A high-order gas-kinetic Navier–Stokes flow solver

The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism du...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational physics Ročník 229; číslo 19; s. 6715 - 6731
Hlavní autori: Li, Qibing, Xu, Kun, Fu, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Inc 20.09.2010
Elsevier
Predmet:
ISSN:0021-9991, 1090-2716
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge–Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge–Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier–Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier–Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier–Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.
AbstractList The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.
Author Xu, Kun
Li, Qibing
Fu, Song
Author_xml – sequence: 1
  givenname: Qibing
  surname: Li
  fullname: Li, Qibing
  email: lqb@tsinghua.edu.cn
  organization: Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Kun
  surname: Xu
  fullname: Xu, Kun
  email: makxu@ust.hk
  organization: Mathematics Department, Hong Kong University of Science and Technology, Hong Kong
– sequence: 3
  givenname: Song
  surname: Fu
  fullname: Fu, Song
  email: fs-dem@tsinghua.edu.cn
  organization: Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23152093$$DView record in Pascal Francis
https://www.osti.gov/biblio/21417244$$D View this record in Osti.gov
BookMark eNp9kc9u1DAQhy1UJLYtD8AtEkJwyXbGdpxYnKqq_JEqeiicLceZdL1N48V2i7jxDrwhT4KjLRcOe7JG-n6j8e87ZkdzmImxVwhrBFRn2_XW7dYcygzNGlA_YysEDTVvUR2xFQDHWmuNL9hxSlsA6BrZrZg8rzb-dlOHOFCsbm2q7_xM2bvqi330FP_8-n2Twx2lapzCjyqF6ZHiKXs-2inRy6f3hH37cPn14lN9df3x88X5Ve0kh1wrKQT2EmU3UCd4LzrbjMitHMh1rRp54_qRoxoapZVoRzWMTQPQO91b0iDECXu93xtS9iY5n8ltXJhnctlwlNhyKQv1dk_tYvj-QCmbe58cTZOdKTwk05aPatHJtpDvDpKoWpRSYYcFffOE2uTsNEY7O5_MLvp7G38aLrDhoJcT2z3nYkgp0mjKlTb7MOdo_WQQzOLHbE3xYxY_BhpT_JQk_pf8t_xQ5v0-Q6X1Rc9SCs2OBh-XTobgD6T_Ao43qCA
CODEN JCTPAH
CitedBy_id crossref_primary_10_1016_j_ast_2018_04_022
crossref_primary_10_1016_j_jcp_2015_02_010
crossref_primary_10_1016_j_compfluid_2012_04_029
crossref_primary_10_1016_j_jcp_2012_10_005
crossref_primary_10_1016_j_jcp_2012_10_007
crossref_primary_10_1017_S000192400000823X
crossref_primary_10_1002_fld_4987
crossref_primary_10_4208_nmtma_2017_0018
crossref_primary_10_1016_j_jcp_2021_110812
crossref_primary_10_1016_j_jcp_2018_06_034
crossref_primary_10_1016_j_compfluid_2014_01_015
crossref_primary_10_1016_j_jcp_2023_112318
crossref_primary_10_1016_j_compfluid_2013_11_027
crossref_primary_10_1016_j_compfluid_2015_07_006
crossref_primary_10_1016_j_jcp_2018_02_040
crossref_primary_10_1016_j_jcp_2013_12_002
crossref_primary_10_1016_j_compfluid_2017_04_014
crossref_primary_10_1016_j_jcp_2010_06_032
crossref_primary_10_1016_j_compfluid_2019_104401
crossref_primary_10_1016_j_jcp_2017_03_023
crossref_primary_10_1016_j_cpc_2018_09_023
crossref_primary_10_1016_j_jcp_2021_110661
crossref_primary_10_1016_j_camwa_2023_07_001
crossref_primary_10_1016_j_jcp_2016_09_050
crossref_primary_10_1108_HFF_02_2018_0054
crossref_primary_10_1016_j_cma_2012_08_021
crossref_primary_10_1016_j_compfluid_2016_12_005
crossref_primary_10_1007_s10494_015_9677_2
crossref_primary_10_1016_j_jcp_2014_06_045
crossref_primary_10_1007_s11433_017_9077_2
crossref_primary_10_1016_j_compfluid_2025_106825
crossref_primary_10_1016_j_egyr_2024_05_013
crossref_primary_10_1016_j_jcp_2016_08_054
crossref_primary_10_1007_s10409_015_0453_2
crossref_primary_10_1007_s11431_013_5334_y
crossref_primary_10_1016_j_ijthermalsci_2018_10_004
crossref_primary_10_1016_j_paerosci_2014_12_002
crossref_primary_10_1016_j_jcp_2012_04_049
crossref_primary_10_1016_j_jcp_2023_111921
crossref_primary_10_1080_10618562_2021_1942860
crossref_primary_10_1016_j_ast_2019_07_020
crossref_primary_10_1016_j_compfluid_2019_104273
crossref_primary_10_1016_j_jcp_2017_11_036
crossref_primary_10_1016_j_jcp_2021_110830
crossref_primary_10_1002_fld_4052
crossref_primary_10_1016_j_camwa_2024_12_002
crossref_primary_10_1016_j_jcp_2015_07_060
crossref_primary_10_1080_10618562_2020_1821879
crossref_primary_10_1016_j_jcp_2016_05_012
crossref_primary_10_1016_j_compfluid_2018_01_026
crossref_primary_10_1016_j_jcp_2016_07_004
crossref_primary_10_1016_j_camwa_2019_02_020
crossref_primary_10_1016_j_jcp_2017_08_022
crossref_primary_10_1002_fld_3738
crossref_primary_10_1016_j_jcp_2020_109367
crossref_primary_10_1016_j_jcp_2020_109488
crossref_primary_10_1080_10618562_2018_1536266
crossref_primary_10_1016_j_compfluid_2021_105092
crossref_primary_10_1016_j_compfluid_2017_11_017
crossref_primary_10_1016_j_jcp_2021_110245
crossref_primary_10_1016_j_jcp_2023_112300
Cites_doi 10.2514/1.14130
10.1006/jcph.2001.6790
10.1016/j.jcp.2004.09.001
10.1006/jcph.2002.7041
10.2514/6.1981-1259
10.2514/6.2009-605
10.1016/j.jcp.2006.07.010
10.1016/0021-9991(84)90142-6
10.1017/S0022112004009826
10.1006/jcph.2000.6594
10.1016/0021-9991(87)90031-3
10.1016/j.jcp.2004.10.026
10.1016/j.jcp.2006.11.014
10.1016/j.jcp.2003.07.026
10.1016/j.jcp.2006.01.024
10.1016/j.jcp.2004.05.017
10.1103/PhysRev.94.511
10.1006/jcph.1996.0130
10.1016/j.jcp.2009.02.009
10.2514/6.2009-1139
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2010.05.019
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 6731
ExternalDocumentID 21417244
23152093
10_1016_j_jcp_2010_05_019
S0021999110002809
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c420t-64331b4148de832b38a5f12a4dec876f25cbf216d569637f6df5500bc9bae9033
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281570700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Thu May 18 22:36:48 EDT 2023
Sun Sep 28 03:20:00 EDT 2025
Wed Oct 01 13:53:40 EDT 2025
Mon Jul 21 09:14:22 EDT 2025
Sat Nov 29 06:46:02 EST 2025
Tue Nov 18 21:32:34 EST 2025
Fri Feb 23 02:35:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Gas-kinetic scheme
Boltzmann equation
High-order method
Navier–Stokes eqautions
Discontinuity
Second order
Euler equations
Particle collision
Calculation methods
Hierarchy
Interpolation
Divergences
Decoupling
Kinetic equations
Navier-Stokes eqautions
Dynamics
First order
Calculation
Particle transport
Runge-Kutta methods
Performance
Compressible flow
Stokes flow
Viscous flow
Navier-Stokes equations
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-64331b4148de832b38a5f12a4dec876f25cbf216d569637f6df5500bc9bae9033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671446181
PQPubID 23500
PageCount 17
ParticipantIDs osti_scitechconnect_21417244
proquest_miscellaneous_754893847
proquest_miscellaneous_1671446181
pascalfrancis_primary_23152093
crossref_citationtrail_10_1016_j_jcp_2010_05_019
crossref_primary_10_1016_j_jcp_2010_05_019
elsevier_sciencedirect_doi_10_1016_j_jcp_2010_05_019
PublicationCentury 2000
PublicationDate 2010-09-20
PublicationDateYYYYMMDD 2010-09-20
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-20
  day: 20
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Xu, Li (bib28) 2004; 513
Luo, Luo, Xu (bib17) 2009; 1
Liu, Vinokur, Wang (bib15) 2006; 216
Qiu, Shu (bib20) 2003; 193
W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
Li, Fu, Xu (bib12) 2005; 204
Ii, Xiao (bib8) 2009; 228
Vincenti, Kruger (bib24) 1965
Jiang, Shu (bib10) 1996; 126
Woodward, Colella (bib26) 1984; 54
Xu, Mao, Tang (bib29) 2005; 203
Markus Boger, Implementation of a gas-kinetic BGK solver in the elsA code, Projet de fin d’etudes Tutors at CERFACS, WN/CFD/08/84, 2008.
Harten, Enqguist, Osher, Chakravarthy (bib7) 1987; 71
M. Oliveria, P. Lu, X. Liu, C. Liu, Universal high order subroutine with new shock detector for shock boundary layer interaction, in: AIAA 2009-1139, 47th AIAA Aerospace Sciences Meeting, 2009.
Ohwada, Xu (bib18) 2004; 201
Q. Li, S. Fu, A high-order accurate gas-kinetic BGK scheme, in: 5th International Conference on Computational Fluid Dynamics, July 7–11, Seoul, Korea, 2008.
Toro, Millington, Nejad (bib23) 2001
M. Yang, Z.J. Wang, A parameter-free generalized moment limiter for high-order methods on unstructured grids, in: AIAA 2009-605, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5–8, 2009, Orlando, Florida.
Toro (bib22) 1999
Harten (bib6) 1978; 32
Liu, Xu (bib16) 2007; 224
Godunov (bib5) 1959; 47
Wang (bib25) 2002; 178
Bhatnagar, Gross, Krook (bib1) 1954; 94
Cockburn, Karniadakis, Shu (bib3) 2000
Xu (bib27) 2001; 171
A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, AIAA paper 1981-1259, 1981.
Li, Fu (bib11) 2006; 220
Deng, Zhang (bib4) 2000; 165
Li, Fu, Xu (bib13) 2005; 43
Toro (10.1016/j.jcp.2010.05.019_bib22) 1999
Xu (10.1016/j.jcp.2010.05.019_bib28) 2004; 513
Jiang (10.1016/j.jcp.2010.05.019_bib10) 1996; 126
Luo (10.1016/j.jcp.2010.05.019_bib17) 2009; 1
Ohwada (10.1016/j.jcp.2010.05.019_bib18) 2004; 201
Wang (10.1016/j.jcp.2010.05.019_bib25) 2002; 178
Xu (10.1016/j.jcp.2010.05.019_bib27) 2001; 171
10.1016/j.jcp.2010.05.019_bib21
Liu (10.1016/j.jcp.2010.05.019_bib16) 2007; 224
Toro (10.1016/j.jcp.2010.05.019_bib23) 2001
Liu (10.1016/j.jcp.2010.05.019_bib15) 2006; 216
Xu (10.1016/j.jcp.2010.05.019_bib29) 2005; 203
Li (10.1016/j.jcp.2010.05.019_bib13) 2005; 43
Harten (10.1016/j.jcp.2010.05.019_bib7) 1987; 71
10.1016/j.jcp.2010.05.019_bib2
Li (10.1016/j.jcp.2010.05.019_bib12) 2005; 204
Godunov (10.1016/j.jcp.2010.05.019_bib5) 1959; 47
Deng (10.1016/j.jcp.2010.05.019_bib4) 2000; 165
Li (10.1016/j.jcp.2010.05.019_bib11) 2006; 220
Cockburn (10.1016/j.jcp.2010.05.019_bib3) 2000
Bhatnagar (10.1016/j.jcp.2010.05.019_bib1) 1954; 94
Woodward (10.1016/j.jcp.2010.05.019_bib26) 1984; 54
Vincenti (10.1016/j.jcp.2010.05.019_bib24) 1965
Qiu (10.1016/j.jcp.2010.05.019_bib20) 2003; 193
10.1016/j.jcp.2010.05.019_bib30
Harten (10.1016/j.jcp.2010.05.019_bib6) 1978; 32
10.1016/j.jcp.2010.05.019_bib19
10.1016/j.jcp.2010.05.019_bib9
10.1016/j.jcp.2010.05.019_bib14
Ii (10.1016/j.jcp.2010.05.019_bib8) 2009; 228
References_xml – volume: 178
  start-page: 210
  year: 2002
  end-page: 251
  ident: bib25
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation
  publication-title: J. Comput. Phys.
– volume: 171
  start-page: 289
  year: 2001
  end-page: 335
  ident: bib27
  article-title: A gas-kinetic BGK scheme for the Navier–Stokes equations, and its connection with artificial dissipation and godunov method
  publication-title: J. Comput. Phys.
– volume: 228
  start-page: 3669
  year: 2009
  end-page: 3707
  ident: bib8
  article-title: High order multi-moment constrained finite volume method. Part I: Basic formulation
  publication-title: J. Comput. Phys.
– start-page: 907
  year: 2001
  end-page: 940
  ident: bib23
  article-title: Towards very high order Godunov schemes
  publication-title: Godunov Methods: Theory and Applications
– volume: 513
  start-page: 87
  year: 2004
  end-page: 110
  ident: bib28
  article-title: Microchannel flows in slip flow regime: BGK-Burnett solutions
  publication-title: J. Fluid Mech.
– reference: M. Yang, Z.J. Wang, A parameter-free generalized moment limiter for high-order methods on unstructured grids, in: AIAA 2009-605, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5–8, 2009, Orlando, Florida.
– year: 2000
  ident: bib3
  article-title: The development of discontinuous Galerkin methods
  publication-title: Discontinuous Galerkin Methods
– volume: 216
  start-page: 780
  year: 2006
  end-page: 801
  ident: bib15
  article-title: Discontinuous spectral difference method for conservation laws on unstructured grids
  publication-title: J. Comput. Phys.
– volume: 201
  start-page: 315
  year: 2004
  end-page: 332
  ident: bib18
  article-title: The kinetic scheme for full Burnett equations
  publication-title: J. Comput. Phys.
– year: 1965
  ident: bib24
  article-title: Introduction to Physical Gas Dynamics
– volume: 224
  start-page: 1223
  year: 2007
  end-page: 1242
  ident: bib16
  article-title: A Runge–Kutta discontinuous galerkin method for viscous flow equations
  publication-title: J. Comput. Phys.
– volume: 126
  start-page: 202
  year: 1996
  end-page: 228
  ident: bib10
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
– reference: Markus Boger, Implementation of a gas-kinetic BGK solver in the elsA code, Projet de fin d’etudes Tutors at CERFACS, WN/CFD/08/84, 2008.
– reference: W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
– year: 1999
  ident: bib22
  article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics
– volume: 193
  start-page: 115
  year: 2003
  end-page: 135
  ident: bib20
  article-title: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case
  publication-title: J. Comput. Phys.
– reference: M. Oliveria, P. Lu, X. Liu, C. Liu, Universal high order subroutine with new shock detector for shock boundary layer interaction, in: AIAA 2009-1139, 47th AIAA Aerospace Sciences Meeting, 2009.
– volume: 54
  start-page: 115
  year: 1984
  end-page: 173
  ident: bib26
  article-title: Numerical simulations of two-dimensional fluid flow with strong shocks
  publication-title: J. Comput. Phys.
– volume: 43
  start-page: 2170
  year: 2005
  end-page: 2176
  ident: bib13
  article-title: Application of BGK scheme with kinetic boundary conditions in hypersonic flow
  publication-title: AIAA J.
– volume: 220
  start-page: 532
  year: 2006
  end-page: 548
  ident: bib11
  article-title: On the multidimensional gas-kinetic BGK scheme
  publication-title: J. Comput. Phys.
– volume: 71
  start-page: 231
  year: 1987
  end-page: 303
  ident: bib7
  article-title: Uniformly high-order essentially non-oscillatory schemes III
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 301
  year: 2009
  end-page: 318
  ident: bib17
  article-title: A discontinuous Galerkin method based on a BGK scheme for the Navier–Stokes equations on arbitrary grids
  publication-title: Adv. Appl. Math. Mech.
– volume: 32
  start-page: 363
  year: 1978
  end-page: 389
  ident: bib6
  article-title: The artificial compression method for computation of shocks and contact discontinuties: III Self-adjusting hybrid schemes
  publication-title: Math. Comput.
– reference: A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, AIAA paper 1981-1259, 1981.
– volume: 203
  start-page: 405
  year: 2005
  end-page: 421
  ident: bib29
  article-title: A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow
  publication-title: J. Comput. Phys.
– volume: 47
  start-page: 271
  year: 1959
  end-page: 306
  ident: bib5
  article-title: A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations
  publication-title: Math. Sbornik
– reference: Q. Li, S. Fu, A high-order accurate gas-kinetic BGK scheme, in: 5th International Conference on Computational Fluid Dynamics, July 7–11, Seoul, Korea, 2008.
– volume: 94
  start-page: 511
  year: 1954
  end-page: 525
  ident: bib1
  article-title: A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems
  publication-title: Phys. Rev.
– volume: 204
  start-page: 692
  year: 2005
  end-page: 714
  ident: bib12
  article-title: A compressible Navier–Stokes flow solver with scalar transport
  publication-title: J. Comput. Phys.
– volume: 165
  start-page: 22
  year: 2000
  end-page: 44
  ident: bib4
  article-title: Developing high-order weighted compact nonlinear schemes
  publication-title: J. Comput. Phys.
– volume: 43
  start-page: 2170
  year: 2005
  ident: 10.1016/j.jcp.2010.05.019_bib13
  article-title: Application of BGK scheme with kinetic boundary conditions in hypersonic flow
  publication-title: AIAA J.
  doi: 10.2514/1.14130
– volume: 171
  start-page: 289
  year: 2001
  ident: 10.1016/j.jcp.2010.05.019_bib27
  article-title: A gas-kinetic BGK scheme for the Navier–Stokes equations, and its connection with artificial dissipation and godunov method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6790
– year: 2000
  ident: 10.1016/j.jcp.2010.05.019_bib3
  article-title: The development of discontinuous Galerkin methods
– volume: 203
  start-page: 405
  year: 2005
  ident: 10.1016/j.jcp.2010.05.019_bib29
  article-title: A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.09.001
– volume: 178
  start-page: 210
  year: 2002
  ident: 10.1016/j.jcp.2010.05.019_bib25
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7041
– ident: 10.1016/j.jcp.2010.05.019_bib9
  doi: 10.2514/6.1981-1259
– volume: 47
  start-page: 271
  year: 1959
  ident: 10.1016/j.jcp.2010.05.019_bib5
  article-title: A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations
  publication-title: Math. Sbornik
– year: 1999
  ident: 10.1016/j.jcp.2010.05.019_bib22
– volume: 1
  start-page: 301
  year: 2009
  ident: 10.1016/j.jcp.2010.05.019_bib17
  article-title: A discontinuous Galerkin method based on a BGK scheme for the Navier–Stokes equations on arbitrary grids
  publication-title: Adv. Appl. Math. Mech.
– ident: 10.1016/j.jcp.2010.05.019_bib30
  doi: 10.2514/6.2009-605
– volume: 220
  start-page: 532
  year: 2006
  ident: 10.1016/j.jcp.2010.05.019_bib11
  article-title: On the multidimensional gas-kinetic BGK scheme
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.07.010
– volume: 54
  start-page: 115
  year: 1984
  ident: 10.1016/j.jcp.2010.05.019_bib26
  article-title: Numerical simulations of two-dimensional fluid flow with strong shocks
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90142-6
– volume: 513
  start-page: 87
  year: 2004
  ident: 10.1016/j.jcp.2010.05.019_bib28
  article-title: Microchannel flows in slip flow regime: BGK-Burnett solutions
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004009826
– volume: 165
  start-page: 22
  year: 2000
  ident: 10.1016/j.jcp.2010.05.019_bib4
  article-title: Developing high-order weighted compact nonlinear schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6594
– volume: 71
  start-page: 231
  year: 1987
  ident: 10.1016/j.jcp.2010.05.019_bib7
  article-title: Uniformly high-order essentially non-oscillatory schemes III
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90031-3
– volume: 204
  start-page: 692
  year: 2005
  ident: 10.1016/j.jcp.2010.05.019_bib12
  article-title: A compressible Navier–Stokes flow solver with scalar transport
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.10.026
– year: 1965
  ident: 10.1016/j.jcp.2010.05.019_bib24
– start-page: 907
  year: 2001
  ident: 10.1016/j.jcp.2010.05.019_bib23
  article-title: Towards very high order Godunov schemes
– volume: 224
  start-page: 1223
  year: 2007
  ident: 10.1016/j.jcp.2010.05.019_bib16
  article-title: A Runge–Kutta discontinuous galerkin method for viscous flow equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.11.014
– ident: 10.1016/j.jcp.2010.05.019_bib2
– volume: 32
  start-page: 363
  year: 1978
  ident: 10.1016/j.jcp.2010.05.019_bib6
  article-title: The artificial compression method for computation of shocks and contact discontinuties: III Self-adjusting hybrid schemes
  publication-title: Math. Comput.
– volume: 193
  start-page: 115
  year: 2003
  ident: 10.1016/j.jcp.2010.05.019_bib20
  article-title: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.07.026
– ident: 10.1016/j.jcp.2010.05.019_bib14
– volume: 216
  start-page: 780
  year: 2006
  ident: 10.1016/j.jcp.2010.05.019_bib15
  article-title: Discontinuous spectral difference method for conservation laws on unstructured grids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.024
– volume: 201
  start-page: 315
  year: 2004
  ident: 10.1016/j.jcp.2010.05.019_bib18
  article-title: The kinetic scheme for full Burnett equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.05.017
– volume: 94
  start-page: 511
  year: 1954
  ident: 10.1016/j.jcp.2010.05.019_bib1
  article-title: A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.511
– volume: 126
  start-page: 202
  year: 1996
  ident: 10.1016/j.jcp.2010.05.019_bib10
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– ident: 10.1016/j.jcp.2010.05.019_bib21
– volume: 228
  start-page: 3669
  year: 2009
  ident: 10.1016/j.jcp.2010.05.019_bib8
  article-title: High order multi-moment constrained finite volume method. Part I: Basic formulation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.02.009
– ident: 10.1016/j.jcp.2010.05.019_bib19
  doi: 10.2514/6.2009-1139
SSID ssj0008548
Score 2.387362
Snippet The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes...
SourceID osti
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6715
SubjectTerms BOLTZMANN EQUATION
CALCULATION METHODS
COMPRESSIBLE FLOW
Computation
Computational techniques
DIFFERENTIAL EQUATIONS
EQUATIONS
EVALUATION
EVOLUTION
Exact sciences and technology
FLUID FLOW
Flux
FUNCTIONS
Gas-kinetic scheme
High-order method
INTEGRO-DIFFERENTIAL EQUATIONS
INTERPOLATION
ITERATIVE METHODS
KINETIC EQUATIONS
Mathematical analysis
MATHEMATICAL EVOLUTION
MATHEMATICAL MANIFOLDS
MATHEMATICAL METHODS AND COMPUTING
Mathematical methods in physics
Mathematical models
MATHEMATICAL SOLUTIONS
NAVIER-STOKES EQUATIONS
Navier–Stokes eqautions
NONLINEAR PROBLEMS
NUMERICAL SOLUTION
PARTIAL DIFFERENTIAL EQUATIONS
Physics
Reconstruction
RUNGE-KUTTA METHOD
SMOOTH MANIFOLDS
Temporal logic
TIME DEPENDENCE
VISCOUS FLOW
Title A high-order gas-kinetic Navier–Stokes flow solver
URI https://dx.doi.org/10.1016/j.jcp.2010.05.019
https://www.proquest.com/docview/1671446181
https://www.proquest.com/docview/754893847
https://www.osti.gov/biblio/21417244
Volume 229
WOSCitedRecordID wos000281570700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg44EXvhFlYwoS4oHKKB_Ohx8r1ApQVUDrpL5ZjmNP66akLO22P5-72Ek7qg144CWKLLu1fJff_Xw-3xHyLip4hImfaJLlPmxQlE-5KTTlsZZAQBQwWltsIp1Os_mcf3c13OumnEBaltn1NV_-V1FDGwgbr87-g7i7H4UGeAehwxPEDs-_EvxwgCmIaZNTc3Aia3oGRBLTsk4l2kB6tKrOdD0w59XVAGZy6cJzdwmqago-tM5C6wLpGPikiQL4cZq3pg_a5usGNtadvo2bhqPKdXHOBTwX5zT0twETIzi4LajVAmbofBROM_gW_iWpvZzpbGmSWojfwWnrMlh8XKilC6_D7Kl8Y5Tag_jpNzE-nkzEbDSfvV_-pFguDI_VXe2U-2QvTGOe9cje8Mto_rUzwlnMrBF2828PtJvQvt_-9TZK0qsAZTFYVtbwvRhb6GTHZjdEZPaEPHIC8oZW8k_JPV0-I4_dbsJzWF0_J-HQ2yiCt6UI3g1F8FARPKsIL8jxeDT79Jm6ChlUsdBf0QTvu-UMtrSFBmjOo0zGJgglK7QCM2fCWOUmDJIiTgBoU5MUBnakfq54LjX3o-gl6ZVVqV_h3f3EBEbmJpMBi1XAdZQWhcpiqWSoEtUnfrtIQrn08VjF5Fy0cYILAesqcF2FHwtY1z750A1Z2twpd3Vm7coLR_4sqROgM3cNO0Ap4RBMeqwwOgzGhAEDZs5YnxzekF43D9jWYABY1CdvW3EKAFY8LZOlrta1CECXGUuAAfeJd0ufNMbcTUDwXv-5yz55uPnCDkhvdbHWb8gDdbk6rS8Onf7-As3fosU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-order+gas-kinetic+Navier-Stokes+flow+solver&rft.jtitle=Journal+of+computational+physics&rft.au=Li%2C+Qibing&rft.au=Xu%2C+Kun&rft.au=Fu%2C+Song&rft.date=2010-09-20&rft.issn=0021-9991&rft.volume=229&rft.issue=19&rft.spage=6715&rft.epage=6731&rft_id=info:doi/10.1016%2Fj.jcp.2010.05.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon