4xhhUXvmyrdIVPogzFxloVqPmMCC9ODiCXawAdZdq24kKhN2glEHb3-OrDc7ZLtNiOkw2Yme2QjTPbJzqrbAm033wF5Hi4XU8gvg6e3IcwosMgAzoC-zEOgK20RWpcAUENH5ivg_5H0Gc6rQG9CVcFQ4_DVOB22SuKH5PVu_HJzn7QtERInWLpIIsRrlktTeGkhktssN0A5TGadlDwHRBykF7nIvDCMBxa9SmNRGGE8IG-Y5EekN5lOwjGhXLmM25Br46MAe2nntEQ9eA8cy7q8T9IVPqVr9cKxbUVVAm9ASMsa0hIhLRtI--RqfcusEcv4bfAIQV8PRJ3r-gJYv2ytX_5l_ZP_eMgp2cJ5YURi6RnpLebLcE423efi_WN-US8sOD58j38APcbSUA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Deep+Lineage+Tree+Analysis+Using+a+Bayesian+Single+Cell+Tracking+Approach&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Kristina+Ulicna&rft.au=Kristina+Ulicna&rft.au=Giulia+Vallardi&rft.au=Giulia+Vallardi&rft.date=2021-10-20&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9898&rft.volume=3&rft_id=info:doi/10.3389%2Ffcomp.2021.734559&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_012fc992637048beb319fb10857aa28b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon |