Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection
This paper presents ACROMUSE, a novel genetic algorithm (GA) which adapts crossover, mutation, and selection parameters. ACROMUSEs objective is to create and maintain a diverse population of highly-fit (healthy) individuals, capable of adapting quickly to fitness landscape change and well-suited to...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 15; číslo 5; s. 692 - 714 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.10.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents ACROMUSE, a novel genetic algorithm (GA) which adapts crossover, mutation, and selection parameters. ACROMUSEs objective is to create and maintain a diverse population of highly-fit (healthy) individuals, capable of adapting quickly to fitness landscape change and well-suited to the efficient optimization of multimodal fitness landscapes. A new methodology is introduced for determining standard population diversity (SPD) and an original measure of healthy population diversity (HPD) is proposed. The SPD measure is employed to adapt crossover and mutation, while selection pressure is controlled by adapting tournament size according to HPD. In addition to selection pressure control, ACROMUSE tournament selection selects individuals according to healthy diversity contribution rather than fitness. This proposed selection mechanism simultaneously promotes diversity and fitness within the population. The performance of ACROMUSE is evaluated using various multimodal benchmark functions. Statistically significant results are presented comparing ACROMUSEs fitness and diversity performance to that of several other GAs. By maintaining a diverse population of healthy individuals, ACROMUSE responds to fitness landscape change by restoring better fitness scores faster than other GAs. Analysis of the adaptive operators illustrates that the key benefit of ACROMUSE is the synergy of the operators working together to achieve an effective balance between exploration and exploitation. |
|---|---|
| AbstractList | This paper presents ACROMUSE, a novel genetic algorithm (GA) which adapts crossover, mutation, and selection parameters. ACROMUSEs objective is to create and maintain a diverse population of highly-fit (healthy) individuals, capable of adapting quickly to fitness landscape change and well-suited to the efficient optimization of multimodal fitness landscapes. A new methodology is introduced for determining standard population diversity (SPD) and an original measure of healthy population diversity (HPD) is proposed. The SPD measure is employed to adapt crossover and mutation, while selection pressure is controlled by adapting tournament size according to HPD. In addition to selection pressure control, ACROMUSE tournament selection selects individuals according to healthy diversity contribution rather than fitness. This proposed selection mechanism simultaneously promotes diversity and fitness within the population. The performance of ACROMUSE is evaluated using various multimodal benchmark functions. Statistically significant results are presented comparing ACROMUSEs fitness and diversity performance to that of several other GAs. By maintaining a diverse population of healthy individuals, ACROMUSE responds to fitness landscape change by restoring better fitness scores faster than other GAs. Analysis of the adaptive operators illustrates that the key benefit of ACROMUSE is the synergy of the operators working together to achieve an effective balance between exploration and exploitation. |
| Author | Morgan, Fearghal McGinley, Brian Maher, John O'Riordan, Colm |
| Author_xml | – sequence: 1 givenname: Brian surname: McGinley fullname: McGinley, Brian email: brianmcginley@gmail.com organization: Bio-Inspired and Reconfigurable Computing Research Group, National University of Ireland (NUI), Galway, Ireland – sequence: 2 givenname: John surname: Maher fullname: Maher, John email: john.maher@nuigalway.ie organization: Bio-Inspired and Reconfigurable Computing Research Group, National University of Ireland (NUI), Galway, Ireland – sequence: 3 givenname: Colm surname: O'Riordan fullname: O'Riordan, Colm email: colm.oriordan@nuigalway.ie organization: Computational Intelligence Research Group, National University of Ireland (NUI), Galway, Ireland – sequence: 4 givenname: Fearghal surname: Morgan fullname: Morgan, Fearghal email: fearghal.morgan@nuigalway.ie organization: Bio-Inspired and Reconfigurable Computing Research Group, National University of Ireland (NUI), Galway, Ireland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24624808$$DView record in Pascal Francis |
| BookMark | eNp9kUtLxDAUhYMo-PwB4qYI4sZqXk3SpYzjA0YUfCBuQppJNFLTMUmF-femM4MLFy5CcnO-cxPu2QbrvvMGgH0ETxGC9dnj-Hl0imEuMaQMcbIGtlBNUQkhZuv5DEVdci5eNsF2jB8QIlqhegu83irnU17OvxXXRrXpfV7cd7O-Vcl1vrhw3yZEl-bFUxyQ86mapXxXjEIXY5fFk-K2Twv4pFB-WjyY1uih3AUbVrXR7K32HfB0OX4cXZeTu6ub0fmk1BTDVHKqGRecKtZYpgmHxnJVYTzVDSTcsqZeCELYBtYWMcyV0KJpBLHasMqQHXC87DsL3VdvYpKfLmrTtsqbro-yZkRQSniVycM_5EfXB58_J0UtUEWpwBk6WkEqatXaoLx2Uc6C-1RhLjFlmAooMoeWnB4mEYz9RRCUQyZyyEQOmchVJtnD_3i0W84uBeXaf50HS6czxvy-xCDJKiI_hGmbnw |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1080_00295639_2024_2446130 crossref_primary_10_1007_s13204_018_0653_8 crossref_primary_10_1016_j_comcom_2021_09_016 crossref_primary_10_1016_j_swevo_2023_101361 crossref_primary_10_1016_j_ins_2021_01_031 crossref_primary_10_1016_j_oceaneng_2024_117720 crossref_primary_10_1049_iet_rpg_2019_0077 crossref_primary_10_1016_j_knosys_2021_106877 crossref_primary_10_1007_s00500_015_1593_9 crossref_primary_10_1016_j_ejor_2022_08_032 crossref_primary_10_1145_3009966 crossref_primary_10_3390_e22091004 crossref_primary_10_1016_j_engappai_2014_10_016 crossref_primary_10_1016_j_oceaneng_2022_112072 crossref_primary_10_1145_2480741_2480752 crossref_primary_10_1007_s00500_020_04982_w crossref_primary_10_1016_j_ins_2014_02_057 crossref_primary_10_1016_j_swevo_2023_101354 crossref_primary_10_1007_s41965_022_00117_2 crossref_primary_10_1109_TSUSC_2017_2678159 crossref_primary_10_1016_j_jmr_2016_01_014 crossref_primary_10_1007_s10489_021_02192_x crossref_primary_10_1109_TEVC_2014_2308294 crossref_primary_10_4018_ijncr_2014040102 crossref_primary_10_1155_2020_8839763 crossref_primary_10_1109_TMAG_2013_2239979 crossref_primary_10_1371_journal_pone_0086831 crossref_primary_10_1109_TMTT_2021_3088870 crossref_primary_10_1016_j_neucom_2020_04_086 crossref_primary_10_1016_j_engappai_2024_109750 crossref_primary_10_1016_j_eswa_2021_116415 crossref_primary_10_1109_TEVC_2022_3152384 crossref_primary_10_1109_TBME_2016_2627941 crossref_primary_10_1016_j_swevo_2024_101545 crossref_primary_10_1007_s11047_018_9670_5 crossref_primary_10_1016_j_asoc_2023_110529 crossref_primary_10_3390_electronics7080138 crossref_primary_10_1109_TPEL_2020_2968749 crossref_primary_10_1016_j_physa_2019_122606 crossref_primary_10_1155_2014_367152 crossref_primary_10_1109_TEVC_2023_3243109 crossref_primary_10_1016_j_advengsoft_2017_08_005 crossref_primary_10_1016_j_compeleceng_2019_07_013 crossref_primary_10_1371_journal_pone_0187471 crossref_primary_10_1145_2996355 crossref_primary_10_1017_S026357471900016X crossref_primary_10_1371_journal_pone_0310461 crossref_primary_10_1016_j_ins_2013_06_011 crossref_primary_10_1007_s00500_018_3016_1 crossref_primary_10_1016_j_asoc_2017_12_006 crossref_primary_10_1007_s11047_022_09934_x crossref_primary_10_1109_TITS_2024_3381933 crossref_primary_10_1186_s40064_016_3027_2 crossref_primary_10_1016_j_asoc_2015_08_009 crossref_primary_10_1109_TCBB_2021_3055646 crossref_primary_10_3233_JAE_162061 crossref_primary_10_1109_ACCESS_2020_2983728 crossref_primary_10_1016_j_swevo_2024_101726 crossref_primary_10_1109_ACCESS_2021_3072120 crossref_primary_10_1109_TCBB_2021_3134103 crossref_primary_10_1016_j_parco_2021_102755 crossref_primary_10_1016_j_knosys_2024_111784 crossref_primary_10_1016_j_asoc_2022_109420 crossref_primary_10_1109_ACCESS_2018_2861760 |
| Cites_doi | 10.1109/4235.585893 10.1145/1276958.1277025 10.1007/3-211-27389-1_52 10.1016/B978-0-08-050684-5.50020-3 10.1109/3477.485880 10.1007/BF02430364 10.1109/TEVC.2008.2003008 10.1007/978-3-540-87700-4_62 10.1145/1143997.1143999 10.1109/ICMLC.2004.1380721 10.1145/1143997.1144200 10.2307/2280779 10.1007/978-3-540-89694-4_46 10.1016/j.ins.2007.05.008 10.1201/9781420050073 10.1109/4235.771166 10.1109/CEC.2006.1688348 10.1007/3-540-32400-3_7 10.1007/11513575_8 10.1109/TEVC.2005.860765 10.1109/TAI.2003.1250187 10.1109/TSMC.1986.289288 10.1007/11881070_95 10.7551/mitpress/1090.003.0009 10.1016/B978-0-08-050684-5.50008-2 10.1007/978-3-540-45080-1_55 10.1162/106365602760234108 10.1109/TEVC.2006.882433 10.1109/21.286385 10.1109/CEC.2001.934369 10.1109/CEC.2002.1007058 10.1162/evco.1993.1.2.101 10.1109/TNN.2005.844858 10.1007/978-3-662-05094-1_9 10.1109/ROBOT.2004.1302446 10.1145/251880.252002 10.1016/j.amc.2006.12.066 10.1109/TEVC.2006.880727 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TEVC.2010.2046173 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Mathematics Applied Sciences |
| EISSN | 1941-0026 |
| EndPage | 714 |
| ExternalDocumentID | 2484643781 24624808 10_1109_TEVC_2010_2046173 6036171 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c420t-74c67874a6bf6c370ef7a522dcb037f6b96bf6c88fb09f1627a8c8bb83fce65e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296011700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Thu Oct 02 07:12:22 EDT 2025 Mon Jun 30 04:33:20 EDT 2025 Mon Jul 21 09:14:33 EDT 2025 Sat Nov 29 08:04:29 EST 2025 Tue Nov 18 21:18:38 EST 2025 Wed Aug 27 02:41:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Statistical analysis Genetic algorithm Multimodality Evolutionary algorithm Local optimum Ecological niche healthy population diversity Graph theory Adaptive method Tournament Fitness landscape Genetic algorithm parameter adaptation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-74c67874a6bf6c370ef7a522dcb037f6b96bf6c88fb09f1627a8c8bb83fce65e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 898154482 |
| PQPubID | 85418 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2010_2046173 crossref_primary_10_1109_TEVC_2010_2046173 proquest_journals_898154482 pascalfrancis_primary_24624808 ieee_primary_6036171 proquest_miscellaneous_963844375 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-01 |
| PublicationDateYYYYMMDD | 2011-10-01 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2011 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref58 ref14 montgomery (ref55) 2006 ref52 blickle (ref42) 1995 ref54 ref10 goldberg (ref43) 1992; 51 ref18 ref51 back (ref38) 1991 ref50 holland (ref2) 1992 ref45 ref47 whitley (ref3) 1989; 1 rechenberg (ref16) 1973 goldberg (ref15) 1987 ref8 ref7 liu (ref25) 2003; 3 ref9 ref4 ref5 dick (ref53) 2008 ref40 liu (ref17) 2004; 1 ursem (ref6) 2002; 2439 ref35 ref34 ref37 ref30 eiben (ref29) 2006; 4193 ref1 horn (ref49) 1994 ref39 zhang (ref46) 2007; lncs 4488 schaffer (ref41) 1989 rocha (ref36) 1999; 1611 (ref57) 0 jassadapakorn (ref33) 2003 mahfoud (ref11) 1996 krohling (ref19) 2002 ref24 ref23 ref26 cioppa (ref31) 2007; 11 ref20 ref22 ref21 du (ref44) 2006; lncs 4221 ref28 ref27 de jong (ref12) 1975 mahfoud (ref32) 1992 deb (ref48) 1989 |
| References_xml | – ident: ref58 doi: 10.1109/4235.585893 – volume: 2439 start-page: 462 year: 2002 ident: ref6 article-title: Diversity-guided evolutionary algorithms publication-title: Proc 7th PPSN – ident: ref39 doi: 10.1145/1276958.1277025 – ident: ref27 doi: 10.1007/3-211-27389-1_52 – year: 0 ident: ref57 publication-title: ACROMUSE-Statistical-Analysis-Results – ident: ref14 doi: 10.1016/B978-0-08-050684-5.50020-3 – ident: ref26 doi: 10.1109/3477.485880 – start-page: 243 year: 1994 ident: ref49 article-title: Genetic algorithm difficulty and the modality of fitness landscapes publication-title: Proc 3rd Foundations Genetic Algorithms – start-page: 9 year: 1995 ident: ref42 article-title: A mathematical analysis of tournament selection publication-title: Proc 7th Int Conf Genetic Algorithms – year: 1975 ident: ref12 publication-title: Analysis of the behavior of a class of genetic adaptive systems – ident: ref9 doi: 10.1007/BF02430364 – ident: ref23 doi: 10.1109/TEVC.2008.2003008 – ident: ref30 doi: 10.1007/978-3-540-87700-4_62 – ident: ref52 doi: 10.1145/1143997.1143999 – year: 1996 ident: ref11 publication-title: Niching methods for genetic algorithms – volume: 1 start-page: 414 year: 2004 ident: ref17 article-title: A novel adaptive genetic algorithms publication-title: Proc Int Conf Mach Learn Cybern doi: 10.1109/ICMLC.2004.1380721 – start-page: 42 year: 1989 ident: ref48 article-title: An investigation of niche and species formation in genetic function optimization publication-title: Proc 3rd Int Conf Genetic Algorithms – ident: ref51 doi: 10.1145/1143997.1144200 – ident: ref56 doi: 10.2307/2280779 – volume: 51 start-page: 61801 year: 1992 ident: ref43 article-title: Massive multimodality, deception, and genetic algorithms publication-title: Proc 2nd Parallel Problem Solving Nature (PPSN) – start-page: 452 year: 2008 ident: ref53 article-title: A weighted local sharing technique for multimodal optimization publication-title: Proc 7th Int Conf Simulated Evol Learn doi: 10.1007/978-3-540-89694-4_46 – ident: ref45 doi: 10.1016/j.ins.2007.05.008 – ident: ref13 doi: 10.1201/9781420050073 – ident: ref4 doi: 10.1109/4235.771166 – year: 1973 ident: ref16 publication-title: Evolutionsstrategie Optimierung Technischer Systeme Nach Prinzipien Der Biologischen Evolution – ident: ref28 doi: 10.1109/CEC.2006.1688348 – ident: ref34 doi: 10.1007/3-540-32400-3_7 – ident: ref47 doi: 10.1007/11513575_8 – ident: ref35 doi: 10.1109/TEVC.2005.860765 – ident: ref5 doi: 10.1109/TAI.2003.1250187 – ident: ref40 doi: 10.1109/TSMC.1986.289288 – volume: lncs 4221 start-page: 706 year: 2006 ident: ref44 publication-title: Advances in Natural Computation doi: 10.1007/11881070_95 – volume: 4193 start-page: 900 year: 2006 ident: ref29 article-title: Is self-adaptation of selection pressure and population size possible? A case study publication-title: Proc 9th Parallel Problem Solving Nature (PPSN) – start-page: 89 year: 1992 ident: ref2 publication-title: Adaptation in Natural and Artificial Systems doi: 10.7551/mitpress/1090.003.0009 – ident: ref8 doi: 10.1016/B978-0-08-050684-5.50008-2 – start-page: 421 year: 2003 ident: ref33 article-title: Diversity control to improve convergence rate in genetic algorithms publication-title: Proc 4th Int Conf Intell Data Eng Automat Learn (IDEAL) doi: 10.1007/978-3-540-45080-1_55 – ident: ref37 doi: 10.1162/106365602760234108 – volume: lncs 4488 start-page: 482 year: 2007 ident: ref46 article-title: Building behavior scoring model using genetic algorithm and support vector machines publication-title: Proc Int Conf Comput Sci (ICCS) – start-page: 60 year: 2006 ident: ref55 publication-title: Design and Analysis of Experiments – volume: 11 start-page: 453 year: 2007 ident: ref31 article-title: Where are the niches? Dynamic fitness sharing publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.882433 – ident: ref24 doi: 10.1109/21.286385 – ident: ref7 doi: 10.1109/CEC.2001.934369 – start-page: 41 year: 2002 ident: ref19 article-title: Evolving FPGA-based robot controllers using an evolutionary algorithm publication-title: Proc 1st Int Conf Artif Immune Syst – start-page: 27 year: 1992 ident: ref32 article-title: Crowding and preselection revisited publication-title: Proc 2nd Parallel Problem Solving Nature (PPSN) – volume: 1611 start-page: 127 year: 1999 ident: ref36 article-title: Preventing premature convergence to local optima in genetic algorithms via random offspring generation publication-title: Proc 12th Int Conf Ind Eng Applicat Artif Intell Expert Syst – volume: 3 start-page: 1841 year: 2003 ident: ref25 article-title: New adaptive genetic algorithm based on ranking publication-title: Proc Int Conf Mach Learn Cybern – ident: ref20 doi: 10.1109/CEC.2002.1007058 – ident: ref54 doi: 10.1162/evco.1993.1.2.101 – ident: ref18 doi: 10.1109/TNN.2005.844858 – start-page: 51 year: 1989 ident: ref41 article-title: A study of control parameters affecting online performance of genetic algorithms for function optimization publication-title: Proc 3rd Int Conf Genetic Algorithms – ident: ref1 doi: 10.1007/978-3-662-05094-1_9 – start-page: 41 year: 1987 ident: ref15 article-title: Genetic algorithms with sharing for multimodal function optimization publication-title: Proc 2nd Int Conf Genetic Algorithms Their Applicat – start-page: 92 year: 1991 ident: ref38 article-title: Extended selection mechanisms in genetic algorithms publication-title: Proc 4th Int Conf Genetic Algorithms – ident: ref21 doi: 10.1109/ROBOT.2004.1302446 – ident: ref10 doi: 10.1145/251880.252002 – volume: 1 start-page: 116 year: 1989 ident: ref3 article-title: The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best publication-title: Proc 3rd Int Conf Genetic Algorithms – ident: ref50 doi: 10.1016/j.amc.2006.12.066 – ident: ref22 doi: 10.1109/TEVC.2006.880727 |
| SSID | ssj0014519 |
| Score | 2.3497486 |
| Snippet | This paper presents ACROMUSE, a novel genetic algorithm (GA) which adapts crossover, mutation, and selection parameters. ACROMUSEs objective is to create and... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 692 |
| SubjectTerms | Algorithm design and analysis Algorithmics. Computability. Computer arithmetics Applied sciences Combinatorics Combinatorics. Ordered structures Computer science; control theory; systems Convergence Crossovers Exact sciences and technology Fitness Genetic algorithm parameter adaptation Genetic algorithms Genetics Graph theory healthy population diversity Information retrieval. Graph Landscapes Mathematical analysis Mathematics Mutation Mutations Operators Optimization Pressure measurement Sciences and techniques of general use Size measurement Studies Theoretical computing |
| Title | Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection |
| URI | https://ieeexplore.ieee.org/document/6036171 https://www.proquest.com/docview/898154482 https://www.proquest.com/docview/963844375 |
| Volume | 15 |
| WOSCitedRecordID | wos000296011700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-UwEB9U9qAHXb-w667ksCd51bTJy8dRnooXRVhXHl5KkqYgLH3ie0_wvzeTtGVlF8FbStKvTDIz7fxmfgA_67HxuvAmN041ebBQKrfMmRyZGINBN1gTLJJNyJsbNZ3q2xUYDbkw3vsIPvMn2Iyx_Hrmlvir7FQEdVtgwviqlDLlag0RAyyTksD0OniMatpFMAuqT-8u7icJxFVieXHJ3tmgSKqCkEgzD7PSJDqLfzRzNDeXW5970K-w2bmV5Cytg21Y8e0ObPWUDaTbwTuw8Vf9wV14uDaP7SJxRJCUkPRKbgdKL3LegzZIRBaQs9o8oXokE3wvBH-OyPUyBfNHxLQ1-RVpdcLhHvy-vLibXOUd2ULueEkXueQu2C3JjbCNcExS30gTnLPaWcpkI6yOHUo1luqmEKU0yilrFWucF2PP9mGtnbX-AEjBvK6NdU54xk1ocWrDfAjFWbgMlxnQfvor11UiR0KMP1X8IqG6QolVKLGqk1gGx8MpT6kMx0eDd1Ekw8BOGhkcvZPx0F9yUXJFVQaHvdCrbifPK6UVFixSZQZk6A1bEOMqpvWz5bxCHcY5k-Nv_7_xIayXPXKw-A5ri-el_wFf3Mvicf58FJfxG8vV8Lg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KK2gfWm2VrtWaB5_k1mY3uXw8lrOlYu8oeMrhS8hms1CQvdK7K_S_N5PsLhZF8C1Lsl-ZZGZ25zfzA3hfj63Xhbe5darJg4VSecWczZGJMRh0izXBItmEnM3UYqGvt2A05MJ47yP4zH_EZozl10u3wV9lpyKo2wITxnfGnJdFytYaYgZYKCXB6XXwGdWii2EWVJ_Oz79PEoyrxALjkj2yQpFWBUGRdhXmpUmEFn_o5mhwLvb_71Gfw17nWJKztBJewJZvD2C_J20g3R4-gN3fKhAewo-pvWnXiSWCpJSkB3I9kHqRTz1sg0RsATmr7S0qSDLB90L454hMNymcPyK2rcnXSKwTDl_Ct4vz-eQy7-gWcsdLus4ld8FySW5F1QjHJPWNtME9q11FmWxEpWOHUk1FdVOIUlrlVFUp1jgvxp69gu122fojIAXzuraVc8IzbkOL0yrMh1CchctwmQHtp9-4rhY5UmL8NPGbhGqDEjMoMdNJLIMPwym3qRDHvwYfokiGgZ00Mjh5JOOhv-Si5IqqDI57oZtuL6-M0gpLFqkyAzL0hk2IkRXb-uVmZVCLcc7k-PXfb_wOnl7Op1fm6vPsyzE8K3scYfEGttd3G_8Wnrj79c3q7iQu6V9x__P_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintaining+Healthy+Population+Diversity+Using+Adaptive+Crossover%2C+Mutation%2C+and+Selection&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=McGinley%2C+Brian&rft.au=Maher%2C+John&rft.au=O%27Riordan%2C+Colm&rft.au=Morgan%2C+Fearghal&rft.date=2011-10-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=15&rft.issue=5&rft.spage=692&rft.epage=714&rft_id=info:doi/10.1109%2FTEVC.2010.2046173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2010_2046173 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |