Portfolio Implementation Risk Management Using Evolutionary Multiobjective Optimization
Portfolio management based on mean-variance portfolio optimization is subject to different sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancy...
Uložené v:
| Vydané v: | Applied sciences Ročník 7; číslo 10; s. 1079 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.10.2017
Multidisciplinary digital publishing institute (MDPI) |
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Portfolio management based on mean-variance portfolio optimization is subject to different sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancy between target and present portfolios, caused by trading strategies, may expose investors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix. |
|---|---|
| AbstractList | Portfolio management based on mean-variance portfolio optimization is subject to different sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancy between target and present portfolios, caused by trading strategies, may expose investors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance-covariance matrix. |
| Author | Denysiuk, Roman Garcia-Rodriguez, Sandra Quintana, David Gaspar-Cunha, António |
| Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-0320-1695 surname: Quintana fullname: Quintana, David – sequence: 2 givenname: Roman surname: Denysiuk fullname: Denysiuk, Roman – sequence: 3 givenname: Sandra surname: Garcia-Rodriguez fullname: Garcia-Rodriguez, Sandra – sequence: 4 givenname: António orcidid: 0000-0001-7777-7625 surname: Gaspar-Cunha fullname: Gaspar-Cunha, António |
| BackLink | https://hal.science/hal-01881379$$DView record in HAL |
| BookMark | eNptUV1LHDEUDaKgXX3pLxjoUwur9yaZSfIoot2FFUUUH0PMZLbZzk6mmeyC_fVmdyr9oBdCLifnnNyPD-SwC50j5CPCOWMKLkzfCwQEoQ7ICQVRTRlHcfhHfkzOhmEFORQyiXBCnu9DTE1ofSjm6751a9clk3zoigc_fC9uTWeWe7B4Gny3LK63od3s3k18LW43bU5fVs4mv3XFXZ_82v_cy0_JUWPawZ39uifk6eb68Wo2Xdx9nV9dLqaWU0jTGssaHWNc5ZCCMaQ1E05wxWsrZc0cGNqU1tSK2hcwjlJgKMtaMM55o9iEzEffOpiV7qNf58J0MF7vgRCX2sTkbet04wCkUw1anv-jlYSS850VGGQl5dnr8-j1zbR_Wc0uF3qHAUqJTKgtZu6nkdvH8GPjhqRXYRO73KpGVZWVYFU-EwIjy8YwDNE12vpxvCka32oEvduc_r25LPnyj-S9kv-Q3wB8A5lw |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0213193 crossref_primary_10_3390_app9081657 crossref_primary_10_3390_e23040422 crossref_primary_10_3390_risks11020043 crossref_primary_10_1007_s00521_021_06853_3 crossref_primary_10_1007_s11081_020_09530_x crossref_primary_10_1016_j_eswa_2021_115732 |
| Cites_doi | 10.1016/j.asoc.2011.09.006 10.1109/4235.996017 10.1016/j.ins.2016.04.010 10.1016/j.cma.2007.03.003 10.1007/3-540-36970-8 10.1371/journal.pone.0140546 10.1162/evco.2006.14.4.463 10.1007/s10589-011-9419-x 10.3233/AIC-140600 10.3390/a10020044 10.1109/SSCI.2015.147 10.1016/j.ejor.2006.08.008 10.1016/j.eswa.2014.03.051 10.1007/s10589-007-9053-9 10.1007/s00158-013-1010-x 10.1109/TEVC.2009.2014361 10.1007/978-3-540-49774-5_19 10.1109/CEC.2013.6557823 10.1155/2015/569415 10.1016/j.ejor.2013.03.029 10.1109/TEVC.2005.846356 10.1016/j.eswa.2012.04.053 10.1145/1389095.1389387 10.3233/AIC-140609 10.1016/j.compchemeng.2016.11.038 10.1137/141002062 10.1007/978-3-319-02499-8_22 10.1016/j.ejor.2015.01.025 10.1109/TEVC.2012.2196800 10.1016/j.eswa.2012.02.195 10.1109/CEC.2013.6557566 10.1007/978-88-470-2342-0 10.1016/j.ejor.2013.10.028 10.1016/j.asoc.2014.08.026 10.1007/s10287-010-0127-2 10.1109/TSP.2015.2436357 10.1080/00207160.2013.871542 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2017 Attribution |
| Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: Attribution |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES DOA |
| DOI | 10.3390/app7101079 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Mathematics Statistics |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_fe008e9f1c4349268054485d70a13524 oai:HAL:hal-01881379v1 10_3390_app7101079 |
| GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IPNFZ K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC RIG TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 1XC 2XV IAO IGS ITC VOOES |
| ID | FETCH-LOGICAL-c420t-d15d1e3349999873312d37e7494dc88d3e0a2f5cad92cb0ae2203185d73444f93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414457800117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:09:26 EDT 2025 Tue Oct 14 20:41:46 EDT 2025 Mon Jun 30 11:20:23 EDT 2025 Tue Nov 18 21:57:44 EST 2025 Sat Nov 29 07:19:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | multiobjective optimization robustness portfolio optimization evolutionary computation ROBUST OPTIMIZATION |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-d15d1e3349999873312d37e7494dc88d3e0a2f5cad92cb0ae2203185d73444f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7777-7625 0000-0003-0320-1695 |
| OpenAccessLink | https://doaj.org/article/fe008e9f1c4349268054485d70a13524 |
| PQID | 1965673667 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fe008e9f1c4349268054485d70a13524 hal_primary_oai_HAL_hal_01881379v1 proquest_journals_1965673667 crossref_citationtrail_10_3390_app7101079 crossref_primary_10_3390_app7101079 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2017 |
| Publisher | MDPI AG Multidisciplinary digital publishing institute (MDPI) |
| Publisher_xml | – name: MDPI AG – name: Multidisciplinary digital publishing institute (MDPI) |
| References | Covas (ref_30) 2008; 39 Deb (ref_36) 1995; 9 ref_35 Ponsich (ref_7) 2013; 17 Dassios (ref_45) 2015; 37 ref_10 Liagkouras (ref_12) 2014; 41 Deb (ref_32) 2009; 13 ref_19 Ni (ref_47) 2016; 358 ref_17 ref_39 ref_37 Fliege (ref_13) 2014; 234 Berutich (ref_23) 2014; 27 Sadjadi (ref_20) 2012; 12 Fastrich (ref_21) 2012; 9 Jin (ref_34) 2005; 9 Daneshmand (ref_3) 2014; 63 Quintana (ref_25) 2013; 32 Deb (ref_38) 2002; 6 Babaei (ref_11) 2015; 244 Beyer (ref_33) 2007; 196 Ferreira (ref_31) 2014; 49 Ye (ref_16) 2012; 52 Michaud (ref_42) 2008; 6 ref_46 (ref_18) 2016; 93 Markowitz (ref_1) 1952; 7 ref_22 Majewski (ref_44) 2017; 102 ref_43 ref_41 Beume (ref_15) 2007; 181 ref_40 Kim (ref_14) 2014; 234 Quintana (ref_24) 2012; 39 ref_2 Quintana (ref_26) 2014; 27 ref_29 Deb (ref_28) 2006; 14 ref_27 ref_48 Metaxiotis (ref_8) 2012; 39 Pelusi (ref_5) 2013; 16 ref_4 Lwin (ref_9) 2014; 24 ref_6 |
| References_xml | – volume: 6 start-page: 8 year: 2008 ident: ref_42 article-title: Estimation error and portfolio optimization: A resampling solution publication-title: J. Invest. Manag. – volume: 12 start-page: 91 year: 2012 ident: ref_20 article-title: Robust optimization framework for cardinality constrained portfolio problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.09.006 – volume: 6 start-page: 182 year: 2002 ident: ref_38 article-title: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 358 start-page: 29 year: 2016 ident: ref_47 article-title: A Matrix-free Smoothing Algorithm for Large-scale Support Vector Machines publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.04.010 – volume: 16 start-page: 203 year: 2013 ident: ref_5 article-title: Improving the profitability of Technical Analysis through intelligent algorithms publication-title: J. Int. Math. – volume: 196 start-page: 3190 year: 2007 ident: ref_33 article-title: Robust optimization—A comprehensive survey publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.03.003 – ident: ref_29 doi: 10.1007/3-540-36970-8 – ident: ref_17 doi: 10.1371/journal.pone.0140546 – volume: 14 start-page: 463 year: 2006 ident: ref_28 article-title: Introducing Robustness in Multi-Objective Optimization publication-title: Evol. Comput. doi: 10.1162/evco.2006.14.4.463 – volume: 52 start-page: 463 year: 2012 ident: ref_16 article-title: Robust portfolio optimization: A conic programming approach publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-011-9419-x – ident: ref_39 – ident: ref_40 – volume: 27 start-page: 315 year: 2014 ident: ref_26 article-title: Extended Mean–variance Model for Reliable Evolutionary Portfolio Optimization publication-title: AI Commun. doi: 10.3233/AIC-140600 – ident: ref_37 – ident: ref_48 doi: 10.3390/a10020044 – ident: ref_43 doi: 10.1109/SSCI.2015.147 – volume: 181 start-page: 1653 year: 2007 ident: ref_15 article-title: SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.008 – volume: 32 start-page: 777 year: 2013 ident: ref_25 article-title: Multiobjective Algorithms with Resampling for Portfolio Optimization publication-title: Comput. Inf. – volume: 41 start-page: 6274 year: 2014 ident: ref_12 article-title: A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.051 – volume: 39 start-page: 75 year: 2008 ident: ref_30 article-title: Robustness in multi-objective optimization using evolutionary algorithms publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9053-9 – volume: 49 start-page: 771 year: 2014 ident: ref_31 article-title: Evolutionary Robustness Analysis for Multi-Objective Optimisation: Benchmark Problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1010-x – volume: 13 start-page: 1054 year: 2009 ident: ref_32 article-title: Reliability-Based Optimization Using Evolutionary Algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014361 – ident: ref_22 doi: 10.1007/978-3-540-49774-5_19 – ident: ref_35 doi: 10.1109/CEC.2013.6557823 – ident: ref_10 doi: 10.1155/2015/569415 – volume: 234 start-page: 411 year: 2014 ident: ref_14 article-title: Robust portfolios that do not tilt factor exposure publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.03.029 – ident: ref_2 – volume: 9 start-page: 303 year: 2005 ident: ref_34 article-title: Evolutionary optimization in uncertain environments—A survey publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.846356 – volume: 39 start-page: 11685 year: 2012 ident: ref_8 article-title: Multiobjective Evolutionary Algorithms for Portfolio Management: A Comprehensive Literature Review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.053 – ident: ref_46 – ident: ref_19 doi: 10.1145/1389095.1389387 – volume: 27 start-page: 453 year: 2014 ident: ref_23 article-title: On the quest for robust technical trading strategies using multi-objective optimization publication-title: AI Commun. doi: 10.3233/AIC-140609 – volume: 102 start-page: 26 year: 2017 ident: ref_44 article-title: Robust multi-objective optimization for sustainable design of distributed energy supply systems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.11.038 – volume: 37 start-page: A2783 year: 2015 ident: ref_45 article-title: A Preconditioner for A Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/141002062 – ident: ref_6 doi: 10.1007/978-3-319-02499-8_22 – volume: 244 start-page: 525 year: 2015 ident: ref_11 article-title: Multi-objective portfolio optimization considering the dependence structure of asset returns publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.01.025 – ident: ref_41 – volume: 17 start-page: 321 year: 2013 ident: ref_7 article-title: A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2196800 – volume: 7 start-page: 77 year: 1952 ident: ref_1 article-title: Portfolio Selection publication-title: J. Financ. – volume: 39 start-page: 10722 year: 2012 ident: ref_24 article-title: Time-stamped resampling for robust evolutionary portfolio optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.195 – ident: ref_27 doi: 10.1109/CEC.2013.6557566 – ident: ref_4 doi: 10.1007/978-88-470-2342-0 – volume: 234 start-page: 422 year: 2014 ident: ref_13 article-title: Robust multiobjective optimization and applications in portfolio optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.10.028 – volume: 24 start-page: 757 year: 2014 ident: ref_9 article-title: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.026 – volume: 9 start-page: 63 year: 2012 ident: ref_21 article-title: Robust portfolio optimization with a hybrid heuristic algorithm publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-010-0127-2 – volume: 63 start-page: 3914 year: 2014 ident: ref_3 article-title: Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2436357 – volume: 93 start-page: 725 year: 2016 ident: ref_18 article-title: Robust portfolio optimization via solution to the Hamilton–Jacobi–Bellman equation publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2013.871542 – volume: 9 start-page: 115 year: 1995 ident: ref_36 article-title: Simulated Binary Crossover for Continuous Search Space publication-title: Complex Syst. |
| SSID | ssj0000913810 |
| Score | 2.1234877 |
| Snippet | Portfolio management based on mean-variance portfolio optimization is subject to different sources of uncertainty. In addition to those related to the quality... |
| SourceID | doaj hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1079 |
| SubjectTerms | Economic models evolutionary computation Machine Learning Mathematics multiobjective optimization Optimization and Control Portfolio Management portfolio optimization Quantitative Finance robustness Statistics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB610EM5tECLCC9ZbQ_lsKpfm7VPCKogDihFqA9uK6_thfDIQjaN1H9fj-MkUFW99Oq1Vrua8bz8zTcAHyrrKporlvk8F5kUNthBJ23GjNLKcadFLOh_Py36fXVxoc9Swa1NsMqZTYyG2jUWa-SfkPkOMUjd4uD-IcOpUXi7mkZoPIdlZCoLer581Oufnc-rLMh6qRid8pKKkN_jvXBwqiHp0U88USTsD_7lCuGQf1jl6GqOX__vR67CqxRkksOpVqzBMz9ch5VH1IPrsJYOdUs-Jubp_TfwA3GldXM7aEhkDb5LjUlDcj5ob8gCKkMi0oD0JklxzegXia28TXU9taDkS7BFd6nJ8y18O-59_XySpckLmZWcjjPHcse8EJgOaYVjHbkThS-kls4q5YSnhte5NU5zW1HjOUfjkLtCSClrLTZgadgM_SaQwhpOu5XzpjZS-aJios69o0a6ineF7cD-TAqlTbTkOB3jtgzpCUqsXEisA-_ne--nZBx_3XWEwpzvQALtuNCMLst0Hsvah-DH65pZifyMXRVCV4k_QA0LManswLugCk_ecXJ4WuIaZUoxUegJ68DOTA3KdPTbcqEDW_9-vA0vOcYIERm4A0vj0U-_Cy_sZDxoR3tJk38DV-P9lQ priority: 102 providerName: ProQuest |
| Title | Portfolio Implementation Risk Management Using Evolutionary Multiobjective Optimization |
| URI | https://www.proquest.com/docview/1965673667 https://hal.science/hal-01881379 https://doaj.org/article/fe008e9f1c4349268054485d70a13524 |
| Volume | 7 |
| WOSCitedRecordID | wos000414457800117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB4h4NAeKqCtmhaQRXuAw6p-bWwfoQqiEqQRoi09rby2V4RHUiUhEv8ej9dAqCr10uNao5U1M57H7udvAD7Vzte01KwIZSkKKVyMg166gllttOfeiPRB_8ex6vf1-bkZLIz6QkxYSw_cKu5zE2KWCqZhTiKRXlfHGkPq0itqWSweEhMoVWahmUox2DCkrmr5SEXs6_F_cEymsdkxzzJQIuqPeeUCYZB_ROOUYg7X4FWuDcl-u6d1WAqjDXi5wBi4Aev5LE7JbiaM3nsNPxEO2oyvh2OSyH5v8n2iETkdTq_IE8KFJIAA6c2zv9nJHUk3cMf1ZRv4yLcYQm7y3cw38P2wd_blqMgDEwonOZ0VnpWeBSGwizEapzFyL1RQ0kjvtPYiUMub0llvuKupDZzjmY7KFFLKxoi3sDwaj8I7IMpZTru1D7axUgdVM9GUwVMrfc27wnVg70GJlcts4jjU4rqKXQUqvHpSeAc-Psr-bjk0_ip1gLZ4lEDe67QQvaHK3lD9yxs6sBMt-ewdR_vHFa5RpjUTysxZBzYfDF3lEzutkFkRMW5d9f5_bOQDvOBYACTY3yYszya3YQtW3Xw2nE62YeWg1x-cbienjU-DryeDX_do2u-U |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5NHRLwAGyAVhhg8UNiDxH-lcZ5QGjAplbrSoUGjKfMsR0obM1oStH-Kf5GfInbMoR42wOviRXJ8efv7uy77wAe58bmNFYscnEsIimM50ErTcS0SpXlNhX1gf77fjIYqMPDdLgCP-e1MJhWOefEmqhtafCM_Bkq32EOUid5cfotwq5ReLs6b6HRwGLPnf3wIVv1vPfar-8Tznd3Dl51o9BVIDKS02lkWWyZEwJdfR9wC8G4FYlLZCqtUcoKRzUvYqNtyk1OteMcgR_bREgpCxRf8pS_KhHsLVgd9vaHHxenOqiyqRhtdFCFSCneQ3sj7oOs9JzlqxsEeHv2GdMv_7ACtWnbvf6__ZQbcC040WS7Qf0arLjxOlz9TVpxHdYCaVXkaVDW3roJHzBvtiiPRyWpVZFPQuHVmLwdVV_JMhWI1JkUZGcWNqaenJG6VLnMvzQWgrzxXHsSilhvwbsLme5taI3LsdsAkhjNaSe3ThdaKpfkTBSxs1RLm_OOMG3Ymq96ZoLsOnb_OM58-IUIyZYIacOjxdjTRmzkr6NeIngWI1AgvH5QTj5lgW-ywnnnzqUFMxL1JzvKu-YSJ0A18z63bMNDD71z3-hu9zN8RplSTCTpjLVhcw67LFBblS0xd-ffrx_A5e7Bfj_r9wZ7d-EKR3-ozoLchNZ08t3dg0tmNh1Vk_thFxE4umiM_gIKsVhI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJwAFpABAqseEj0YHVfjtcHhApt1KghRIhHOZn17roNtHGJQ1D_Gr-OHWedUIS49cB1vbK09jffzO7OfAPwJDc2p7FikYtjEUlhPA9aaSKmVaost6moD_Q_9JPBQB0cpMMV-NnUwmBaZcOJNVHb0uAZ-RYq32EOUifZKkJaxHCn--L0W4QdpPCmtWmnMYfIvjv74bdv1fPejv_XTznv7r57tReFDgORkZxOI8tiy5wQGPb7zbcQjFuRuESm0hqlrHBU8yI22qbc5FQ7ztEIYpsIKWWBQkye_ld9SC55C1aHvdfDT4sTHlTcVIzONVGFSCneSXuH7jdc6TkvWDcL8L7tCFMx__AItZvrXv-fP9ANuBaCa7I9t4Y1WHHjdbj6m-TiOqwFMqvIs6C4vXkTPmI-bVEej0pSqyWfhIKsMXk7qr6SZYoQqTMsyO4sGKyenJG6hLnMv8w9B3njOfgkFLfegvcXstzb0BqXY3cHSGI0p53cOl1oqVySM1HEzlItbc47wrRhs0FAZoIcO3YFOc78tgzRki3R0obHi7mncxGSv856iUBazEDh8HqgnBxmgYeywvmgz6UFMxJ1KTvKh-wSF0A187G4bMMjD8Nz79jb7mc4RplSTCTpjLVho4FgFiivypb4u_vvxw_hsgdm1u8N9u_BFY5hUp0cuQGt6eS7uw-XzGw6qiYPgkER-HzREP0F1W1hCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portfolio+Implementation+Risk+Management+Using+Evolutionary+Multiobjective+Optimization&rft.jtitle=Applied+sciences&rft.au=Quintana%2C+David&rft.au=Denysiuk%2C+Roman&rft.au=Garcia-Rodriguez%2C+Sandra&rft.au=Gaspar-Cunha%2C+Ant%C3%B3nio&rft.date=2017-10-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=7&rft.issue=10&rft.spage=1079&rft_id=info:doi/10.3390%2Fapp7101079&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app7101079 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |