A high-order gas-kinetic Navier–Stokes flow solver
The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism du...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 229; číslo 19; s. 6715 - 6731 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Inc
20.09.2010
Elsevier |
| Predmet: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge–Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge–Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier–Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier–Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier–Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations. |
|---|---|
| AbstractList | The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations. |
| Author | Xu, Kun Li, Qibing Fu, Song |
| Author_xml | – sequence: 1 givenname: Qibing surname: Li fullname: Li, Qibing email: lqb@tsinghua.edu.cn organization: Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Kun surname: Xu fullname: Xu, Kun email: makxu@ust.hk organization: Mathematics Department, Hong Kong University of Science and Technology, Hong Kong – sequence: 3 givenname: Song surname: Fu fullname: Fu, Song email: fs-dem@tsinghua.edu.cn organization: Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23152093$$DView record in Pascal Francis https://www.osti.gov/biblio/21417244$$D View this record in Osti.gov |
| BookMark | eNp9kc9u1DAQhy1UJLYtD8AtEkJwyXbGdpxYnKqq_JEqeiicLceZdL1N48V2i7jxDrwhT4KjLRcOe7JG-n6j8e87ZkdzmImxVwhrBFRn2_XW7dYcygzNGlA_YysEDTVvUR2xFQDHWmuNL9hxSlsA6BrZrZg8rzb-dlOHOFCsbm2q7_xM2bvqi330FP_8-n2Twx2lapzCjyqF6ZHiKXs-2inRy6f3hH37cPn14lN9df3x88X5Ve0kh1wrKQT2EmU3UCd4LzrbjMitHMh1rRp54_qRoxoapZVoRzWMTQPQO91b0iDECXu93xtS9iY5n8ltXJhnctlwlNhyKQv1dk_tYvj-QCmbe58cTZOdKTwk05aPatHJtpDvDpKoWpRSYYcFffOE2uTsNEY7O5_MLvp7G38aLrDhoJcT2z3nYkgp0mjKlTb7MOdo_WQQzOLHbE3xYxY_BhpT_JQk_pf8t_xQ5v0-Q6X1Rc9SCs2OBh-XTobgD6T_Ao43qCA |
| CODEN | JCTPAH |
| CitedBy_id | crossref_primary_10_1016_j_ast_2018_04_022 crossref_primary_10_1016_j_jcp_2015_02_010 crossref_primary_10_1016_j_compfluid_2012_04_029 crossref_primary_10_1016_j_jcp_2012_10_005 crossref_primary_10_1016_j_jcp_2012_10_007 crossref_primary_10_1017_S000192400000823X crossref_primary_10_1002_fld_4987 crossref_primary_10_4208_nmtma_2017_0018 crossref_primary_10_1016_j_jcp_2021_110812 crossref_primary_10_1016_j_jcp_2018_06_034 crossref_primary_10_1016_j_compfluid_2014_01_015 crossref_primary_10_1016_j_jcp_2023_112318 crossref_primary_10_1016_j_compfluid_2013_11_027 crossref_primary_10_1016_j_compfluid_2015_07_006 crossref_primary_10_1016_j_jcp_2018_02_040 crossref_primary_10_1016_j_jcp_2013_12_002 crossref_primary_10_1016_j_compfluid_2017_04_014 crossref_primary_10_1016_j_jcp_2010_06_032 crossref_primary_10_1016_j_compfluid_2019_104401 crossref_primary_10_1016_j_jcp_2017_03_023 crossref_primary_10_1016_j_cpc_2018_09_023 crossref_primary_10_1016_j_jcp_2021_110661 crossref_primary_10_1016_j_camwa_2023_07_001 crossref_primary_10_1016_j_jcp_2016_09_050 crossref_primary_10_1108_HFF_02_2018_0054 crossref_primary_10_1016_j_cma_2012_08_021 crossref_primary_10_1016_j_compfluid_2016_12_005 crossref_primary_10_1007_s10494_015_9677_2 crossref_primary_10_1016_j_jcp_2014_06_045 crossref_primary_10_1007_s11433_017_9077_2 crossref_primary_10_1016_j_compfluid_2025_106825 crossref_primary_10_1016_j_egyr_2024_05_013 crossref_primary_10_1016_j_jcp_2016_08_054 crossref_primary_10_1007_s10409_015_0453_2 crossref_primary_10_1007_s11431_013_5334_y crossref_primary_10_1016_j_ijthermalsci_2018_10_004 crossref_primary_10_1016_j_paerosci_2014_12_002 crossref_primary_10_1016_j_jcp_2012_04_049 crossref_primary_10_1016_j_jcp_2023_111921 crossref_primary_10_1080_10618562_2021_1942860 crossref_primary_10_1016_j_ast_2019_07_020 crossref_primary_10_1016_j_compfluid_2019_104273 crossref_primary_10_1016_j_jcp_2017_11_036 crossref_primary_10_1016_j_jcp_2021_110830 crossref_primary_10_1002_fld_4052 crossref_primary_10_1016_j_camwa_2024_12_002 crossref_primary_10_1016_j_jcp_2015_07_060 crossref_primary_10_1080_10618562_2020_1821879 crossref_primary_10_1016_j_jcp_2016_05_012 crossref_primary_10_1016_j_compfluid_2018_01_026 crossref_primary_10_1016_j_jcp_2016_07_004 crossref_primary_10_1016_j_camwa_2019_02_020 crossref_primary_10_1016_j_jcp_2017_08_022 crossref_primary_10_1002_fld_3738 crossref_primary_10_1016_j_jcp_2020_109367 crossref_primary_10_1016_j_jcp_2020_109488 crossref_primary_10_1080_10618562_2018_1536266 crossref_primary_10_1016_j_compfluid_2021_105092 crossref_primary_10_1016_j_compfluid_2017_11_017 crossref_primary_10_1016_j_jcp_2021_110245 crossref_primary_10_1016_j_jcp_2023_112300 |
| Cites_doi | 10.2514/1.14130 10.1006/jcph.2001.6790 10.1016/j.jcp.2004.09.001 10.1006/jcph.2002.7041 10.2514/6.1981-1259 10.2514/6.2009-605 10.1016/j.jcp.2006.07.010 10.1016/0021-9991(84)90142-6 10.1017/S0022112004009826 10.1006/jcph.2000.6594 10.1016/0021-9991(87)90031-3 10.1016/j.jcp.2004.10.026 10.1016/j.jcp.2006.11.014 10.1016/j.jcp.2003.07.026 10.1016/j.jcp.2006.01.024 10.1016/j.jcp.2004.05.017 10.1103/PhysRev.94.511 10.1006/jcph.1996.0130 10.1016/j.jcp.2009.02.009 10.2514/6.2009-1139 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D OTOTI |
| DOI | 10.1016/j.jcp.2010.05.019 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1090-2716 |
| EndPage | 6731 |
| ExternalDocumentID | 21417244 23152093 10_1016_j_jcp_2010_05_019 S0021999110002809 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSV SSZ T5K T9H TN5 UPT UQL WUQ XFK YQT ZMT ZU3 ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D AALMO ABPIF ABPTK ABQIS EFJIC OTOTI |
| ID | FETCH-LOGICAL-c420t-64331b4148de832b38a5f12a4dec876f25cbf216d569637f6df5500bc9bae9033 |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000281570700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Thu May 18 22:36:48 EDT 2023 Sun Sep 28 03:20:00 EDT 2025 Wed Oct 01 13:53:40 EDT 2025 Mon Jul 21 09:14:22 EDT 2025 Sat Nov 29 06:46:02 EST 2025 Tue Nov 18 21:32:34 EST 2025 Fri Feb 23 02:35:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | Gas-kinetic scheme Boltzmann equation High-order method Navier–Stokes eqautions Discontinuity Second order Euler equations Particle collision Calculation methods Hierarchy Interpolation Divergences Decoupling Kinetic equations Navier-Stokes eqautions Dynamics First order Calculation Particle transport Runge-Kutta methods Performance Compressible flow Stokes flow Viscous flow Navier-Stokes equations |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c420t-64331b4148de832b38a5f12a4dec876f25cbf216d569637f6df5500bc9bae9033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671446181 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | osti_scitechconnect_21417244 proquest_miscellaneous_754893847 proquest_miscellaneous_1671446181 pascalfrancis_primary_23152093 crossref_citationtrail_10_1016_j_jcp_2010_05_019 crossref_primary_10_1016_j_jcp_2010_05_019 elsevier_sciencedirect_doi_10_1016_j_jcp_2010_05_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-09-20 |
| PublicationDateYYYYMMDD | 2010-09-20 |
| PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: United States |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2010 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Xu, Li (bib28) 2004; 513 Luo, Luo, Xu (bib17) 2009; 1 Liu, Vinokur, Wang (bib15) 2006; 216 Qiu, Shu (bib20) 2003; 193 W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973. Li, Fu, Xu (bib12) 2005; 204 Ii, Xiao (bib8) 2009; 228 Vincenti, Kruger (bib24) 1965 Jiang, Shu (bib10) 1996; 126 Woodward, Colella (bib26) 1984; 54 Xu, Mao, Tang (bib29) 2005; 203 Markus Boger, Implementation of a gas-kinetic BGK solver in the elsA code, Projet de fin d’etudes Tutors at CERFACS, WN/CFD/08/84, 2008. Harten, Enqguist, Osher, Chakravarthy (bib7) 1987; 71 M. Oliveria, P. Lu, X. Liu, C. Liu, Universal high order subroutine with new shock detector for shock boundary layer interaction, in: AIAA 2009-1139, 47th AIAA Aerospace Sciences Meeting, 2009. Ohwada, Xu (bib18) 2004; 201 Q. Li, S. Fu, A high-order accurate gas-kinetic BGK scheme, in: 5th International Conference on Computational Fluid Dynamics, July 7–11, Seoul, Korea, 2008. Toro, Millington, Nejad (bib23) 2001 M. Yang, Z.J. Wang, A parameter-free generalized moment limiter for high-order methods on unstructured grids, in: AIAA 2009-605, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5–8, 2009, Orlando, Florida. Toro (bib22) 1999 Harten (bib6) 1978; 32 Liu, Xu (bib16) 2007; 224 Godunov (bib5) 1959; 47 Wang (bib25) 2002; 178 Bhatnagar, Gross, Krook (bib1) 1954; 94 Cockburn, Karniadakis, Shu (bib3) 2000 Xu (bib27) 2001; 171 A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, AIAA paper 1981-1259, 1981. Li, Fu (bib11) 2006; 220 Deng, Zhang (bib4) 2000; 165 Li, Fu, Xu (bib13) 2005; 43 Toro (10.1016/j.jcp.2010.05.019_bib22) 1999 Xu (10.1016/j.jcp.2010.05.019_bib28) 2004; 513 Jiang (10.1016/j.jcp.2010.05.019_bib10) 1996; 126 Luo (10.1016/j.jcp.2010.05.019_bib17) 2009; 1 Ohwada (10.1016/j.jcp.2010.05.019_bib18) 2004; 201 Wang (10.1016/j.jcp.2010.05.019_bib25) 2002; 178 Xu (10.1016/j.jcp.2010.05.019_bib27) 2001; 171 10.1016/j.jcp.2010.05.019_bib21 Liu (10.1016/j.jcp.2010.05.019_bib16) 2007; 224 Toro (10.1016/j.jcp.2010.05.019_bib23) 2001 Liu (10.1016/j.jcp.2010.05.019_bib15) 2006; 216 Xu (10.1016/j.jcp.2010.05.019_bib29) 2005; 203 Li (10.1016/j.jcp.2010.05.019_bib13) 2005; 43 Harten (10.1016/j.jcp.2010.05.019_bib7) 1987; 71 10.1016/j.jcp.2010.05.019_bib2 Li (10.1016/j.jcp.2010.05.019_bib12) 2005; 204 Godunov (10.1016/j.jcp.2010.05.019_bib5) 1959; 47 Deng (10.1016/j.jcp.2010.05.019_bib4) 2000; 165 Li (10.1016/j.jcp.2010.05.019_bib11) 2006; 220 Cockburn (10.1016/j.jcp.2010.05.019_bib3) 2000 Bhatnagar (10.1016/j.jcp.2010.05.019_bib1) 1954; 94 Woodward (10.1016/j.jcp.2010.05.019_bib26) 1984; 54 Vincenti (10.1016/j.jcp.2010.05.019_bib24) 1965 Qiu (10.1016/j.jcp.2010.05.019_bib20) 2003; 193 10.1016/j.jcp.2010.05.019_bib30 Harten (10.1016/j.jcp.2010.05.019_bib6) 1978; 32 10.1016/j.jcp.2010.05.019_bib19 10.1016/j.jcp.2010.05.019_bib9 10.1016/j.jcp.2010.05.019_bib14 Ii (10.1016/j.jcp.2010.05.019_bib8) 2009; 228 |
| References_xml | – volume: 178 start-page: 210 year: 2002 end-page: 251 ident: bib25 article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation publication-title: J. Comput. Phys. – volume: 171 start-page: 289 year: 2001 end-page: 335 ident: bib27 article-title: A gas-kinetic BGK scheme for the Navier–Stokes equations, and its connection with artificial dissipation and godunov method publication-title: J. Comput. Phys. – volume: 228 start-page: 3669 year: 2009 end-page: 3707 ident: bib8 article-title: High order multi-moment constrained finite volume method. Part I: Basic formulation publication-title: J. Comput. Phys. – start-page: 907 year: 2001 end-page: 940 ident: bib23 article-title: Towards very high order Godunov schemes publication-title: Godunov Methods: Theory and Applications – volume: 513 start-page: 87 year: 2004 end-page: 110 ident: bib28 article-title: Microchannel flows in slip flow regime: BGK-Burnett solutions publication-title: J. Fluid Mech. – reference: M. Yang, Z.J. Wang, A parameter-free generalized moment limiter for high-order methods on unstructured grids, in: AIAA 2009-605, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5–8, 2009, Orlando, Florida. – year: 2000 ident: bib3 article-title: The development of discontinuous Galerkin methods publication-title: Discontinuous Galerkin Methods – volume: 216 start-page: 780 year: 2006 end-page: 801 ident: bib15 article-title: Discontinuous spectral difference method for conservation laws on unstructured grids publication-title: J. Comput. Phys. – volume: 201 start-page: 315 year: 2004 end-page: 332 ident: bib18 article-title: The kinetic scheme for full Burnett equations publication-title: J. Comput. Phys. – year: 1965 ident: bib24 article-title: Introduction to Physical Gas Dynamics – volume: 224 start-page: 1223 year: 2007 end-page: 1242 ident: bib16 article-title: A Runge–Kutta discontinuous galerkin method for viscous flow equations publication-title: J. Comput. Phys. – volume: 126 start-page: 202 year: 1996 end-page: 228 ident: bib10 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. – reference: Markus Boger, Implementation of a gas-kinetic BGK solver in the elsA code, Projet de fin d’etudes Tutors at CERFACS, WN/CFD/08/84, 2008. – reference: W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973. – year: 1999 ident: bib22 article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics – volume: 193 start-page: 115 year: 2003 end-page: 135 ident: bib20 article-title: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case publication-title: J. Comput. Phys. – reference: M. Oliveria, P. Lu, X. Liu, C. Liu, Universal high order subroutine with new shock detector for shock boundary layer interaction, in: AIAA 2009-1139, 47th AIAA Aerospace Sciences Meeting, 2009. – volume: 54 start-page: 115 year: 1984 end-page: 173 ident: bib26 article-title: Numerical simulations of two-dimensional fluid flow with strong shocks publication-title: J. Comput. Phys. – volume: 43 start-page: 2170 year: 2005 end-page: 2176 ident: bib13 article-title: Application of BGK scheme with kinetic boundary conditions in hypersonic flow publication-title: AIAA J. – volume: 220 start-page: 532 year: 2006 end-page: 548 ident: bib11 article-title: On the multidimensional gas-kinetic BGK scheme publication-title: J. Comput. Phys. – volume: 71 start-page: 231 year: 1987 end-page: 303 ident: bib7 article-title: Uniformly high-order essentially non-oscillatory schemes III publication-title: J. Comput. Phys. – volume: 1 start-page: 301 year: 2009 end-page: 318 ident: bib17 article-title: A discontinuous Galerkin method based on a BGK scheme for the Navier–Stokes equations on arbitrary grids publication-title: Adv. Appl. Math. Mech. – volume: 32 start-page: 363 year: 1978 end-page: 389 ident: bib6 article-title: The artificial compression method for computation of shocks and contact discontinuties: III Self-adjusting hybrid schemes publication-title: Math. Comput. – reference: A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, AIAA paper 1981-1259, 1981. – volume: 203 start-page: 405 year: 2005 end-page: 421 ident: bib29 article-title: A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow publication-title: J. Comput. Phys. – volume: 47 start-page: 271 year: 1959 end-page: 306 ident: bib5 article-title: A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations publication-title: Math. Sbornik – reference: Q. Li, S. Fu, A high-order accurate gas-kinetic BGK scheme, in: 5th International Conference on Computational Fluid Dynamics, July 7–11, Seoul, Korea, 2008. – volume: 94 start-page: 511 year: 1954 end-page: 525 ident: bib1 article-title: A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems publication-title: Phys. Rev. – volume: 204 start-page: 692 year: 2005 end-page: 714 ident: bib12 article-title: A compressible Navier–Stokes flow solver with scalar transport publication-title: J. Comput. Phys. – volume: 165 start-page: 22 year: 2000 end-page: 44 ident: bib4 article-title: Developing high-order weighted compact nonlinear schemes publication-title: J. Comput. Phys. – volume: 43 start-page: 2170 year: 2005 ident: 10.1016/j.jcp.2010.05.019_bib13 article-title: Application of BGK scheme with kinetic boundary conditions in hypersonic flow publication-title: AIAA J. doi: 10.2514/1.14130 – volume: 171 start-page: 289 year: 2001 ident: 10.1016/j.jcp.2010.05.019_bib27 article-title: A gas-kinetic BGK scheme for the Navier–Stokes equations, and its connection with artificial dissipation and godunov method publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6790 – year: 2000 ident: 10.1016/j.jcp.2010.05.019_bib3 article-title: The development of discontinuous Galerkin methods – volume: 203 start-page: 405 year: 2005 ident: 10.1016/j.jcp.2010.05.019_bib29 article-title: A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.09.001 – volume: 178 start-page: 210 year: 2002 ident: 10.1016/j.jcp.2010.05.019_bib25 article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7041 – ident: 10.1016/j.jcp.2010.05.019_bib9 doi: 10.2514/6.1981-1259 – volume: 47 start-page: 271 year: 1959 ident: 10.1016/j.jcp.2010.05.019_bib5 article-title: A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations publication-title: Math. Sbornik – year: 1999 ident: 10.1016/j.jcp.2010.05.019_bib22 – volume: 1 start-page: 301 year: 2009 ident: 10.1016/j.jcp.2010.05.019_bib17 article-title: A discontinuous Galerkin method based on a BGK scheme for the Navier–Stokes equations on arbitrary grids publication-title: Adv. Appl. Math. Mech. – ident: 10.1016/j.jcp.2010.05.019_bib30 doi: 10.2514/6.2009-605 – volume: 220 start-page: 532 year: 2006 ident: 10.1016/j.jcp.2010.05.019_bib11 article-title: On the multidimensional gas-kinetic BGK scheme publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.07.010 – volume: 54 start-page: 115 year: 1984 ident: 10.1016/j.jcp.2010.05.019_bib26 article-title: Numerical simulations of two-dimensional fluid flow with strong shocks publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90142-6 – volume: 513 start-page: 87 year: 2004 ident: 10.1016/j.jcp.2010.05.019_bib28 article-title: Microchannel flows in slip flow regime: BGK-Burnett solutions publication-title: J. Fluid Mech. doi: 10.1017/S0022112004009826 – volume: 165 start-page: 22 year: 2000 ident: 10.1016/j.jcp.2010.05.019_bib4 article-title: Developing high-order weighted compact nonlinear schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6594 – volume: 71 start-page: 231 year: 1987 ident: 10.1016/j.jcp.2010.05.019_bib7 article-title: Uniformly high-order essentially non-oscillatory schemes III publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90031-3 – volume: 204 start-page: 692 year: 2005 ident: 10.1016/j.jcp.2010.05.019_bib12 article-title: A compressible Navier–Stokes flow solver with scalar transport publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.10.026 – year: 1965 ident: 10.1016/j.jcp.2010.05.019_bib24 – start-page: 907 year: 2001 ident: 10.1016/j.jcp.2010.05.019_bib23 article-title: Towards very high order Godunov schemes – volume: 224 start-page: 1223 year: 2007 ident: 10.1016/j.jcp.2010.05.019_bib16 article-title: A Runge–Kutta discontinuous galerkin method for viscous flow equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.11.014 – ident: 10.1016/j.jcp.2010.05.019_bib2 – volume: 32 start-page: 363 year: 1978 ident: 10.1016/j.jcp.2010.05.019_bib6 article-title: The artificial compression method for computation of shocks and contact discontinuties: III Self-adjusting hybrid schemes publication-title: Math. Comput. – volume: 193 start-page: 115 year: 2003 ident: 10.1016/j.jcp.2010.05.019_bib20 article-title: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.07.026 – ident: 10.1016/j.jcp.2010.05.019_bib14 – volume: 216 start-page: 780 year: 2006 ident: 10.1016/j.jcp.2010.05.019_bib15 article-title: Discontinuous spectral difference method for conservation laws on unstructured grids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.024 – volume: 201 start-page: 315 year: 2004 ident: 10.1016/j.jcp.2010.05.019_bib18 article-title: The kinetic scheme for full Burnett equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.05.017 – volume: 94 start-page: 511 year: 1954 ident: 10.1016/j.jcp.2010.05.019_bib1 article-title: A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.511 – volume: 126 start-page: 202 year: 1996 ident: 10.1016/j.jcp.2010.05.019_bib10 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – ident: 10.1016/j.jcp.2010.05.019_bib21 – volume: 228 start-page: 3669 year: 2009 ident: 10.1016/j.jcp.2010.05.019_bib8 article-title: High order multi-moment constrained finite volume method. Part I: Basic formulation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.02.009 – ident: 10.1016/j.jcp.2010.05.019_bib19 doi: 10.2514/6.2009-1139 |
| SSID | ssj0008548 |
| Score | 2.387362 |
| Snippet | The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes... |
| SourceID | osti proquest pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6715 |
| SubjectTerms | BOLTZMANN EQUATION CALCULATION METHODS COMPRESSIBLE FLOW Computation Computational techniques DIFFERENTIAL EQUATIONS EQUATIONS EVALUATION EVOLUTION Exact sciences and technology FLUID FLOW Flux FUNCTIONS Gas-kinetic scheme High-order method INTEGRO-DIFFERENTIAL EQUATIONS INTERPOLATION ITERATIVE METHODS KINETIC EQUATIONS Mathematical analysis MATHEMATICAL EVOLUTION MATHEMATICAL MANIFOLDS MATHEMATICAL METHODS AND COMPUTING Mathematical methods in physics Mathematical models MATHEMATICAL SOLUTIONS NAVIER-STOKES EQUATIONS Navier–Stokes eqautions NONLINEAR PROBLEMS NUMERICAL SOLUTION PARTIAL DIFFERENTIAL EQUATIONS Physics Reconstruction RUNGE-KUTTA METHOD SMOOTH MANIFOLDS Temporal logic TIME DEPENDENCE VISCOUS FLOW |
| Title | A high-order gas-kinetic Navier–Stokes flow solver |
| URI | https://dx.doi.org/10.1016/j.jcp.2010.05.019 https://www.proquest.com/docview/1671446181 https://www.proquest.com/docview/754893847 https://www.osti.gov/biblio/21417244 |
| Volume | 229 |
| WOSCitedRecordID | wos000281570700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg44EXvhFlYwoS4oHKKB_Ohx8r1ApQVUDrpL5ZjmNP66akLO22P5-72Ek7qg144CWKLLu1fJff_Xw-3xHyLip4hImfaJLlPmxQlE-5KTTlsZZAQBQwWltsIp1Os_mcf3c13OumnEBaltn1NV_-V1FDGwgbr87-g7i7H4UGeAehwxPEDs-_EvxwgCmIaZNTc3Aia3oGRBLTsk4l2kB6tKrOdD0w59XVAGZy6cJzdwmqago-tM5C6wLpGPikiQL4cZq3pg_a5usGNtadvo2bhqPKdXHOBTwX5zT0twETIzi4LajVAmbofBROM_gW_iWpvZzpbGmSWojfwWnrMlh8XKilC6_D7Kl8Y5Tag_jpNzE-nkzEbDSfvV_-pFguDI_VXe2U-2QvTGOe9cje8Mto_rUzwlnMrBF2828PtJvQvt_-9TZK0qsAZTFYVtbwvRhb6GTHZjdEZPaEPHIC8oZW8k_JPV0-I4_dbsJzWF0_J-HQ2yiCt6UI3g1F8FARPKsIL8jxeDT79Jm6ChlUsdBf0QTvu-UMtrSFBmjOo0zGJgglK7QCM2fCWOUmDJIiTgBoU5MUBnakfq54LjX3o-gl6ZVVqV_h3f3EBEbmJpMBi1XAdZQWhcpiqWSoEtUnfrtIQrn08VjF5Fy0cYILAesqcF2FHwtY1z750A1Z2twpd3Vm7coLR_4sqROgM3cNO0Ap4RBMeqwwOgzGhAEDZs5YnxzekF43D9jWYABY1CdvW3EKAFY8LZOlrta1CECXGUuAAfeJd0ufNMbcTUDwXv-5yz55uPnCDkhvdbHWb8gDdbk6rS8Onf7-As3fosU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-order+gas-kinetic+Navier-Stokes+flow+solver&rft.jtitle=Journal+of+computational+physics&rft.au=Li%2C+Qibing&rft.au=Xu%2C+Kun&rft.au=Fu%2C+Song&rft.date=2010-09-20&rft.issn=0021-9991&rft.volume=229&rft.issue=19&rft.spage=6715&rft.epage=6731&rft_id=info:doi/10.1016%2Fj.jcp.2010.05.019&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |