Automated workflow for the cell cycle analysis of (non-)adherent cells using a machine learning approach
Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized...
Gespeichert in:
| Veröffentlicht in: | eLife Jg. 13 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
eLife Sciences Publications Ltd
22.11.2024
|
| Schlagworte: | |
| ISSN: | 2050-084X, 2050-084X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!