Distributed Sparse Recursive Least-Squares Over Networks
Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distribu...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 62; no. 6; pp. 1386 - 1395 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.03.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distributed estimation for sparse vectors, and develop several distributed sparse recursive least-squares (RLS) algorithms. The proposed algorithms are based on the maximum likelihood framework, and the expectation-maximization algorithm, with the aid of thresholding operators, is used to numerically solve the sparse estimation problem. To improve the estimation performance, the thresholding operators related to l0- and l1-norms with real-time self-adjustable thresholds are derived. With these thresholding operators, we can exploit the underlying sparsity to implement the distributed estimation with low computational complexity and information exchange amount among neighbors. The sparsity-promoting intensity is also adaptively adjusted so that a good performance of the sparse solution can be achieved. Both theoretical analysis and numerical simulations are presented to show the effectiveness of the proposed algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2014.2302731 |