Counterdiabaticity and the quantum approximate optimization algorithm

The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the p → ∞ limit the final state is an exact maximal eigenstate in accordance with the a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum (Vienna, Austria) Ročník 6; s. 635
Hlavní autori: Wurtz, Jonathan, Love, Peter J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 27.01.2022
ISSN:2521-327X, 2521-327X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the p → ∞ limit the final state is an exact maximal eigenstate in accordance with the adiabatic theorem. In this work, the connection between QAOA and adiabaticity is made explicit by inspecting the regime of p large but finite. By connecting QAOA to counterdiabatic (CD) evolution, we construct CD-QAOA angles which mimic a counterdiabatic schedule by matching Trotter "error" terms to approximate adiabatic gauge potentials which suppress diabatic excitations arising from finite ramp speed. In our construction, these "error" terms are helpful, not detrimental, to QAOA. Using this matching to link QAOA with quantum adiabatic algorithms (QAA), we show that the approximation ratio converges to one at least as 1 − C ( p ) ∼ 1 / p μ . We show that transfer of parameters between graphs, and interpolating angles for p + 1 given p are both natural byproducts of CD-QAOA matching. Optimization of CD-QAOA angles is equivalent to optimizing a continuous adiabatic schedule. Finally, we show that, using a property of variational adiabatic gauge potentials, QAOA is at least counterdiabatic, not just adiabatic, and has better performance than finite time adiabatic evolution. We demonstrate the method on three examples: a 2 level system, an Ising chain, and the MaxCut problem.
AbstractList The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the p → ∞ limit the final state is an exact maximal eigenstate in accordance with the adiabatic theorem. In this work, the connection between QAOA and adiabaticity is made explicit by inspecting the regime of p large but finite. By connecting QAOA to counterdiabatic (CD) evolution, we construct CD-QAOA angles which mimic a counterdiabatic schedule by matching Trotter "error" terms to approximate adiabatic gauge potentials which suppress diabatic excitations arising from finite ramp speed. In our construction, these "error" terms are helpful, not detrimental, to QAOA. Using this matching to link QAOA with quantum adiabatic algorithms (QAA), we show that the approximation ratio converges to one at least as 1 − C ( p ) ∼ 1 / p μ . We show that transfer of parameters between graphs, and interpolating angles for p + 1 given p are both natural byproducts of CD-QAOA matching. Optimization of CD-QAOA angles is equivalent to optimizing a continuous adiabatic schedule. Finally, we show that, using a property of variational adiabatic gauge potentials, QAOA is at least counterdiabatic, not just adiabatic, and has better performance than finite time adiabatic evolution. We demonstrate the method on three examples: a 2 level system, an Ising chain, and the MaxCut problem.
The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the $p\to\infty$ limit the final state is an exact maximal eigenstate in accordance with the adiabatic theorem. In this work, the connection between QAOA and adiabaticity is made explicit by inspecting the regime of $p$ large but finite. By connecting QAOA to counterdiabatic (CD) evolution, we construct CD-QAOA angles which mimic a counterdiabatic schedule by matching Trotter "error" terms to approximate adiabatic gauge potentials which suppress diabatic excitations arising from finite ramp speed. In our construction, these "error" terms are helpful, not detrimental, to QAOA. Using this matching to link QAOA with quantum adiabatic algorithms (QAA), we show that the approximation ratio converges to one at least as $1-C(p)\sim 1/p^{\mu}$. We show that transfer of parameters between graphs, and interpolating angles for $p+1$ given $p$ are both natural byproducts of CD-QAOA matching. Optimization of CD-QAOA angles is equivalent to optimizing a continuous adiabatic schedule. Finally, we show that, using a property of variational adiabatic gauge potentials, QAOA is at least counterdiabatic, not just adiabatic, and has better performance than finite time adiabatic evolution. We demonstrate the method on three examples: a 2 level system, an Ising chain, and the MaxCut problem.
ArticleNumber 635
Author Love, Peter J.
Wurtz, Jonathan
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Wurtz
  fullname: Wurtz, Jonathan
  organization: Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
– sequence: 2
  givenname: Peter J.
  surname: Love
  fullname: Love, Peter J.
  organization: Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
BookMark eNp1kN1KAzEQhYNUsNY-gHf7AqvJZH_SSylVCwVvFLwLs0m2TdndtNkUrE9vulUQwasZhvkO55xrMupcZwi5ZfQOgHN2v0-BAqSUpVCmBc8vyBhyYCmH8n30a78i077fUkpBlEUhsjFZzN2hC8ZrixUGq2w4JtjpJGxMsj9gFw5tgruddx-2xWAStwu2tZ_x1XUJNmvnbdi0N-SyxqY30-85IW-Pi9f5c7p6eVrOH1apyoCGVGlqahCcillhuCiNUFiAqLCgJjMYTekctaAoWGWyIgfEmeZQ1wKrvMo1n5DlWVc73Mqdj578UTq0cjg4v5boY4rGyMgzOis4KFDZSVUprEDrMotLOWiVZy3lXd97U8sYfsgVPNpGMiqHcuVensqVlEkoZSw3kuwP-ePkf-YLr4-AwA
CitedBy_id crossref_primary_10_1103_PhysRevApplied_23_014045
crossref_primary_10_1103_PhysRevResearch_4_043204
crossref_primary_10_1007_s10288_023_00549_1
crossref_primary_10_1103_PhysRevLett_131_060602
crossref_primary_10_1088_2058_9565_ad895c
crossref_primary_10_1103_PhysRevApplied_19_024027
crossref_primary_10_3390_e25081238
crossref_primary_10_1088_2058_9565_ace54a
crossref_primary_10_1103_PhysRevResearch_7_023240
crossref_primary_10_1016_j_physa_2024_129990
crossref_primary_10_1088_1367_2630_ad313e
crossref_primary_10_1103_PhysRevResearch_7_013243
crossref_primary_10_1088_1361_6455_ad38f1
crossref_primary_10_1088_1367_2630_acb22c
crossref_primary_10_1103_PhysRevResearch_4_013141
crossref_primary_10_1002_andp_202300275
crossref_primary_10_1088_2058_9565_ad60f2
crossref_primary_10_1038_s41598_022_14767_w
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1103_PhysRevResearch_5_023147
crossref_primary_10_1038_s41534_025_01070_5
crossref_primary_10_1088_2058_9565_ade6a5
crossref_primary_10_1103_PhysRevA_111_032612
crossref_primary_10_1103_PhysRevResearch_6_023171
crossref_primary_10_1103_PhysRevApplied_22_054037
crossref_primary_10_1088_1367_2630_ad1536
crossref_primary_10_1103_PhysRevA_108_042411
crossref_primary_10_1103_PhysRevA_111_062406
crossref_primary_10_1038_s41534_024_00906_w
crossref_primary_10_3390_e26121057
crossref_primary_10_1103_PhysRevA_107_062406
crossref_primary_10_1038_s41534_023_00718_4
crossref_primary_10_3390_e26100877
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_1103_PhysRevX_14_011032
crossref_primary_10_1103_PhysRevApplied_20_014024
crossref_primary_10_1103_wkys_cd39
crossref_primary_10_1103_PhysRevA_111_062411
crossref_primary_10_1103_PRXQuantum_4_010312
crossref_primary_10_1103_x9hw_xhvj
crossref_primary_10_1103_PhysRevA_111_012215
crossref_primary_10_1088_2058_9565_ad200a
crossref_primary_10_1109_TQE_2024_3443660
crossref_primary_10_1103_PhysRevA_111_L010401
crossref_primary_10_1007_s10479_024_06253_5
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_1103_PhysRevResearch_4_L042030
crossref_primary_10_1103_PhysRevResearch_4_033028
Cites_doi 10.1088/1367-2630/16/6/065013
10.1103/PhysRevA.97.062343
10.1073/pnas.1619826114
10.1103/PhysRevB.101.195138
10.1038/nature10012
10.1103/PhysRevLett.119.060201
10.1103/physrevlett.101.076801
10.1103/PhysRevLett.122.020601
10.1103/physrevlett.109.015701
10.1103/PhysRevLett.123.090602
10.22331/q-2021-06-17-479
10.1103/PhysRevLett.126.070505
10.1103/PhysRevX.10.041017
10.1103/PhysRevLett.102.220401
10.1103/PhysRevA.78.052508
10.1007/11526216_2
10.22331/q-2018-08-06-79
10.1088/2058-9565/ab8c2b
10.1103/PhysRevA.91.043421
10.1103/physrevx.7.021027
10.1103/physrevx.10.021067
10.3389/fphy.2014.00005
10.1142/s0217751x1430018x
10.1103/PhysRevA.103.042612
10.1103/PhysRevLett.95.245701
10.1103/PhysRevLett.103.080502
10.1007/BF01343193
10.1103/PhysRevA.69.062302
10.1103/RevModPhys.90.015002
10.3389/fict.2017.00002
10.1103/RevModPhys.91.045001
10.1016/j.physrep.2017.07.001
10.22331/q-2021-07-01-491
10.1088/1751-8113/42/36/365303
10.1103/PhysRevResearch.3.013102
10.1103/PhysRevLett.105.123003
10.1016/j.physrep.2008.11.001
10.1103/PhysRevB.72.045141
10.1017/CBO9780511973765
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22331/q-2022-01-27-635
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2521-327X
ExternalDocumentID oai_doaj_org_article_e46109632c2c45ad8ccab2dd74cca75d
10_22331_q_2022_01_27_635
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c420t-cd0ef2830896e387e8ca628ba60e4ea287d5ad80a81be4652aa9d32ff8ab5b5d3
IEDL.DBID DOA
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748924100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2521-327X
IngestDate Fri Oct 03 12:53:34 EDT 2025
Tue Nov 18 22:34:29 EST 2025
Sat Nov 29 03:16:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-cd0ef2830896e387e8ca628ba60e4ea287d5ad80a81be4652aa9d32ff8ab5b5d3
OpenAccessLink https://doaj.org/article/e46109632c2c45ad8ccab2dd74cca75d
ParticipantIDs doaj_primary_oai_doaj_org_article_e46109632c2c45ad8ccab2dd74cca75d
crossref_citationtrail_10_22331_q_2022_01_27_635
crossref_primary_10_22331_q_2022_01_27_635
PublicationCentury 2000
PublicationDate 2022-01-27
PublicationDateYYYYMMDD 2022-01-27
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-27
  day: 27
PublicationDecade 2020
PublicationTitle Quantum (Vienna, Austria)
PublicationYear 2022
Publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Publisher_xml – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
References 22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
0
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 2
– ident: 22
  doi: 10.1088/1367-2630/16/6/065013
– ident: 24
  doi: 10.1103/PhysRevA.97.062343
– ident: 34
  doi: 10.1073/pnas.1619826114
– ident: 0
– ident: 36
  doi: 10.1103/PhysRevB.101.195138
– ident: 29
  doi: 10.1038/nature10012
– ident: 9
  doi: 10.1103/PhysRevLett.119.060201
– ident: 12
  doi: 10.1103/physrevlett.101.076801
– ident: 44
  doi: 10.1103/PhysRevLett.122.020601
– ident: 41
  doi: 10.1103/physrevlett.109.015701
– ident: 26
  doi: 10.1103/PhysRevLett.123.090602
– ident: 43
  doi: 10.22331/q-2021-06-17-479
– ident: 17
  doi: 10.1103/PhysRevLett.126.070505
– ident: 33
  doi: 10.1103/PhysRevX.10.041017
– ident: 5
  doi: 10.1103/PhysRevLett.102.220401
– ident: 8
  doi: 10.1103/PhysRevA.78.052508
– ident: 37
  doi: 10.1007/11526216_2
– ident: 1
  doi: 10.22331/q-2018-08-06-79
– ident: 18
  doi: 10.1088/2058-9565/ab8c2b
– ident: 25
  doi: 10.1103/PhysRevA.91.043421
– ident: 16
  doi: 10.1103/physrevx.7.021027
– ident: 14
  doi: 10.1103/physrevx.10.021067
– ident: 45
– ident: 20
– ident: 42
– ident: 3
  doi: 10.3389/fphy.2014.00005
– ident: 10
  doi: 10.1142/s0217751x1430018x
– ident: 47
  doi: 10.1103/PhysRevA.103.042612
– ident: 40
  doi: 10.1103/PhysRevLett.95.245701
– ident: 21
  doi: 10.1103/PhysRevLett.103.080502
– ident: 19
  doi: 10.1007/BF01343193
– ident: 13
– ident: 15
– ident: 11
  doi: 10.1103/PhysRevA.69.062302
– ident: 4
  doi: 10.1103/RevModPhys.90.015002
– ident: 28
  doi: 10.3389/fict.2017.00002
– ident: 7
  doi: 10.1103/RevModPhys.91.045001
– ident: 32
  doi: 10.1016/j.physrep.2017.07.001
– ident: 6
  doi: 10.22331/q-2021-07-01-491
– ident: 31
  doi: 10.1088/1751-8113/42/36/365303
– ident: 30
  doi: 10.1103/PhysRevResearch.3.013102
– ident: 39
  doi: 10.1103/PhysRevLett.105.123003
– ident: 46
– ident: 38
  doi: 10.1016/j.physrep.2008.11.001
– ident: 35
  doi: 10.1103/PhysRevB.72.045141
– ident: 27
  doi: 10.1017/CBO9780511973765
– ident: 23
SSID ssj0002876684
Score 2.5389748
Snippet The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 635
Title Counterdiabaticity and the quantum approximate optimization algorithm
URI https://doaj.org/article/e46109632c2c45ad8ccab2dd74cca75d
Volume 6
WOSCitedRecordID wos000748924100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxcCCQIC45YEJyWrqOyOgVgxQMYDUzfIVDvWgpUVM_HaenUA7wcISRZGT2N-z897n2N9D6Iy6EBUvPVEaBjkHWkscc4HQqlSVi7aqYhZxvVH9vh4MyruVVF9pTVgtD1wD145ZEFwy6qnnwgYNr3Q0BMXhRImQvr6FKlfI1EueMlJSal7_xgQPyDrtKXQImpYhEKqIzOndlo5oRa8_O5beFtpsIkJ8UddkG63F8Q7qpr3i0OQ0NZo0VSFWxsD5MYRreLoANBYjnOXAP54h5Ix4AiN_1GypxHb4OAHO_zTaRQ-97v3VNWkyHhDPaTEnPhSxSpJcupSRaRW1t5JqZ2URebTQqpAgKCwEmwCMoNaWgdGq0tYJJwLbQ63xZBz3ES559FwmBiE8tzo48OwsSgHehwF04gAV3803vpEDT1kphgZoQUbMTE1CzBQdQ5UBxA7Q-c8tr7UWxm-FLxOmPwWTjHW-AMY1jXHNX8Y9_I-HHKGNpeWPUWs-W8QTtO7f589vs9Pcb-B4-9n9AjXlynI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counterdiabaticity+and+the+quantum+approximate+optimization+algorithm&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Jonathan+Wurtz&rft.au=Peter+J.+Love&rft.date=2022-01-27&rft.pub=Verein+zur+F%C3%B6rderung+des+Open+Access+Publizierens+in+den+Quantenwissenschaften&rft.eissn=2521-327X&rft.volume=6&rft.spage=635&rft_id=info:doi/10.22331%2Fq-2022-01-27-635&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e46109632c2c45ad8ccab2dd74cca75d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon