Density Evolution Analysis of Node-Based Verification-Based Algorithms in Compressed Sensing

In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed sensing. These algorithms are particularly interesting due to their low complexity (linear in the signal dimension n ). The asymptotic analysi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 58; no. 10; pp. 6616 - 6645
Main Authors: Eftekhari, Y., Heidarzadeh, A., Banihashemi, A. H., Lambadaris, I.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.10.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed sensing. These algorithms are particularly interesting due to their low complexity (linear in the signal dimension n ). The asymptotic analysis predicts the fraction of unverified signal elements at each iteration l in the asymptotic regime where n →∞. The analysis is similar in nature to the well-known density evolution technique commonly used to analyze iterative decoding algorithms. To perform the analysis, a message-passing interpretation of NB-VB algorithms is provided. This interpretation lacks the extrinsic nature of standard message-passing algorithms to which density evolution is usually applied. This requires a number of nontrivial modifications in the analysis. The analysis tracks the average performance of the recovery algorithms over the ensembles of input signals and sensing matrices as a function of l . Concentration results are devised to demonstrate that the performance of the recovery algorithms applied to any choice of the input signal over any realization of the sensing matrix follows the deterministic results of the analysis closely. Simulation results are also provided which demonstrate that the proposed asymptotic analysis matches the performance of recovery algorithms for large but finite values of n . Compared to the existing technique for the analysis of NB-VB algorithms, which is based on numerically solving a large system of coupled differential equations, the proposed method is more accurate and simpler to implement.
AbstractList In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed sensing. These algorithms are particularly interesting due to their low complexity (linear in the signal dimension ${n}$). The asymptotic analysis predicts the fraction of unverified signal elements at each iteration ${ell}$ in the asymptotic regime where ${nrightarrowinfty}$. The analysis is similar in nature to the well-known density evolution technique commonly used to analyze iterative decoding algorithms. To perform the analysis, a message-passing interpretation of NB-VB algorithms is provided. This interpretation lacks the extrinsic nature of standard message-passing algorithms to which density evolution is usually applied. This requires a number of nontrivial modifications in the analysis. The analysis tracks the average performance of the recovery algorithms over the ensembles of input signals and sensing matrices as a function of ${ell}$. Concentration results are devised to demonstrate that the performance of the recovery algorithms applied to any choice of the input signal over any realization of the sensing matrix follows the deterministic results of the analysis closely. Simulation results are also provided which demonstrate that the proposed asymptotic analysis matches the performance of recovery algorithms for large but finite values of ${n}$ . Compared to the existing technique for the analysis of NB-VB algorithms, which is based on numerically solving a large system of coupled differential equations, the proposed method is more accurate and simpler to - mplement. [PUBLICATION ABSTRACT]
In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed sensing. These algorithms are particularly interesting due to their low complexity (linear in the signal dimension n ). The asymptotic analysis predicts the fraction of unverified signal elements at each iteration [ell] in the asymptotic regime where n arrow right infinity . The analysis is similar in nature to the well-known density evolution technique commonly used to analyze iterative decoding algorithms. To perform the analysis, a message-passing interpretation of NB-VB algorithms is provided. This interpretation lacks the extrinsic nature of standard message-passing algorithms to which density evolution is usually applied. This requires a number of nontrivial modifications in the analysis. The analysis tracks the average performance of the recovery algorithms over the ensembles of input signals and sensing matrices as a function of [ell] . Concentration results are devised to demonstrate that the performance of the recovery algorithms applied to any choice of the input signal over any realization of the sensing matrix follows the deterministic results of the analysis closely. Simulation results are also provided which demonstrate that the proposed asymptotic analysis matches the performance of recovery algorithms for large but finite values of n . Compared to the existing technique for the analysis of NB-VB algorithms, which is based on numerically solving a large system of coupled differential equations, the proposed method is more accurate and simpler to implement.
In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed sensing. These algorithms are particularly interesting due to their low complexity (linear in the signal dimension n ). The asymptotic analysis predicts the fraction of unverified signal elements at each iteration l in the asymptotic regime where n →∞. The analysis is similar in nature to the well-known density evolution technique commonly used to analyze iterative decoding algorithms. To perform the analysis, a message-passing interpretation of NB-VB algorithms is provided. This interpretation lacks the extrinsic nature of standard message-passing algorithms to which density evolution is usually applied. This requires a number of nontrivial modifications in the analysis. The analysis tracks the average performance of the recovery algorithms over the ensembles of input signals and sensing matrices as a function of l . Concentration results are devised to demonstrate that the performance of the recovery algorithms applied to any choice of the input signal over any realization of the sensing matrix follows the deterministic results of the analysis closely. Simulation results are also provided which demonstrate that the proposed asymptotic analysis matches the performance of recovery algorithms for large but finite values of n . Compared to the existing technique for the analysis of NB-VB algorithms, which is based on numerically solving a large system of coupled differential equations, the proposed method is more accurate and simpler to implement.
Author Heidarzadeh, A.
Eftekhari, Y.
Lambadaris, I.
Banihashemi, A. H.
Author_xml – sequence: 1
  givenname: Y.
  surname: Eftekhari
  fullname: Eftekhari, Y.
  email: eft-yas@sce.carleton.ca
  organization: Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
– sequence: 2
  givenname: A.
  surname: Heidarzadeh
  fullname: Heidarzadeh, A.
  email: anoosheh@sce.carleton.ca
  organization: Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
– sequence: 3
  givenname: A. H.
  surname: Banihashemi
  fullname: Banihashemi, A. H.
  email: ahashemi@sce.carleton.ca
  organization: Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
– sequence: 4
  givenname: I.
  surname: Lambadaris
  fullname: Lambadaris, I.
  email: ioannis@sce.carleton.ca
  organization: Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26403685$$DView record in Pascal Francis
BookMark eNp9kc1rGzEQxUVJoI7Te6GXhRLIZZ3R5-4eHcdtAyE51PRUEFp5NlVYS660Dvi_j7Z2esghlxEz-r0HM--MnPjgkZDPFGaUQnO1ul3NGFA2YwwUV_UHMqFSVmWjpDghEwBal40Q9UdyltJTboWkbEJ-36BPbtgXy-fQ7wYXfDH3pt8nl4rQFfdhjeW1SbgufmF0nbNmZI6jef8Yohv-bFLhfLEIm23ENH78HE394zk57Uyf8NPxnZLVt-Vq8aO8e_h-u5jflVYwGErRWkEtAGuwNcB5paiwVuZpjZWErjYVylaiVUZAmwtDqXhtUUnVdoxPyeXBdhvD3x2mQW9cstj3xmPYJU05lUpSYJDRr2_Qp7CLeeFMAW-UAAp1pi6OlEnW9F003rqkt9FtTNxrlrF8YZk5deBsDClF7LR1w78DDdG4PlvqMRuds9FjNvqYTRbCG-Gr9zuSLweJQ8T_uGJM1RXnL3b_mrs
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TSP_2022_3216708
crossref_primary_10_1109_TSP_2015_2441032
crossref_primary_10_1109_LCOMM_2016_2569579
crossref_primary_10_3390_s23104620
crossref_primary_10_1109_LSP_2013_2271533
Cites_doi 10.1109/18.910575
10.1109/TIT.2010.2094817
10.1109/TSP.2009.2027773
10.1109/MSP.2007.4286571
10.1007/s10208-008-9031-3
10.1109/26.539767
10.1109/TIT.2005.862083
10.1002/cpa.20124
10.1007/s00041-008-9045-x
10.1007/s00365-007-9005-8
10.1109/JSAC.2008.080402
10.1109/ITW.2007.4313110
10.1109/ALLERTON.2008.4797639
10.1109/ICASSP.2010.5495898
10.1109/CISS.2006.286461
10.1109/GLOCOM.2007.60
10.1109/TIT.2004.839499
10.1109/18.910577
10.1109/ITA.2008.4601055
10.1109/ISIT.2006.261573
10.1109/CISS.2006.286462
10.1109/ITW.2006.1633802
10.1109/TIT.2007.909108
10.1145/1375457.1375472
10.1145/355993.356000
10.1109/ISIT.2011.6034172
10.1109/TIT.2011.2165813
10.1109/TIT.2005.858979
10.1007/s00365-007-9003-x
10.1109/ISIT.2009.5205734
10.1109/TIT.2006.871582
10.1109/ALLERTON.2008.4797558
10.1145/1250790.1250824
10.1109/ISIT.2010.5513358
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2012.2206368
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 6645
ExternalDocumentID 2761357311
26403685
10_1109_TIT_2012_2206368
6226873
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c420t-4bc41c0029eba0337614cc5bc48e750f8a7e5b5ec6a40b6a42e5638ce656bf23
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308965600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Thu Oct 02 05:53:17 EDT 2025
Sun Nov 30 05:03:06 EST 2025
Mon Jul 21 09:15:41 EDT 2025
Tue Nov 18 21:25:32 EST 2025
Sat Nov 29 03:53:14 EST 2025
Tue Aug 26 17:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Performance evaluation
iterative recovery algorithms
Input signal
Differential equation
Iterative method
iterative decoding algorithms
Iterative decoding
Implementation
low-density parity-check (LDPC) codes
Sparse matrix
Parity check codes
Asymptotic analysis
Deterministic approach
verification-based recovery algorithms
Large scale system
Target tracking
sparse graphs
density evolution
low-complexity compressed sensing
Algorithm
Channel coding
success threshold
message-passing algorithms
Message passing
Simulation
Concentration effect
Error correcting code
sparse sensing matrix
Compressed sensing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-4bc41c0029eba0337614cc5bc48e750f8a7e5b5ec6a40b6a42e5638ce656bf23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1039640108
PQPubID 36024
PageCount 30
ParticipantIDs proquest_journals_1039640108
crossref_citationtrail_10_1109_TIT_2012_2206368
crossref_primary_10_1109_TIT_2012_2206368
ieee_primary_6226873
pascalfrancis_primary_26403685
proquest_miscellaneous_1315651020
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
(ref43) 0
ref34
ref12
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref19
ref18
chandar (ref13) 2008
trees (ref42) 2001
gilbert (ref16) 2006
mackay (ref37) 2003
ref24
guo (ref28) 2008; 26
ref45
ref23
ref26
ref25
ref41
guo (ref29) 2009
ref22
ref44
ref21
ref27
ref8
ref7
ref9
ref4
ref3
zhang (ref20) 0
ref5
robert (ref30) 1994
indyk (ref15) 2008
ref40
tropp (ref6) 2004
References_xml – ident: ref35
  doi: 10.1109/18.910575
– ident: ref41
  doi: 10.1109/TIT.2010.2094817
– ident: ref26
  doi: 10.1109/TSP.2009.2027773
– ident: ref5
  doi: 10.1109/MSP.2007.4286571
– ident: ref9
  doi: 10.1007/s10208-008-9031-3
– ident: ref38
  doi: 10.1109/26.539767
– ident: ref2
  doi: 10.1109/TIT.2005.862083
– ident: ref40
  doi: 10.1002/cpa.20124
– ident: ref44
  doi: 10.1007/s00041-008-9045-x
– ident: ref10
  doi: 10.1007/s00365-007-9005-8
– volume: 26
  start-page: 421
  year: 2008
  ident: ref28
  article-title: Multiuser detection of sparsely spread cdma
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2008.080402
– year: 2004
  ident: ref6
  publication-title: Topics in Sparse Approximation
– ident: ref3
  doi: 10.1109/ITW.2007.4313110
– ident: ref7
  doi: 10.1109/ALLERTON.2008.4797639
– year: 2006
  ident: ref16
  article-title: Algorithmic linear dimension reduction in the <formula formulatype="inline"><tex Notation="TeX">$\ell_{1}$</tex> </formula> norm for sparse vectors
  publication-title: 44th Annu Allerton Conf Commun Control Comput
– ident: ref25
  doi: 10.1109/ICASSP.2010.5495898
– year: 1994
  ident: ref30
  publication-title: The Bayesian Choise A Decision Theoretic Motivation
– ident: ref14
  doi: 10.1109/CISS.2006.286461
– year: 2001
  ident: ref42
  publication-title: Detection Estimation and Modulation Theory Part I
– year: 0
  ident: ref43
– year: 2008
  ident: ref13
  article-title: A negative result concerning explicit matrices with the restricted isometry property
  publication-title: Preprint
– ident: ref22
  doi: 10.1109/GLOCOM.2007.60
– ident: ref32
  doi: 10.1109/TIT.2004.839499
– ident: ref36
  doi: 10.1109/18.910577
– ident: ref21
  doi: 10.1109/ITA.2008.4601055
– start-page: 52
  year: 2009
  ident: ref29
  article-title: A single-letter characterization of optimal noisy compressed sensing
  publication-title: Proc 47th Annu Allerton Conf Commun Control Comput
– ident: ref18
  doi: 10.1109/ISIT.2006.261573
– year: 0
  ident: ref20
  publication-title: On the iterative decoding of high rate LDPC codes with applications in compressed sensing
– ident: ref45
  doi: 10.1109/CISS.2006.286462
– ident: ref27
  doi: 10.1109/ITW.2006.1633802
– ident: ref8
  doi: 10.1109/TIT.2007.909108
– ident: ref24
  doi: 10.1145/1375457.1375472
– ident: ref31
  doi: 10.1145/355993.356000
– year: 2003
  ident: ref37
  publication-title: Information Theory Inference and Learning Algorithms
– ident: ref39
  doi: 10.1109/ISIT.2011.6034172
– ident: ref23
  doi: 10.1109/TIT.2011.2165813
– ident: ref34
  doi: 10.1109/18.910575
– ident: ref12
  doi: 10.1109/TIT.2005.858979
– ident: ref11
  doi: 10.1007/s00365-007-9003-x
– start-page: 30
  year: 2008
  ident: ref15
  article-title: Explicit constructions for compressed sensing of sparse signals
  publication-title: Proc Symp Discrete Algorithms
– ident: ref4
  doi: 10.1109/ISIT.2009.5205734
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– ident: ref33
  doi: 10.1109/ALLERTON.2008.4797558
– ident: ref17
  doi: 10.1145/1250790.1250824
– ident: ref19
  doi: 10.1109/ISIT.2010.5513358
SSID ssj0014512
Score 2.1312375
Snippet In this paper, we present a new approach for the analysis of iterative node-based verification-based (NB-VB) recovery algorithms in the context of compressed...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6616
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Asymptotic analysis
Asymptotic methods
Asymptotic properties
channel coding
Coding, codes
Compressed sensing
Data compression
Decoding
Density
density evolution
Detection
Differential equations
Exact sciences and technology
Information theory
Information, signal and communications theory
iterative decoding algorithms
iterative recovery algorithms
low-complexity compressed sensing
low-density parity-check (LDPC) codes
Mathematical analysis
Mathematical models
Matrix
message-passing algorithms
Niobium
Recovery
Sampling, quantization
Sensors
Signal and communications theory
Simulation
sparse graphs
Sparse matrices
sparse sensing matrix
success threshold
Telecommunications and information theory
verification-based recovery algorithms
Title Density Evolution Analysis of Node-Based Verification-Based Algorithms in Compressed Sensing
URI https://ieeexplore.ieee.org/document/6226873
https://www.proquest.com/docview/1039640108
https://www.proquest.com/docview/1315651020
Volume 58
WOSCitedRecordID wos000308965600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i6SgQvgnXTNt22x_WFXhbBRTwIpUmnuqCt7HYF_72TNC2KIngpJa-WTGbypTP9BuCIQK7MZC6dOM24I_y-6xCIDRyUaSjIJkepyEyyiXA4jB4e4ts5OGn_hUFEE3yGp_rW-PKzUs30p7Jen7BCFPrzMB-G_fpfrdZjIAK3ZgZ3SYHpzNG4JHncG92MdAyXd-p5tCFrUtUvW5DJqaIjItMpTUpeZ7P4YZjNbnO1-r_3XIMViyrZoF4G6zCHxQasNhkbmFXgDVj-Qj-4CY8XOnq9-mCX73YBsoajhJU5G5YZOme0y2Xsnnrk9uueLRq8PJWTcfX8OmXjgulHGRryjN3pQYunLRhdXY7Orx2bbcFRwuOVI6QSrtJeOpIT98nwuEKpgEojJFiRR2mIgQxQ9VPBJV08DEh5FRIilLnnb8NCURa4AyyMCNf5hAMUZoJsQipcgcr3ZWDY-uIO9Jr5T5RlItcJMV4ScyLhcUISS7TEEiuxDhy3Pd5qFo4_2m5qibTtrDA6cPBNxG09IUKuWfg70G1knlg9nibaUU71LqdhD9tq0kDtVkkLLGfUxqczMJk2j-_-_ug9WNIvWIcAdmGhmsxwHxbVezWeTg7MMv4EJpvvWQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6sFVoftP4oXrV2hb4UGm-T7F6Sx9MqSu0hNBQfCiG7mdgDm8hd7sD_vrObTbBUhL6EkN1kw347u99mJt8AfCSSqwpVKi_JC-6JcOR7RGKlhyqPBM3JcS4Km2wimkzim5vkegU-9__CIKINPsNjc2p9-UWtF-ZT2XBEXCGOwhfwUgoR8PZvrd5nIKTfaoP7ZMK06-ickjwZppepieIKjoOAlmQjq_poEbJZVUxMZD6nbinbfBb_TM12vTnf_L83fQMbjleycTsQtmAFq23Y7HI2MGfC27D-SIBwB35-MfHrzQM7W7ohyDqVElaXbFIX6J3QOlewH3RH6b7vuUvju9t6Nm1-_Z6zacVMU1aIvGDfzUOr211Iz8_S0wvP5VvwNPVm4wmlha-Nn46Q4iFNPb7QWtLVGIlYlHEeoVQS9SgXXNEhQEnmq5E4oSqD8C2sVnWFe8CimJhdSExAY0FIyVz4AnUYKmn1-pIBDLv-z7TTIjcpMe4yuyfhSUaIZQaxzCE2gE_9HfetDsczdXcMIn09B8YADv-CuC8nTsiNDv8ADjrMM2fJ88y4yqnc5_TYo76YbNA4VvIK6wXVCWkXTJNbwN893fQHeHWRfrvKri4nX_fhtXnZNiDwAFab2QLfw5peNtP57NAO6T-9bvKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+Evolution+Analysis+of+Node-Based+Verification-Based+Algorithms+in+Compressed+Sensing&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Eftekhari%2C+Yaser&rft.au=Heidarzadeh%2C+Anoosheh&rft.au=Banihashemi%2C+Amir+H&rft.au=Lambadaris%2C+Ioannis&rft.date=2012-10-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=58&rft.issue=10&rft.spage=6616&rft.epage=6645&rft_id=info:doi/10.1109%2FTIT.2012.2206368&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon