The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading

Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the curr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fracture Vol. 198; no. 1-2; pp. 5 - 100
Main Authors: Boyce, B. L., Kramer, S. L. B., Bosiljevac, T. R., Corona, E., Moore, J. A., Elkhodary, K., Simha, C. H. M., Williams, B. W., Cerrone, A. R., Nonn, A., Hochhalter, J. D., Bomarito, G. F., Warner, J. E., Carter, B. J., Warner, D. H., Ingraffea, A. R., Zhang, T., Fang, X., Lua, J., Chiaruttini, V., Mazière, M., Feld-Payet, S., Yastrebov, V. A., Besson, J., Chaboche, J.-L., Lian, J., Di, Y., Wu, B., Novokshanov, D., Vajragupta, N., Kucharczyk, P., Brinnel, V., Döbereiner, B., Münstermann, S., Neilsen, M. K., Dion, K., Karlson, K. N., Foulk, J. W., Brown, A. A., Veilleux, M. G., Bignell, J. L., Sanborn, S. E., Jones, C. A., Mattie, P. D., Pack, K., Wierzbicki, T., Chi, S.-W., Lin, S.-P., Mahdavi, A., Predan, J., Zadravec, J., Gross, A. J., Ravi-Chandar, K., Xue, L.
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.03.2016
Springer Nature B.V
Springer Verlag
Springer Science + Business Media
Subjects:
ISSN:0376-9429, 1573-2673
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014 ) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
AbstractList Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios , such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile-and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios , but also provides a detailed dataset for non-blind assessment of alternative methods.
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014 ) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ∼ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in \[\sim \]0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
Author Karlson, K. N.
Bomarito, G. F.
Warner, J. E.
Simha, C. H. M.
Elkhodary, K.
Williams, B. W.
Chiaruttini, V.
Novokshanov, D.
Chaboche, J.-L.
Mattie, P. D.
Lua, J.
Predan, J.
Moore, J. A.
Zhang, T.
Münstermann, S.
Chi, S.-W.
Nonn, A.
Döbereiner, B.
Brinnel, V.
Corona, E.
Sanborn, S. E.
Cerrone, A. R.
Mazière, M.
Veilleux, M. G.
Foulk, J. W.
Ravi-Chandar, K.
Dion, K.
Besson, J.
Warner, D. H.
Bosiljevac, T. R.
Jones, C. A.
Kramer, S. L. B.
Boyce, B. L.
Gross, A. J.
Xue, L.
Lian, J.
Brown, A. A.
Zadravec, J.
Hochhalter, J. D.
Wierzbicki, T.
Fang, X.
Lin, S.-P.
Ingraffea, A. R.
Wu, B.
Bignell, J. L.
Di, Y.
Feld-Payet, S.
Mahdavi, A.
Pack, K.
Carter, B. J.
Yastrebov, V. A.
Neilsen, M. K.
Vajragupta, N.
Kucharczyk, P.
Author_xml – sequence: 1
  givenname: B. L.
  surname: Boyce
  fullname: Boyce, B. L.
  email: blboyce@sandia.gov
  organization: Sandia National Laboratories
– sequence: 2
  givenname: S. L. B.
  surname: Kramer
  fullname: Kramer, S. L. B.
  organization: Sandia National Laboratories
– sequence: 3
  givenname: T. R.
  surname: Bosiljevac
  fullname: Bosiljevac, T. R.
  organization: Sandia National Laboratories
– sequence: 4
  givenname: E.
  surname: Corona
  fullname: Corona, E.
  organization: Sandia National Laboratories
– sequence: 5
  givenname: J. A.
  surname: Moore
  fullname: Moore, J. A.
  organization: Northwestern University
– sequence: 6
  givenname: K.
  surname: Elkhodary
  fullname: Elkhodary, K.
  organization: The American University in Cairo
– sequence: 7
  givenname: C. H. M.
  surname: Simha
  fullname: Simha, C. H. M.
  organization: CanmetMATERIALS, Natural Resources Canada
– sequence: 8
  givenname: B. W.
  surname: Williams
  fullname: Williams, B. W.
  organization: CanmetMATERIALS, Natural Resources Canada
– sequence: 9
  givenname: A. R.
  surname: Cerrone
  fullname: Cerrone, A. R.
  organization: GE Global Research Center
– sequence: 10
  givenname: A.
  surname: Nonn
  fullname: Nonn, A.
  organization: Ostbayerische Technische Hochschule (OTH) Regensburg
– sequence: 11
  givenname: J. D.
  surname: Hochhalter
  fullname: Hochhalter, J. D.
  organization: NASA Langley Research Center
– sequence: 12
  givenname: G. F.
  surname: Bomarito
  fullname: Bomarito, G. F.
  organization: NASA Langley Research Center
– sequence: 13
  givenname: J. E.
  surname: Warner
  fullname: Warner, J. E.
  organization: NASA Langley Research Center
– sequence: 14
  givenname: B. J.
  surname: Carter
  fullname: Carter, B. J.
  organization: Cornell University
– sequence: 15
  givenname: D. H.
  surname: Warner
  fullname: Warner, D. H.
  organization: Cornell University
– sequence: 16
  givenname: A. R.
  surname: Ingraffea
  fullname: Ingraffea, A. R.
  organization: Cornell University
– sequence: 17
  givenname: T.
  surname: Zhang
  fullname: Zhang, T.
  organization: Global Engineering and Materials Inc
– sequence: 18
  givenname: X.
  surname: Fang
  fullname: Fang, X.
  organization: Global Engineering and Materials Inc
– sequence: 19
  givenname: J.
  surname: Lua
  fullname: Lua, J.
  organization: Global Engineering and Materials Inc
– sequence: 20
  givenname: V.
  surname: Chiaruttini
  fullname: Chiaruttini, V.
  organization: Onera, Université Paris-Saclay
– sequence: 21
  givenname: M.
  surname: Mazière
  fullname: Mazière, M.
  organization: MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, PSL Research University
– sequence: 22
  givenname: S.
  surname: Feld-Payet
  fullname: Feld-Payet, S.
  organization: Onera, Université Paris-Saclay
– sequence: 23
  givenname: V. A.
  surname: Yastrebov
  fullname: Yastrebov, V. A.
  organization: MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, PSL Research University
– sequence: 24
  givenname: J.
  surname: Besson
  fullname: Besson, J.
  organization: MINES ParisTech, Centre des Matériaux, CNRS UMR 7633, PSL Research University
– sequence: 25
  givenname: J.-L.
  surname: Chaboche
  fullname: Chaboche, J.-L.
  organization: Onera, Université Paris-Saclay
– sequence: 26
  givenname: J.
  surname: Lian
  fullname: Lian, J.
  organization: RWTH Aachen University
– sequence: 27
  givenname: Y.
  surname: Di
  fullname: Di, Y.
  organization: RWTH Aachen University
– sequence: 28
  givenname: B.
  surname: Wu
  fullname: Wu, B.
  organization: RWTH Aachen University
– sequence: 29
  givenname: D.
  surname: Novokshanov
  fullname: Novokshanov, D.
  organization: RWTH Aachen University
– sequence: 30
  givenname: N.
  surname: Vajragupta
  fullname: Vajragupta, N.
  organization: RWTH Aachen University
– sequence: 31
  givenname: P.
  surname: Kucharczyk
  fullname: Kucharczyk, P.
  organization: RWTH Aachen University
– sequence: 32
  givenname: V.
  surname: Brinnel
  fullname: Brinnel, V.
  organization: RWTH Aachen University
– sequence: 33
  givenname: B.
  surname: Döbereiner
  fullname: Döbereiner, B.
  organization: RWTH Aachen University
– sequence: 34
  givenname: S.
  surname: Münstermann
  fullname: Münstermann, S.
  organization: RWTH Aachen University
– sequence: 35
  givenname: M. K.
  surname: Neilsen
  fullname: Neilsen, M. K.
  organization: Sandia National Laboratories
– sequence: 36
  givenname: K.
  surname: Dion
  fullname: Dion, K.
  organization: Sandia National Laboratories
– sequence: 37
  givenname: K. N.
  surname: Karlson
  fullname: Karlson, K. N.
  organization: Sandia National Laboratories
– sequence: 38
  givenname: J. W.
  surname: Foulk
  fullname: Foulk, J. W.
  organization: Sandia National Laboratories
– sequence: 39
  givenname: A. A.
  surname: Brown
  fullname: Brown, A. A.
  organization: Sandia National Laboratories
– sequence: 40
  givenname: M. G.
  surname: Veilleux
  fullname: Veilleux, M. G.
  organization: Sandia National Laboratories
– sequence: 41
  givenname: J. L.
  surname: Bignell
  fullname: Bignell, J. L.
  organization: Sandia National Laboratories
– sequence: 42
  givenname: S. E.
  surname: Sanborn
  fullname: Sanborn, S. E.
  organization: Sandia National Laboratories
– sequence: 43
  givenname: C. A.
  surname: Jones
  fullname: Jones, C. A.
  organization: Sandia National Laboratories
– sequence: 44
  givenname: P. D.
  surname: Mattie
  fullname: Mattie, P. D.
  organization: Sandia National Laboratories
– sequence: 45
  givenname: K.
  surname: Pack
  fullname: Pack, K.
  organization: Massachusetts Institute of Technology
– sequence: 46
  givenname: T.
  surname: Wierzbicki
  fullname: Wierzbicki, T.
  organization: Massachusetts Institute of Technology
– sequence: 47
  givenname: S.-W.
  surname: Chi
  fullname: Chi, S.-W.
  organization: University of Illinois at Chicago
– sequence: 48
  givenname: S.-P.
  surname: Lin
  fullname: Lin, S.-P.
  organization: University of Illinois at Chicago
– sequence: 49
  givenname: A.
  surname: Mahdavi
  fullname: Mahdavi, A.
  organization: University of Illinois at Chicago
– sequence: 50
  givenname: J.
  surname: Predan
  fullname: Predan, J.
  organization: University of Maribor
– sequence: 51
  givenname: J.
  surname: Zadravec
  fullname: Zadravec, J.
  organization: University of Maribor
– sequence: 52
  givenname: A. J.
  surname: Gross
  fullname: Gross, A. J.
  organization: University of Texas at Austin
– sequence: 53
  givenname: K.
  surname: Ravi-Chandar
  fullname: Ravi-Chandar, K.
  organization: University of Texas at Austin
– sequence: 54
  givenname: L.
  surname: Xue
  fullname: Xue, L.
  organization: Thinkviewer LLC
BackLink https://minesparis-psl.hal.science/hal-01305640$$DView record in HAL
https://www.osti.gov/biblio/1503056$$D View this record in Osti.gov
BookMark eNp9kUFv3CAQhVGVSN2k_QG9ofbUA-mAjbF7i1ZNUmmlHpqcEcbjLJEXNoAr7b8vlhtFqtReAA3fG-bxLsiZDx4J-cDhigOoL4mDgpoBbxhA2zH1hmy4VBUTjarOyAYq1bCuFt1bcpHSEwB0qq035HS_R5rQBj_Qn8YPztCbaGyeI9Lt3kwT-kf8So8RB2ezCz7RMNJhLucJ6WjctJCzHzDS59kkx1I22VlaetFDKGWTkS0LHU7eHMrNFMzg_OM7cj6aKeH7P_slebj5dr-9Y7sft9-31ztmawGZ9SiaVo296iWHruWtqRosNgGNqXmlRN-0FrhFWcPQo-qFkrYZa5SDUgKwuiQf174hZaeTdRntvvj1aLPmEiqQTYE-r1CxrI_RHUw86WCcvrve6aUGfOFq-MUL-2lljzE8z5iyfgpz9MWDFkJ2rWhlJwqlVsrGkFLEUZeXzfKDOZZf0xz0Epxegyv9G70Ep1VR8r-ULwP9TyNWTSpsSSy-zvRv0W88b6wO
CitedBy_id crossref_primary_10_1111_ffe_14183
crossref_primary_10_3390_ma17020276
crossref_primary_10_1016_j_jmps_2020_103905
crossref_primary_10_1016_j_ijmecsci_2019_105170
crossref_primary_10_1061__ASCE_EM_1943_7889_0001727
crossref_primary_10_1007_s11340_021_00815_5
crossref_primary_10_1039_C8NR06419A
crossref_primary_10_1016_j_engfracmech_2024_110205
crossref_primary_10_1007_s10704_019_00370_0
crossref_primary_10_1016_j_pmatsci_2024_101266
crossref_primary_10_1007_s10704_021_00562_7
crossref_primary_10_1007_s10704_025_00849_z
crossref_primary_10_1016_j_jmps_2020_104284
crossref_primary_10_1007_s10704_016_0086_x
crossref_primary_10_1016_j_matdes_2024_113038
crossref_primary_10_1016_j_engfracmech_2017_12_035
crossref_primary_10_1007_s10704_019_00371_z
crossref_primary_10_3390_ma16134839
crossref_primary_10_1016_j_actamat_2019_11_022
crossref_primary_10_1007_s10704_019_00364_y
crossref_primary_10_1007_s10704_019_00366_w
crossref_primary_10_1007_s10704_019_00367_9
crossref_primary_10_1016_j_engfracmech_2023_109469
crossref_primary_10_1016_j_engfracmech_2023_109541
crossref_primary_10_1016_j_jmps_2025_106154
crossref_primary_10_1016_j_cossms_2023_101108
crossref_primary_10_1016_j_marstruc_2018_08_004
crossref_primary_10_1007_s10704_016_0090_1
crossref_primary_10_3390_cryst11010045
crossref_primary_10_1007_s00466_023_02430_8
crossref_primary_10_1007_s11837_018_2894_0
crossref_primary_10_1016_j_actamat_2018_09_006
crossref_primary_10_1016_j_ijimpeng_2021_104050
crossref_primary_10_1080_17445302_2019_1565300
crossref_primary_10_1007_s10704_016_0076_z
crossref_primary_10_1007_s10704_019_00361_1
crossref_primary_10_1016_j_jmps_2020_104155
crossref_primary_10_1007_s12666_023_03019_8
crossref_primary_10_1016_j_engfailanal_2019_08_004
crossref_primary_10_1016_j_engfracmech_2025_111065
crossref_primary_10_1016_j_marstruc_2019_03_003
crossref_primary_10_1016_j_ymssp_2024_112016
crossref_primary_10_1007_s10704_016_0093_y
crossref_primary_10_1016_j_engfracmech_2021_107845
crossref_primary_10_1016_j_mechmat_2025_105413
crossref_primary_10_1111_ffe_13904
crossref_primary_10_1016_j_ijplas_2022_103508
crossref_primary_10_1007_s10704_019_00375_9
crossref_primary_10_1007_s10704_019_00355_z
crossref_primary_10_1016_j_engfracmech_2020_107212
crossref_primary_10_1007_s10704_020_00487_7
crossref_primary_10_1016_j_jmps_2022_104933
crossref_primary_10_1016_j_tafmec_2022_103381
crossref_primary_10_1016_j_pmatsci_2023_101085
crossref_primary_10_1016_j_ijpvp_2020_104242
crossref_primary_10_1016_j_cma_2020_113514
crossref_primary_10_1016_j_cma_2020_113558
crossref_primary_10_1016_j_ijsolstr_2020_11_031
crossref_primary_10_1016_j_ijsolstr_2020_11_030
crossref_primary_10_1016_j_engfracmech_2024_110065
crossref_primary_10_1016_j_ijplas_2023_103785
crossref_primary_10_1080_21663831_2019_1702114
crossref_primary_10_1007_s10704_019_00363_z
crossref_primary_10_1007_s10704_019_00365_x
crossref_primary_10_1007_s10704_019_00368_8
crossref_primary_10_1002_nme_7607
crossref_primary_10_1016_j_engfracmech_2024_110659
crossref_primary_10_1016_j_ijimpeng_2022_104255
crossref_primary_10_1007_s10704_016_0091_0
crossref_primary_10_1016_j_matpr_2023_05_402
crossref_primary_10_1016_j_compositesa_2025_109027
crossref_primary_10_1016_j_engfracmech_2024_110257
crossref_primary_10_1016_j_oceaneng_2019_01_004
crossref_primary_10_1007_s10704_016_0097_7
crossref_primary_10_1016_j_ijmecsci_2023_108324
crossref_primary_10_1016_j_ijplas_2025_104329
crossref_primary_10_1016_j_nucengdes_2023_112705
crossref_primary_10_1007_s40192_021_00211_w
crossref_primary_10_1007_s40192_021_00216_5
crossref_primary_10_1007_s00466_019_01724_0
Cites_doi 10.1016/j.ijmecsci.2011.10.003
10.1002/nme.93
10.1007/s10704-013-9917-1
10.1111/ffe.12046
10.1016/0022-5096(72)90006-3
10.1007/s12289-012-1094-7
10.1115/1.3601204
10.1016/j.euromechsol.2007.08.002
10.1016/j.jmps.2011.07.004
10.1007/s10704-012-9689-z
10.1007/s10704-013-9923-3
10.1016/j.engfracmech.2007.07.022
10.1016/j.engfracmech.2014.01.009
10.1016/j.jmatprotec.2013.10.014
10.1016/j.engfracmech.2010.03.001
10.1016/j.ijsolstr.2011.01.011
10.1016/S0020-7683(98)00239-X
10.1016/S0013-7944(00)00107-7
10.1016/j.engfracmech.2008.11.010
10.1016/S0045-7825(96)00007-2
10.1016/j.cma.2004.12.012
10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
10.1177/1056789512439319
10.2355/isijinternational.53.2250
10.1007/s10704-012-9793-0
10.1016/j.ijsolstr.2008.11.009
10.1016/j.ijplas.2007.09.004
10.1016/S0921-5093(97)00471-1
10.1016/S0045-7825(96)01124-3
10.1007/s10704-013-9904-6
10.1002/eqe.4290050306
10.1016/S0045-7825(96)01083-3
10.1016/j.piutam.2012.03.008
10.1016/j.ijplas.2005.06.001
10.1002/fld.1650200824
10.1115/1.3173674
10.1179/030634580790441187
10.1038/nmeth.2089
10.1007/BF02651653
10.1016/j.ijsolstr.2012.12.009
10.3139/120.110363
10.1016/j.ijsolstr.2006.12.026
10.1007/BF02325092
10.1016/0001-6918(77)90012-9
10.1016/j.ijsolstr.2009.12.011
10.1007/s10704-013-9913-5
10.1029/JB084iB05p02199
10.2172/1049479
10.1016/j.ijsolstr.2015.02.024
10.1016/B978-1-4832-8412-5.50063-1
10.1177/1056789514537587
10.1016/j.ijplas.2014.01.003
10.1155/2014/439278
10.1007/s10704-016-0086-x
10.1007/s10704-016-0091-0
10.2172/6628920
10.1098/rspa.1948.0045
10.2172/7212277
10.1002/0470091355.ecm035
10.1007/s10704-016-0076-z
10.1115/1.4030322
ContentType Journal Article
Copyright The Author(s) 2016
International Journal of Fracture is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2016
– notice: International Journal of Fracture is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
OTOTI
DOI 10.1007/s10704-016-0089-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-2673
EndPage 100
ExternalDocumentID 1503056
oai:HAL:hal-01305640v1
10_1007_s10704_016_0089_7
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-08-1-0189
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: National Nuclear Security Administration
  grantid: DE-AC04-94AL85000
  funderid: http://dx.doi.org/10.13039/100006168
– fundername: Office of Naval Research
  grantid: N00014-06-1-0505-A00001
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: Office of Naval Research
  grantid: Office of Naval Research
  funderid: http://dx.doi.org/10.13039/100000006
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PKN
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~8M
~A~
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
AAFGU
AAPBV
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
SQXTU
UNUBA
ID FETCH-LOGICAL-c420t-be2687fb7b5109818a36e0160eaa41372b68c01ce540dbe7b275c6f4e5d7720e3
IEDL.DBID M7S
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372755800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0376-9429
IngestDate Fri May 19 00:57:55 EDT 2023
Tue Dec 02 06:20:34 EST 2025
Wed Nov 05 00:49:12 EST 2025
Sat Nov 29 01:49:30 EST 2025
Tue Nov 18 21:05:49 EST 2025
Fri Feb 21 02:33:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Tearing
Deformation
Simulation
Rupture
Plasticity
Prediction
Fracture
Metal
Alloy
Modeling
alloy
modeling
simulation
prediction
tearing
metal
deformation
plasticity
rupture
fracture
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-be2687fb7b5109818a36e0160eaa41372b68c01ce540dbe7b275c6f4e5d7720e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SAND2016-4409J
AC04-94AL85000
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-1975-2408
0000-0002-4052-3557
0000-0002-1541-1588
0000-0002-2654-1257
OpenAccessLink https://link.springer.com/10.1007/s10704-016-0089-7
PQID 2259828592
PQPubID 2043781
PageCount 96
ParticipantIDs osti_scitechconnect_1503056
hal_primary_oai_HAL_hal_01305640v1
proquest_journals_2259828592
crossref_citationtrail_10_1007_s10704_016_0089_7
crossref_primary_10_1007_s10704_016_0089_7
springer_journals_10_1007_s10704_016_0089_7
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle International journal of fracture
PublicationTitleAbbrev Int J Fract
PublicationYear 2016
Publisher Springer Netherlands
Springer Nature B.V
Springer Verlag
Springer Science + Business Media
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer Verlag
– name: Springer Science + Business Media
References Münstermann, Sharaf, Lian, Golisch (CR47) 2012; 54
Wickelgren (CR62) 1977; 41
Bazant, Pijaudier-Cabot (CR3) 1988; 55
Simha, Xu, Tyson (CR60) 2014; 118
Ghahremaninezhad, Ravi-Chandar (CR23) 2013; 180
Odenberger, Schill, Oldenburg (CR51) 2013; 6
CR36
CR35
McClintock (CR44) 1968; 35
Rivalin, Pineau, Di Fant, Besson (CR56) 2001; 68
Dolbow, Belytschko (CR16) 1999; 46
CR33
Reese (CR54) 2005; 194
CR31
Freund (CR20) 1972; 20
Kroner, Balian (CR37) 1981
Chen, Pan, Wu, Liu (CR12) 1996; 139
Nahshon, Hutchinson (CR48) 2008; 27
Belnoue, Garnham, Bache, Korsunsky (CR4) 2010; 77
CR6
Giglio, Manes, Mapelli, Mombelli (CR24) 2013; 53
Neilsen, Dion, Fang, Kaczmarowski, Karasz (CR49) 2014; 186
Gilles, Cazacu, Hammami, Habraken, Duchêne (CR26) 2012; 3
CR45
Alfano, Crisfield (CR1) 2001; 50
Cazacu, Plunkett, Barlat (CR9) 2006; 22
Boyce, Kramer, Fang, Cordova, Neilsen, Dion, Kaczmarowski, Karasz, Xue, Gross (CR7) 2014; 186
Haltom, Kyriakides, Ravi-Chandar (CR30) 2013; 50
CR42
Xue (CR65) 2008; 75
CR41
Pack, Luo, Wierzbicki (CR52) 2014; 186
Lian, Sharaf, Archie, Münstermann (CR40) 2013; 22
Hilber, Hughes, Taylor (CR32) 1977; 5
Zhang, Fang, Liu, Lua (CR68) 2014; 186
Giglio, Manes, Vigano (CR25) 2012; 54
Bai, Wierzbicki (CR2) 2008; 24
Liu, Jun, Zhang (CR43) 1995; 20
Ghahremaninezhad, Ravi-Chandar (CR22) 2012; 174
Xue (CR64) 2007; 44
Krysl, Belytschko (CR38) 1997; 148
CR15
CR59
Münstermann, Schruff, Lian, Dobereiner, Brinnel, Wu (CR46) 2013; 36
CR57
CR11
CR55
CR10
Freund (CR21) 1979; 84
CR53
Elkhodary, Zikry (CR18) 2011; 59
CR50
Besson, Foerch (CR5) 1997; 142
Chu, Ranson, Sutton (CR13) 1985; 25
Gilles, Hammami, Libertiaux, Cazacu, Yoon, Kuwabara, Habraken, Duchêne (CR27) 2011; 48
CR29
CR28
Buchkremer, Wu, Lung, Munstermann, Klocke, Bleck (CR8) 2014; 214
Dunand, Mohr (CR17) 2010; 47
Xue, Wierzbicki (CR67) 2009; 46
Lee, Lin (CR39) 1998; 241
Horstemeyer, Gokhale (CR34) 1999; 36
CR63
Schneider, Rasband, Eliceiri (CR58) 2012; 9
CR61
Cocks, Ashby (CR14) 1980; 14
Follansbee, Gray (CR19) 1989; 20
Xue (CR66) 2009; 76
M Giglio (89_CR25) 2012; 54
O Cazacu (89_CR9) 2006; 22
89_CR28
T Chu (89_CR13) 1985; 25
YL Bai (89_CR2) 2008; 24
L Freund (89_CR21) 1979; 84
L Xue (89_CR64) 2007; 44
89_CR29
89_CR63
ZP Bazant (89_CR3) 1988; 55
89_CR61
T Zhang (89_CR68) 2014; 186
W-S Lee (89_CR39) 1998; 241
JP Belnoue (89_CR4) 2010; 77
FA McClintock (89_CR44) 1968; 35
G Gilles (89_CR26) 2012; 3
CA Schneider (89_CR58) 2012; 9
S Münstermann (89_CR46) 2013; 36
G Alfano (89_CR1) 2001; 50
A Ghahremaninezhad (89_CR23) 2013; 180
J Lian (89_CR40) 2013; 22
A Ghahremaninezhad (89_CR22) 2012; 174
KI Elkhodary (89_CR18) 2011; 59
K Nahshon (89_CR48) 2008; 27
89_CR15
89_CR59
89_CR53
L Xue (89_CR66) 2009; 76
P Follansbee (89_CR19) 1989; 20
89_CR50
89_CR57
89_CR11
89_CR55
89_CR6
89_CR10
S Reese (89_CR54) 2005; 194
HM Hilber (89_CR32) 1977; 5
BL Boyce (89_CR7) 2014; 186
CHM Simha (89_CR60) 2014; 118
E Kroner (89_CR37) 1981
S Münstermann (89_CR47) 2012; 54
MF Horstemeyer (89_CR34) 1999; 36
F Rivalin (89_CR56) 2001; 68
WA Wickelgren (89_CR62) 1977; 41
A Cocks (89_CR14) 1980; 14
89_CR42
89_CR41
89_CR45
WK Liu (89_CR43) 1995; 20
K Pack (89_CR52) 2014; 186
J-S Chen (89_CR12) 1996; 139
L Xue (89_CR65) 2008; 75
S Haltom (89_CR30) 2013; 50
P Krysl (89_CR38) 1997; 148
G Gilles (89_CR27) 2011; 48
89_CR36
S Buchkremer (89_CR8) 2014; 214
M Giglio (89_CR24) 2013; 53
J Besson (89_CR5) 1997; 142
J Dolbow (89_CR16) 1999; 46
89_CR31
L Xue (89_CR67) 2009; 46
E-L Odenberger (89_CR51) 2013; 6
89_CR35
89_CR33
MK Neilsen (89_CR49) 2014; 186
M Dunand (89_CR17) 2010; 47
L Freund (89_CR20) 1972; 20
References_xml – volume: 54
  start-page: 121
  year: 2012
  end-page: 135
  ident: CR25
  article-title: Ductile fracture locus of Ti–6Al–4V titanium alloy
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2011.10.003
– ident: CR45
– volume: 50
  start-page: 1701
  year: 2001
  end-page: 1736
  ident: CR1
  article-title: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.93
– volume: 186
  start-page: 117
  year: 2014
  end-page: 139
  ident: CR68
  article-title: Modeling and simulation of 2012 Sandia fracture challenge problem: phantom paired shell for Abaqus and plane strain core approach
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9917-1
– volume: 36
  start-page: 779
  year: 2013
  end-page: 794
  ident: CR46
  article-title: Predicting lower bound damage curves for high-strength low-alloy steels
  publication-title: Fatigue Fract Eng M
  doi: 10.1111/ffe.12046
– volume: 20
  start-page: 129
  year: 1972
  end-page: 140
  ident: CR20
  article-title: Crack propagation in an elastic solid subjected to general loading—I. Constant rate of extension
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(72)90006-3
– volume: 6
  start-page: 403
  year: 2013
  end-page: 416
  ident: CR51
  article-title: Thermo-mechanical sheet metal forming of aero engine components in Ti–6Al–4V—PART 2: constitutive modelling and validation
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-012-1094-7
– ident: CR35
– volume: 35
  start-page: 363
  year: 1968
  end-page: 371
  ident: CR44
  article-title: A criterion for ductile fracture by growth of holes
  publication-title: J Appl Mech
  doi: 10.1115/1.3601204
– ident: CR29
– volume: 27
  start-page: 1
  year: 2008
  end-page: 17
  ident: CR48
  article-title: Modification of the Gurson model for shear failure
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2007.08.002
– ident: CR61
– volume: 59
  start-page: 2007
  year: 2011
  end-page: 2022
  ident: CR18
  article-title: A fracture criterion for finitely deforming crystalline solids—the dynamic fracture of single crystals
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2011.07.004
– volume: 174
  start-page: 177
  year: 2012
  end-page: 202
  ident: CR22
  article-title: Ductile failure behavior of polycrystalline Al 6061-T6
  publication-title: Int J Fract
  doi: 10.1007/s10704-012-9689-z
– volume: 186
  start-page: 155
  year: 2014
  end-page: 175
  ident: CR52
  article-title: Sandia Fracture Challenge: blind prediction and full calibration to enhance fracture predictability
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9923-3
– volume: 75
  start-page: 3343
  year: 2008
  end-page: 3366
  ident: CR65
  article-title: Constitutive modeling of void shearing effect in ductile fracture of porous materials
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2007.07.022
– ident: CR42
– volume: 118
  start-page: 66
  year: 2014
  end-page: 82
  ident: CR60
  article-title: Non-local phenomenological damage-mechanics-based modeling of the Drop-Weight Tear Test
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2014.01.009
– volume: 214
  start-page: 599
  year: 2014
  end-page: 611
  ident: CR8
  article-title: FE-simulation of machining processes with a new material model
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2013.10.014
– volume: 77
  start-page: 1721
  year: 2010
  end-page: 1729
  ident: CR4
  article-title: The use of coupled nonlocal damage-plasticity to predict crack growth in ductile metal plates
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2010.03.001
– volume: 48
  start-page: 1277
  year: 2011
  end-page: 1289
  ident: CR27
  article-title: Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.01.011
– volume: 36
  start-page: 5029
  year: 1999
  end-page: 5055
  ident: CR34
  article-title: A void–crack nucleation model for ductile metals
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(98)00239-X
– ident: CR15
– volume: 68
  start-page: 329
  year: 2001
  end-page: 345
  ident: CR56
  article-title: Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(00)00107-7
– ident: CR50
– volume: 76
  start-page: 419
  year: 2009
  end-page: 438
  ident: CR66
  article-title: Stress based fracture envelope for damage plastic solids
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2008.11.010
– ident: CR11
– ident: CR57
– ident: CR36
– volume: 148
  start-page: 257
  year: 1997
  end-page: 277
  ident: CR38
  article-title: Element-free Galerkin method: convergence of the continuous and discontinuous shape functions
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)00007-2
– volume: 194
  start-page: 4685
  year: 2005
  end-page: 4715
  ident: CR54
  article-title: On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.12.012
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: CR16
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
– volume: 22
  start-page: 188
  year: 2013
  end-page: 218
  ident: CR40
  article-title: A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets
  publication-title: Int J Damage Mech
  doi: 10.1177/1056789512439319
– volume: 53
  start-page: 2250
  year: 2013
  end-page: 2258
  ident: CR24
  article-title: Relation between ductile fracture locus and deformation of phases in Ti–6Al–4V alloy
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.53.2250
– volume: 180
  start-page: 23
  year: 2013
  end-page: 39
  ident: CR23
  article-title: Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading
  publication-title: Int J Fract
  doi: 10.1007/s10704-012-9793-0
– volume: 46
  start-page: 1423
  year: 2009
  end-page: 1435
  ident: CR67
  article-title: Numerical simulation of fracture mode transition in ductile plates
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.11.009
– volume: 24
  start-page: 1071
  year: 2008
  end-page: 1096
  ident: CR2
  article-title: A new model of metal plasticity and fracture with pressure and Lode dependence
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2007.09.004
– start-page: 219
  year: 1981
  end-page: 315
  ident: CR37
  article-title: Continuum theory of defects
  publication-title: Les Houches, session XXXV,1980—physics of defects
– volume: 241
  start-page: 48
  year: 1998
  end-page: 59
  ident: CR39
  article-title: Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(97)00471-1
– ident: CR53
– volume: 142
  start-page: 165
  year: 1997
  end-page: 187
  ident: CR5
  article-title: Large scale object-oriented finite element code design
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01124-3
– volume: 186
  start-page: 5
  year: 2014
  end-page: 68
  ident: CR7
  article-title: The Sandia Fracture Challenge: blind round robin predictions of ductile tearing
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9904-6
– volume: 5
  start-page: 283
  year: 1977
  end-page: 292
  ident: CR32
  article-title: Improved numerical dissipation for time integration algorithms in structural dynamics
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290050306
– ident: CR10
– volume: 139
  start-page: 195
  year: 1996
  end-page: 227
  ident: CR12
  article-title: Reproducing kernel particle methods for large deformation analysis of non-linear structures
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01083-3
– ident: CR33
– volume: 3
  start-page: 100
  year: 2012
  end-page: 114
  ident: CR26
  article-title: Experimental and numerical study of TA-6V mechanical behavior in different monotonic loading conditions at room temperature
  publication-title: Proc IUTAM
  doi: 10.1016/j.piutam.2012.03.008
– ident: CR6
– ident: CR63
– volume: 22
  start-page: 1171
  year: 2006
  end-page: 1194
  ident: CR9
  article-title: Orthotropic yield criterion for hexagonal closed packed metals
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2005.06.001
– volume: 20
  start-page: 1081
  year: 1995
  end-page: 1106
  ident: CR43
  article-title: Reproducing kernel particle methods
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650200824
– volume: 55
  start-page: 287
  year: 1988
  end-page: 293
  ident: CR3
  article-title: Nonlocal continuum damage, localization instability and convergence
  publication-title: J Appl Mech
  doi: 10.1115/1.3173674
– volume: 14
  start-page: 395
  year: 1980
  end-page: 402
  ident: CR14
  article-title: Intergranular fracture during power-law creep under multiaxial stresses
  publication-title: Met Sci
  doi: 10.1179/030634580790441187
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: CR58
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 20
  start-page: 863
  year: 1989
  end-page: 874
  ident: CR19
  article-title: An analysis of the low temperature, low and high strain-rate deformation of Ti–6Al–4V
  publication-title: Metall Trans A
  doi: 10.1007/BF02651653
– volume: 50
  start-page: 1507
  year: 2013
  end-page: 1522
  ident: CR30
  article-title: Ductile failure under combined shear and tension
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2012.12.009
– ident: CR31
– volume: 54
  start-page: 557
  year: 2012
  end-page: 563
  ident: CR47
  article-title: Exploiting the property profile of high strength steels by damage mechanics approaches
  publication-title: Mater Test
  doi: 10.3139/120.110363
– volume: 44
  start-page: 5163
  year: 2007
  end-page: 5181
  ident: CR64
  article-title: Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.12.026
– volume: 25
  start-page: 232
  year: 1985
  end-page: 244
  ident: CR13
  article-title: Applications of digital-image-correlation techniques to experimental mechanics
  publication-title: Exp Mech
  doi: 10.1007/BF02325092
– volume: 41
  start-page: 67
  year: 1977
  end-page: 85
  ident: CR62
  article-title: Speed-accuracy tradeoff and information processing dynamics
  publication-title: Acta Psychol
  doi: 10.1016/0001-6918(77)90012-9
– ident: CR55
– volume: 47
  start-page: 1130
  year: 2010
  end-page: 1143
  ident: CR17
  article-title: Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2009.12.011
– ident: CR59
– ident: CR28
– ident: CR41
– volume: 186
  start-page: 107
  year: 2014
  end-page: 115
  ident: CR49
  article-title: Ductile tearing predictions with Wellman’s failure model
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9913-5
– volume: 84
  start-page: 2199
  year: 1979
  end-page: 2209
  ident: CR21
  article-title: The mechanics of dynamic shear crack propagation
  publication-title: J Geophys Res Solid Earth (1978–2012)
  doi: 10.1029/JB084iB05p02199
– ident: 89_CR61
  doi: 10.2172/1049479
– ident: 89_CR45
  doi: 10.1016/j.ijsolstr.2015.02.024
– volume: 142
  start-page: 165
  year: 1997
  ident: 89_CR5
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01124-3
– volume: 9
  start-page: 671
  year: 2012
  ident: 89_CR58
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 50
  start-page: 1507
  year: 2013
  ident: 89_CR30
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2012.12.009
– volume: 180
  start-page: 23
  year: 2013
  ident: 89_CR23
  publication-title: Int J Fract
  doi: 10.1007/s10704-012-9793-0
– volume: 47
  start-page: 1130
  year: 2010
  ident: 89_CR17
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2009.12.011
– ident: 89_CR36
  doi: 10.1016/B978-1-4832-8412-5.50063-1
– ident: 89_CR41
  doi: 10.1177/1056789514537587
– volume: 25
  start-page: 232
  year: 1985
  ident: 89_CR13
  publication-title: Exp Mech
  doi: 10.1007/BF02325092
– ident: 89_CR42
– volume: 6
  start-page: 403
  year: 2013
  ident: 89_CR51
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-012-1094-7
– ident: 89_CR6
– volume: 27
  start-page: 1
  year: 2008
  ident: 89_CR48
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2007.08.002
– volume: 46
  start-page: 131
  year: 1999
  ident: 89_CR16
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
– volume: 186
  start-page: 5
  year: 2014
  ident: 89_CR7
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9904-6
– volume: 241
  start-page: 48
  year: 1998
  ident: 89_CR39
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(97)00471-1
– volume: 214
  start-page: 599
  year: 2014
  ident: 89_CR8
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2013.10.014
– volume: 76
  start-page: 419
  year: 2009
  ident: 89_CR66
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2008.11.010
– volume: 186
  start-page: 107
  year: 2014
  ident: 89_CR49
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9913-5
– volume: 186
  start-page: 117
  year: 2014
  ident: 89_CR68
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9917-1
– volume: 22
  start-page: 188
  year: 2013
  ident: 89_CR40
  publication-title: Int J Damage Mech
  doi: 10.1177/1056789512439319
– volume: 24
  start-page: 1071
  year: 2008
  ident: 89_CR2
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2007.09.004
– ident: 89_CR57
  doi: 10.1016/j.ijplas.2014.01.003
– ident: 89_CR10
  doi: 10.1155/2014/439278
– ident: 89_CR11
  doi: 10.1007/s10704-016-0086-x
– volume: 75
  start-page: 3343
  year: 2008
  ident: 89_CR65
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2007.07.022
– volume: 46
  start-page: 1423
  year: 2009
  ident: 89_CR67
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.11.009
– ident: 89_CR53
  doi: 10.1007/s10704-016-0091-0
– volume: 22
  start-page: 1171
  year: 2006
  ident: 89_CR9
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2005.06.001
– volume: 20
  start-page: 863
  year: 1989
  ident: 89_CR19
  publication-title: Metall Trans A
  doi: 10.1007/BF02651653
– ident: 89_CR63
  doi: 10.2172/6628920
– volume: 55
  start-page: 287
  year: 1988
  ident: 89_CR3
  publication-title: J Appl Mech
  doi: 10.1115/1.3173674
– volume: 5
  start-page: 283
  year: 1977
  ident: 89_CR32
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290050306
– volume: 139
  start-page: 195
  year: 1996
  ident: 89_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01083-3
– volume: 44
  start-page: 5163
  year: 2007
  ident: 89_CR64
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2006.12.026
– volume: 118
  start-page: 66
  year: 2014
  ident: 89_CR60
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2014.01.009
– ident: 89_CR33
  doi: 10.1098/rspa.1948.0045
– ident: 89_CR50
  doi: 10.2172/7212277
– volume: 186
  start-page: 155
  year: 2014
  ident: 89_CR52
  publication-title: Int J Fract
  doi: 10.1007/s10704-013-9923-3
– volume: 20
  start-page: 1081
  year: 1995
  ident: 89_CR43
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650200824
– volume: 41
  start-page: 67
  year: 1977
  ident: 89_CR62
  publication-title: Acta Psychol
  doi: 10.1016/0001-6918(77)90012-9
– volume: 84
  start-page: 2199
  year: 1979
  ident: 89_CR21
  publication-title: J Geophys Res Solid Earth (1978–2012)
  doi: 10.1029/JB084iB05p02199
– volume: 68
  start-page: 329
  year: 2001
  ident: 89_CR56
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(00)00107-7
– volume: 36
  start-page: 5029
  year: 1999
  ident: 89_CR34
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(98)00239-X
– volume: 194
  start-page: 4685
  year: 2005
  ident: 89_CR54
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.12.012
– volume: 36
  start-page: 779
  year: 2013
  ident: 89_CR46
  publication-title: Fatigue Fract Eng M
  doi: 10.1111/ffe.12046
– start-page: 219
  volume-title: Les Houches, session XXXV,1980—physics of defects
  year: 1981
  ident: 89_CR37
– ident: 89_CR15
  doi: 10.1002/0470091355.ecm035
– ident: 89_CR29
  doi: 10.1007/s10704-016-0076-z
– ident: 89_CR31
– volume: 59
  start-page: 2007
  year: 2011
  ident: 89_CR18
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2011.07.004
– volume: 54
  start-page: 121
  year: 2012
  ident: 89_CR25
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2011.10.003
– ident: 89_CR35
– volume: 50
  start-page: 1701
  year: 2001
  ident: 89_CR1
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.93
– volume: 54
  start-page: 557
  year: 2012
  ident: 89_CR47
  publication-title: Mater Test
  doi: 10.3139/120.110363
– volume: 20
  start-page: 129
  year: 1972
  ident: 89_CR20
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(72)90006-3
– volume: 174
  start-page: 177
  year: 2012
  ident: 89_CR22
  publication-title: Int J Fract
  doi: 10.1007/s10704-012-9689-z
– volume: 148
  start-page: 257
  year: 1997
  ident: 89_CR38
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)00007-2
– ident: 89_CR59
– volume: 3
  start-page: 100
  year: 2012
  ident: 89_CR26
  publication-title: Proc IUTAM
  doi: 10.1016/j.piutam.2012.03.008
– volume: 35
  start-page: 363
  year: 1968
  ident: 89_CR44
  publication-title: J Appl Mech
  doi: 10.1115/1.3601204
– volume: 14
  start-page: 395
  year: 1980
  ident: 89_CR14
  publication-title: Met Sci
  doi: 10.1179/030634580790441187
– volume: 53
  start-page: 2250
  year: 2013
  ident: 89_CR24
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.53.2250
– ident: 89_CR55
– volume: 77
  start-page: 1721
  year: 2010
  ident: 89_CR4
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2010.03.001
– ident: 89_CR28
  doi: 10.1115/1.4030322
– volume: 48
  start-page: 1277
  year: 2011
  ident: 89_CR27
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.01.011
SSID ssj0009784
Score 2.4564
Snippet Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical...
SourceID osti
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5
SubjectTerms Algorithms
alloy
Automotive Engineering
Boundary conditions
Calibration
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Computational mechanics
Computer simulation
Condensed Matter
Constitutive models
Crack initiation
deformation
Ductile fracture
Dynamic loads
Failure modes
fracture
Heat generation
Heat treatment
MATERIALS SCIENCE
Mathematical models
Mechanical Engineering
metal
modeling
Notches
Numerical methods
Physics
plasticity
prediction
Predictions
rupture tearing
Sandia Fracture Challenge 2014
simulation
Thermomechanical treatment
Titanium base alloys
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH32J9EcSTEui2SdN6E3HxICL4wFto0hQXZFfbXX-_M9nWVVFBL4W20xDSeTIz3wAcOpGHpZSGoy2SXGRJxnMZCV6quEDzaa0QpR82oa6u0oeH7Lrp467bavc2Jek19YdmN-UrJjACDtOMq1mYkwQ2QyH6zf0UaVelE8wolfAMtW2byvxuiU_GaPaRSiE7QxStT-7mlwypNzy95X9teQWWGj-TnU4YYxVm3GANFj-gD64DzaxjNQXEBbuh7pac9ahnalw5dtbOWDlhzxXlcjx7smHJCB8WNQkr8z5VtDNqQqvYyziv-5y6k_qW4VqMJuwQCgWnCysmc-_Z09CX7G_AXe_89uyCN5MYuBVROOLGRUmqSqMMinCGNj6PE0fYdC7P0QqqyCSpDbvWof9XGKdMpKRNSuFkgd576OJN6AyGA7cFrBtbFUdFQag5QqZFhrfSoN6VFNwZEUDY_hJtG5hympbxpKcAy3SqmkrT6FS1CuDo_ZPnCUbHb8QHeILvdISufXF6qekZJXFlIsLXbgA7xAYavRCC0rVUc2RHGp1noghgt-UO3Uh8rVEvZh4NMArguOWG6esf97P9J-odWIg8O1ER3C50RtXY7cG8fR3162rfC8Ibsxn_Ug
  priority: 102
  providerName: Springer Nature
Title The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
URI https://link.springer.com/article/10.1007/s10704-016-0089-7
https://www.proquest.com/docview/2259828592
https://minesparis-psl.hal.science/hal-01305640
https://www.osti.gov/biblio/1503056
Volume 198
WOSCitedRecordID wos000372755800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: KB.
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-8qw_2wW8xbT0W8UlZzSW72cQXaUuPgnKUnkrfwn4FD-rlmtwV_O-d2Ut6VrAvvgSSbELIzM7M7vzmNwBvvNBxJaXh6IskF0VWcC0TwSuVOnSf1gpRhWYTajrNLy6Ks27Dre1glb1NDIba1Zb2yD-g3hWBbS35tLzi1DWKsqtdC40B7BBLwjhA92Zb0l2Vb-ijVMYLNLx9VnNTOqcC_gLX03FecHXLLw1-ECpyWOMsuxV5_pUsDT5o8uh_v_4xPOyiT3a4UZcncM8vnsLuH5yEz4A62bGWlsmOzajmRbMJVVKtG8-O-84rH9myoQxPUFpWV4xYY9G-sErPCefOqDStYVdr3c451SzNLcN3Meq7Q9wUnA7M_Vron3jnsg5A_ufwbXLy9fiUd_0ZuBVJvOLGJ1muKqMMTuwCPb9OM0-MdV5r9I0qMVlu47H1GBU645VJlLRZJbx0GNPHPn0Bw0W98C-BjVOr0sQ54tIRMncFnkqD1ljSks-ICOJeOqXtyMuph8ZluaVdJoGWBFgjgZYqgrc3jyw3zB13DX6Nf_BmHHFunx5-KekapXZlJuLrcQT7pBElxiZEsGsJiWRXJYbUNCKCg170ZWcH2nIr9wje9cqzvf3P79m7-2X78CAJqktYuAMYrpq1fwX37fVq3jYj2Dk6mZ6dj2Dw-ej9KEwJPJ7Pvv8GosYNrw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD60W0H74LXFtFUH0RdlMDuZySSCSK1dtnRdilbo25hMJrhQN9tkt9I_5W_0nFy6VrBvffAlkGQy5PKdy-Sc8x2AF04mfq5UytEWKS7jMOaJEpLnOsjQfForZV43m9DjcXRyEh-twK-uFobSKjudWCvqrLD0j_wN4i6u2dbE-9kZp65RFF3tWmg0sDh0Fz9xyVa9O_iI3_elEIP9470hb7sKcCuFP-epE2Gk81SnCMcY7VUShI541lySoEbXIg0j6_etQ18mS51OhVY2zKVTGXqivgtw3lVYk4EMVQ_WPuyPjz4vaX511BBW6ZDHqOq7OGpTrKfrjA9cwftRzPUVS7j6nfIwewXK9RVf96_wbG31Bvf-t_d1H-62_jXbbQTiAay46UNY_4N18RFQrz5W0Y-AjH2hqp6EDahWbFE6ttf1lnnLZiXFsGqxZEXOiBcXNSjLkwll8jMqvivZ2SKpJpyqsiaW4VyMOgsR-wanDcsupskPPHNa1KUKG_D1Rp59E3rTYuoeA-sHVgciy4gtSKooi3FXpWhvFC1qU-mB36HB2JaenbqEnJolsTQByFBKHgHIaA9eXV4ya7hJrhv8HN_g5ThiFR_ujgwdo-C1CqV_3vdgmxBo0PsiCmFLuVZ2bnDRQCM82OmgZlpNV5klzjx43YF1efqf97N1_WTP4Pbw-NPIjA7Gh9twR9RiQ5l_O9Cblwv3BG7Z8_mkKp-2Isjg202j-DexO2dD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_sKaIP1o-Ksa0u4pOyNJfsZhPfStujYjmKVenbsl_Bg5o7k1zB_96ZXNJrRQXxJZDdzbJsZmdmmd_8BuB1ECYupbQcbZHkosgKbmQieKlSj-bTOSHKrtiEmk7z8_PitK9z2gxo9yEkucppIJamqt1b-HLvWuKb6tATeBuO84KrDbgtsI0wXR_PvqxZd1W-4o9SGS9Q8w5hzd9NccMwbXwlWORojsfshuv5S7S0M0KTzf9e_kN40PufbH8lMI_gVqgew_1rrIRPgGrZsYYuyp6dUdaLYRPKpVrWgR0MtVfesUVNMZ5ObNm8ZMQbixqGlWZGSHdGyWk1-740zYxT1tLMMZyLUeUdYqfg9GD-R2W-Yc_FvIPyb8HnydGng2PeV2jgTiRxy21IslyVVlk82gXafpNmgTjrgjFoHVVis9zFYxfQL_Q2KJso6bJSBOnRq49D-hRG1bwKz4CNU6fSxHti0xEy9wW-Sov6WNKlz4oI4uH3aNfTl1MVjQu9Jl6mXdUEWaNd1SqCN1efLFbcHX8b_Ap38GocsW4f759oaqPgrsxEfDmOYJtEQqN3QhS7jrBIrtXoVNOICHYGSdG9Jmg06suiYwlMIng7SMa6-4_ref5Po1_C3dPDiT55P_2wDfeSTrIIJ7cDo7Zehl244y7bWVO_6M7HT89HCyk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+second+Sandia+Fracture+Challenge%3A+predictions+of+ductile+failure+under+quasi-static+and+moderate-rate+dynamic+loading&rft.jtitle=International+journal+of+fracture&rft.au=Boyce%2C+B+L&rft.au=Kramer%2C+S+L+B&rft.au=Bosiljevac%2C+T+R&rft.au=Corona%2C+E&rft.date=2016-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=198&rft.issue=1-2&rft.spage=5&rft.epage=100&rft_id=info:doi/10.1007%2Fs10704-016-0089-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon