Approximation schemes for r-weighted Minimization Knapsack problems
Stimulated by salient applications arising from power systems, this paper studies a class of non-linear Knapsack problems with non-separable quadratic constrains, formulated in either binary or integer form. These problems resemble the duals of the corresponding variants of 2-weighted Knapsack probl...
Uloženo v:
| Vydáno v: | Annals of operations research Ročník 279; číslo 1-2; s. 367 - 386 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2019
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Stimulated by salient applications arising from power systems, this paper studies a class of non-linear Knapsack problems with non-separable quadratic constrains, formulated in either binary or integer form. These problems resemble the duals of the corresponding variants of 2-weighted Knapsack problem (a.k.a., complex-demand Knapsack problem) which has been studied in the extant literature under the paradigm of smart grids. Nevertheless, the employed techniques resulting in a polynomial-time approximation scheme (PTAS) for the 2-weighted Knapsack problem are not amenable to its minimization version. We instead propose a greedy geometry-based approach that arrives at a quasi PTAS (QPTAS) for the minimization variant with boolean variables. As for the integer formulation, a linear programming-based method is developed that obtains a PTAS. In view of the curse of dimensionality, fast greedy heuristic algorithms are presented, additionally to QPTAS. Their performance is corroborated extensively by empirical simulations under diverse settings and scenarios. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-018-3111-9 |