Distributed Sparse Recursive Least-Squares Over Networks

Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distribu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 62; číslo 6; s. 1386 - 1395
Hlavní autoři: Liu, Zhaoting, Liu, Ying, Li, Chunguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distributed estimation for sparse vectors, and develop several distributed sparse recursive least-squares (RLS) algorithms. The proposed algorithms are based on the maximum likelihood framework, and the expectation-maximization algorithm, with the aid of thresholding operators, is used to numerically solve the sparse estimation problem. To improve the estimation performance, the thresholding operators related to l0- and l1-norms with real-time self-adjustable thresholds are derived. With these thresholding operators, we can exploit the underlying sparsity to implement the distributed estimation with low computational complexity and information exchange amount among neighbors. The sparsity-promoting intensity is also adaptively adjusted so that a good performance of the sparse solution can be achieved. Both theoretical analysis and numerical simulations are presented to show the effectiveness of the proposed algorithms.
AbstractList Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distributed estimation for sparse vectors, and develop several distributed sparse recursive least-squares (RLS) algorithms. The proposed algorithms are based on the maximum likelihood framework, and the expectation-maximization algorithm, with the aid of thresholding operators, is used to numerically solve the sparse estimation problem. To improve the estimation performance, the thresholding operators related to [Formula Omitted]- and [Formula Omitted]-norms with real-time self-adjustable thresholds are derived. With these thresholding operators, we can exploit the underlying sparsity to implement the distributed estimation with low computational complexity and information exchange amount among neighbors. The sparsity-promoting intensity is also adaptively adjusted so that a good performance of the sparse solution can be achieved. Both theoretical analysis and numerical simulations are presented to show the effectiveness of the proposed algorithms.
Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distributed estimation for sparse vectors, and develop several distributed sparse recursive least-squares (RLS) algorithms. The proposed algorithms are based on the maximum likelihood framework, and the expectation-maximization algorithm, with the aid of thresholding operators, is used to numerically solve the sparse estimation problem. To improve the estimation performance, the thresholding operators related to [ell] 0 - and [ell] 1 -norms with real-time self-adjustable thresholds are derived. With these thresholding operators, we can exploit the underlying sparsity to implement the distributed estimation with low computational complexity and information exchange amount among neighbors. The sparsity-promoting intensity is also adaptively adjusted so that a good performance of the sparse solution can be achieved. Both theoretical analysis and numerical simulations are presented to show the effectiveness of the proposed algorithms.
Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distributed estimation for sparse vectors, and develop several distributed sparse recursive least-squares (RLS) algorithms. The proposed algorithms are based on the maximum likelihood framework, and the expectation-maximization algorithm, with the aid of thresholding operators, is used to numerically solve the sparse estimation problem. To improve the estimation performance, the thresholding operators related to l0- and l1-norms with real-time self-adjustable thresholds are derived. With these thresholding operators, we can exploit the underlying sparsity to implement the distributed estimation with low computational complexity and information exchange amount among neighbors. The sparsity-promoting intensity is also adaptively adjusted so that a good performance of the sparse solution can be achieved. Both theoretical analysis and numerical simulations are presented to show the effectiveness of the proposed algorithms.
Author Zhaoting Liu
Ying Liu
Chunguang Li
Author_xml – sequence: 1
  givenname: Zhaoting
  surname: Liu
  fullname: Liu, Zhaoting
– sequence: 2
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
– sequence: 3
  givenname: Chunguang
  surname: Li
  fullname: Li, Chunguang
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28403660$$DView record in Pascal Francis
BookMark eNp90E1LHEEQBuAmGIhuvAe8DIRALrP2d28fgxoNLK64K-TW1PTUQOs4s3b3GPLvbdk1Bw85VR2etyjeI3IwjAMS8oXROWPUnm7WN3NOmZxzQbkR7AM5ZFaymkqjD8pOlajVwvz-RI5SuqdFSqsPyeI8pBxDM2Vsq_UWYsLqFv0UU3jGaomQcr1-miBiqlbPGKtrzH_G-JA-k48d9AmP93NG7n5ebM6u6uXq8tfZj2XtJae5biTVXqu2Bdl20Kq2MygAlLYWG2wbNLQVRqIGK2TjtfXSKyWRiYXoGmjEjHzf3d3G8WnClN1jSB77HgYcp-SYkkxqxi0v9Os7ej9OcSjfFUW51UZqU9S3vYLkoe8iDD4kt43hEeJfxxeSCq1pcXrnfBxTitg5HzLkMA45Qugdo-61eFeKd6_Fu33xJUjfBd9u_ydysosERPzHteGq_CxeAJGuj3s
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_automatica_2023_111265
crossref_primary_10_1109_TAES_2018_2803578
crossref_primary_10_1016_j_sigpro_2020_107497
crossref_primary_10_1177_0142331220969580
crossref_primary_10_1109_TSP_2014_2327010
crossref_primary_10_1109_LSP_2016_2539328
crossref_primary_10_1016_j_neucom_2022_01_015
crossref_primary_10_1109_TSIPN_2017_2710905
crossref_primary_10_1109_TCSII_2022_3215996
crossref_primary_10_1155_2014_189619
crossref_primary_10_1109_TCSII_2022_3144195
crossref_primary_10_1109_TSP_2017_2750110
crossref_primary_10_1109_LSP_2021_3127467
crossref_primary_10_1109_TCSII_2020_3029780
crossref_primary_10_1109_TSP_2020_3012284
crossref_primary_10_1109_ACCESS_2017_2651144
crossref_primary_10_1109_TAC_2022_3194882
crossref_primary_10_1016_j_neunet_2019_05_006
crossref_primary_10_1109_ACCESS_2016_2572198
crossref_primary_10_1109_TSP_2015_2416671
crossref_primary_10_1016_j_sigpro_2020_107561
crossref_primary_10_1016_j_dsp_2020_102732
crossref_primary_10_1109_TSP_2015_2450193
crossref_primary_10_1109_TSP_2016_2646660
crossref_primary_10_1016_j_dsp_2021_103366
crossref_primary_10_1016_j_ins_2019_12_016
crossref_primary_10_1016_j_dsp_2017_05_005
crossref_primary_10_1007_s11431_023_2514_6
crossref_primary_10_1109_TSIPN_2017_2780620
crossref_primary_10_1109_LSP_2015_2400372
crossref_primary_10_1109_TSIPN_2024_3375605
crossref_primary_10_1109_TCYB_2024_3507275
crossref_primary_10_1016_j_sigpro_2018_11_021
crossref_primary_10_1109_TSP_2020_2983905
crossref_primary_10_1109_TSP_2015_2455519
crossref_primary_10_1049_iet_rsn_2015_0628
crossref_primary_10_1016_j_dsp_2015_02_018
crossref_primary_10_1109_TIE_2016_2588463
crossref_primary_10_1587_transinf_2016PAP0002
crossref_primary_10_1109_TVT_2025_3555545
crossref_primary_10_1109_LSP_2021_3079845
crossref_primary_10_1109_TCSII_2024_3372020
crossref_primary_10_1016_j_apacoust_2025_110624
crossref_primary_10_1016_j_sigpro_2018_03_003
crossref_primary_10_1016_j_sysconle_2022_105228
crossref_primary_10_1109_TCYB_2016_2626801
crossref_primary_10_1109_TSP_2015_2393839
crossref_primary_10_1109_TSP_2019_2904935
crossref_primary_10_3390_s24144524
crossref_primary_10_1186_s13634_017_0490_z
crossref_primary_10_1109_MCI_2016_2601759
crossref_primary_10_1016_j_sigpro_2024_109570
crossref_primary_10_1016_j_sigpro_2018_02_033
crossref_primary_10_1109_TSIPN_2017_2699923
crossref_primary_10_1109_JSEN_2015_2407579
crossref_primary_10_1109_TCSI_2020_2997677
crossref_primary_10_3390_e17127851
crossref_primary_10_1109_TVT_2016_2533664
crossref_primary_10_1007_s00034_016_0371_y
crossref_primary_10_1016_j_automatica_2019_108707
crossref_primary_10_1109_TSP_2015_2493979
crossref_primary_10_3390_e17020818
crossref_primary_10_1109_TAES_2016_150733
crossref_primary_10_1007_s11424_024_3297_7
crossref_primary_10_1007_s00034_018_0935_0
crossref_primary_10_1016_j_comnet_2018_02_010
crossref_primary_10_1016_j_sigpro_2018_10_010
crossref_primary_10_1109_TSIPN_2022_3156425
crossref_primary_10_1109_TCYB_2018_2804940
crossref_primary_10_1049_iet_smt_2016_0260
crossref_primary_10_1109_TSIPN_2024_3380374
crossref_primary_10_3390_s150819047
crossref_primary_10_1109_ACCESS_2017_2723051
crossref_primary_10_1109_TSP_2014_2356433
Cites_doi 10.1109/TSP.2012.2194290
10.1109/ICASSP.2006.1660721
10.1109/SPAWC.2007.4401393
10.1109/TASL.2010.2090656
10.1109/TSP.2012.2232663
10.1017/CBO9780511804441
10.1109/ICASSP.2012.6288616
10.1109/TIP.2003.814255
10.1093/ietfec/e90-a.8.1504
10.1109/TSP.2013.2265221
10.1109/TSP.2010.2046897
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TSP.2010.2048103
10.1109/TSP.2007.913164
10.1109/TSP.2009.2038417
10.1109/MSP.2011.940281
10.1109/TSP.2009.2033729
10.1109/TIT.2006.871582
10.1016/j.jat.2008.03.001
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TSP.2007.896034
10.1109/79.985676
10.1109/MSP.2012.2231991
10.1109/LSP.2009.2024736
10.1109/TSP.2010.2055862
10.1109/TSP.2012.2198468
10.1109/LSP.2011.2159373
10.1109/TSP.2012.2198470
10.1109/TSP.2012.2204987
10.1109/TIT.2005.864420
10.1109/TSP.2011.2182347
10.1109/MSP.2007.914730
10.1017/CBO9780511810817
10.1016/j.sigpro.2010.05.015
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2014.2302731
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 1395
ExternalDocumentID 3232231871
28403660
10_1109_TSP_2014_2302731
6725674
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61171153; 61101045
– fundername: National Program for Special Support of Eminent Professionals, and the Open Research Grants of the Information Processing and Automation Technology Prior Discipline of Zhejiang Province
– fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Zhejiang Provincial Natural Science Foundation of China
  grantid: LR12F01001
– fundername: Foundation for the Author of National Excellent Doctoral Dissertation of PR China
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c420t-b406c65dda4dfad5df7e3aa5699ebedbe70d374e6a934bc69c4c554e1383fbab3
IEDL.DBID RIE
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333025000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Wed Oct 01 14:17:15 EDT 2025
Mon Jun 30 10:20:26 EDT 2025
Wed Apr 02 07:18:35 EDT 2025
Tue Nov 18 22:22:54 EST 2025
Sat Nov 29 07:57:13 EST 2025
Tue Aug 26 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Performance evaluation
Threshold detection
Wireless telecommunication
Adaptive signal processing
sparsity
Adaptive method
Implementation
Remote sensing
recursive least square
Distributed processing
Least squares method
Signal detection
Information exchange
distributed estimation
expectation-maximization algorithm
Recursive algorithm
Computational complexity
Wireless sensor network
Recursive method
Signal processing
Wireless network
Numerical simulation
Maximum likelihood
Sensor array
EM algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-b406c65dda4dfad5df7e3aa5699ebedbe70d374e6a934bc69c4c554e1383fbab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1502967467
PQPubID 85478
PageCount 10
ParticipantIDs proquest_journals_1502967467
proquest_miscellaneous_1541461292
crossref_primary_10_1109_TSP_2014_2302731
ieee_primary_6725674
pascalfrancis_primary_28403660
crossref_citationtrail_10_1109_TSP_2014_2302731
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref18
dempster (ref23) 1977; 39
tibshirani (ref16) 1996; 58
ref24
ref26
ref25
ref20
ref22
ref21
chen (ref17) 2009
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
gu (ref19) 2009; 16
References_xml – ident: ref10
  doi: 10.1109/TSP.2012.2194290
– ident: ref4
  doi: 10.1109/ICASSP.2006.1660721
– ident: ref8
  doi: 10.1109/SPAWC.2007.4401393
– ident: ref13
  doi: 10.1109/TASL.2010.2090656
– ident: ref29
  doi: 10.1109/TSP.2012.2232663
– ident: ref33
  doi: 10.1017/CBO9780511804441
– start-page: 3125
  year: 2009
  ident: ref17
  article-title: Sparse LMS for identification
  publication-title: Proc Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref28
  doi: 10.1109/ICASSP.2012.6288616
– ident: ref30
  doi: 10.1109/TIP.2003.814255
– ident: ref34
  doi: 10.1093/ietfec/e90-a.8.1504
– ident: ref11
  doi: 10.1109/TSP.2013.2265221
– ident: ref22
  doi: 10.1109/TSP.2010.2046897
– volume: 58
  start-page: 267
  year: 1996
  ident: ref16
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J Roy Statist Soc
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref20
  doi: 10.1109/TSP.2010.2048103
– ident: ref9
  doi: 10.1109/TSP.2007.913164
– ident: ref15
  doi: 10.1109/TSP.2009.2038417
– ident: ref3
  doi: 10.1109/MSP.2011.940281
– ident: ref7
  doi: 10.1109/TSP.2009.2033729
– ident: ref14
  doi: 10.1109/TIT.2006.871582
– ident: ref36
  doi: 10.1016/j.jat.2008.03.001
– volume: 39
  start-page: 1
  year: 1977
  ident: ref23
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref5
  doi: 10.1109/TSP.2007.896034
– ident: ref2
  doi: 10.1109/79.985676
– ident: ref1
  doi: 10.1109/MSP.2012.2231991
– volume: 16
  start-page: 774
  year: 2009
  ident: ref19
  article-title: <formula formulatype="inline"><tex Notation="TeX">$\ell_0$</tex> </formula> norm constraint LMS algorithm for sparse system identification
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2024736
– ident: ref25
  doi: 10.1109/TSP.2010.2055862
– ident: ref27
  doi: 10.1109/TSP.2012.2198468
– ident: ref6
  doi: 10.1093/ietfec/e90-a.8.1504
– ident: ref21
  doi: 10.1109/LSP.2011.2159373
– ident: ref35
  doi: 10.1109/TSP.2012.2198470
– ident: ref24
  doi: 10.1109/TSP.2012.2204987
– ident: ref32
  doi: 10.1109/TIT.2005.864420
– ident: ref26
  doi: 10.1109/TSP.2011.2182347
– ident: ref12
  doi: 10.1109/MSP.2007.914730
– ident: ref31
  doi: 10.1017/CBO9780511810817
– ident: ref18
  doi: 10.1016/j.sigpro.2010.05.015
SSID ssj0014496
Score 2.4554417
Snippet Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1386
SubjectTerms adaptive signal processing
Algorithm design and analysis
Algorithms
Applied sciences
Computational complexity
Detection, estimation, filtering, equalization, prediction
distributed estimation
Exact sciences and technology
expectation-maximization algorithm
Information, signal and communications theory
Least squares approximations
Least squares method
Mathematical analysis
Mathematical models
Maximum likelihood estimation
Networks
Operators
Recursive
recursive least square
Signal and communications theory
Signal processing algorithms
Signal, noise
Sparsity
Telecommunications and information theory
Transaction processing
Vectors
Wireless sensor network
Title Distributed Sparse Recursive Least-Squares Over Networks
URI https://ieeexplore.ieee.org/document/6725674
https://www.proquest.com/docview/1502967467
https://www.proquest.com/docview/1541461292
Volume 62
WOSCitedRecordID wos000333025000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UPOjB92J8EWEvwrbTk1TS6aP4wIOMsuPC3EI_KrAgM-rM-PvtSjJBcVnwFugOaaq681V3fV0fwE8stHOEJExSocAErbCaSFTWO1OlyspK1mITajAoRiP9sAS_urswRFSTz-icH-tcvp-4OR-V9XIVAFrhMiwrlTd3tbqMAWKtxRXChVRkhRotUpJS9x6HD8zhQiY9B7Tuf4KgWlOFGZFmGoxSNWoWX37MNdrcbH5vnFuw0UaV8UUzDbZhicY7sP6h1uAuFFdcIpfVrcjHw-ewn6X4Nx-2M389vmMJHzF8mfN1pPg-zO940BDEp3vw5-b68fJWtLIJwmEiZ8IGjHZ55r1BXxmf-UpRakyWax085i0p6VOFlBudonW5duhCUEH9sFmtrLHpD1gZT8a0D7HNXNr3CfrEFpjZwqQoSUrnNOnC2CKC3sKSpWtrirO0xVNZ7y2kLoPtS7Z92do-grPujeemnsZ_-u6ybbt-rVkjOPnkrK49IG3A41xGcLTwXtmuyGkZAt9E5yyuEsFp1xzWEidIzJgmc-6DLHOe6OTg358-hDUeYMNBO4KV2eucjmHVvc3-Tl9P6gn5DpWc34o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB5yQdOHpDlK3eZwIS-BKqu1x4ceQw4Sst2G7Bb2zegYQ6DsJtnd_v5qbK9JSCjkzSAZixnJ30jzaT6AI8yVtYQkdFSiwAiNMIpIlMZZXcaZkaWsxCayfj8fjdTtEvxo78IQUUU-oxN-rHL5bmLnfFTWSTMP0BkuwyorZzW3tdqcAWKlxuUDhlgkeTZaJCWl6gwHt8ziQqY9e7zuvgChSlWFOZF66s1S1noWr37NFd5cbr5vpJ9go4krw9N6ImzBEo234eOzaoM7kJ9zkVzWtyIXDh78jpbCOz5uZwZ72GMRHzF4nPOFpPCXn-Fhv6aIT3fh9-XF8OxKNMIJwmIkZ8J4lLZp4pxGV2qXuDKjWOskVcr7zBnKpIszpFSrGI1NlUXrwwrq-u1qabSJP8PKeDKmLxCaxMZdF6GLTI6JyXWMkqS0VpHKtckD6CwsWdimqjiLW_wpqt2FVIW3fcG2LxrbB3DcvvFQV9T4T98dtm3brzFrAAcvnNW2e6z1iJzKAPYW3iuaNTktfOgbqZTlVQL43jb71cQpEj2myZz7IAudRyr6-vanD-HD1fBnr-hd92--wToPtmak7cHK7GlO-7Bm_87up08H1eT8B2Fa4tM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Sparse+Recursive+Least-Squares+Over+Networks&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Liu%2C+Zhaoting&rft.au=Liu%2C+Ying&rft.au=Li%2C+Chunguang&rft.date=2014-03-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=62&rft.issue=6&rft.spage=1386&rft.epage=1395&rft_id=info:doi/10.1109%2FTSP.2014.2302731&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2014_2302731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon