Hierarchical isometry properties of hierarchical measurements

Compressed sensing studies linear recovery problems under structure assumptions. We introduce a new class of measurement operators, coined hierarchical measurement operators, and prove results guaranteeing the efficient, stable and robust recovery of hierarchically structured signals from such measu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied and computational harmonic analysis Ročník 58; s. 27 - 49
Hlavní autoři: Flinth, Axel, Groß, Benedikt, Roth, Ingo, Eisert, Jens, Wunder, Gerhard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2022
Témata:
ISSN:1063-5203, 1096-603X, 1096-603X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Compressed sensing studies linear recovery problems under structure assumptions. We introduce a new class of measurement operators, coined hierarchical measurement operators, and prove results guaranteeing the efficient, stable and robust recovery of hierarchically structured signals from such measurements. We derive bounds on their hierarchical restricted isometry properties based on the restricted isometry constants of their constituent matrices, generalizing and extending prior work on Kronecker-product measurements. As an exemplary application, we apply the theory to two communication scenarios. The fast and scalable HiHTP algorithm is shown to be suitable for solving these types of problems and its performance is evaluated numerically in terms of sparse signal recovery and block detection capability.
ISSN:1063-5203
1096-603X
1096-603X
DOI:10.1016/j.acha.2021.12.006