Improved Capsule Network Optimization Hierarchical Convolution Algorithm for Mental Health Recognition

To address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data processing technique is single. A modified capsule network is presented to optimize hierarchical convolution—the algorithm for identifying mental...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational and mathematical methods in medicine Ročník 2022; s. 1 - 10
Hlavní autori: Bhowmik, Tapas, Bhusnurmath, Rohini A., Sahu, Deepti, Jyotsna, Babu, K. Suresh, Alqahtani, Abdullah
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Hindawi 09.04.2022
Predmet:
ISSN:1748-670X, 1748-6718, 1748-6718
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data processing technique is single. A modified capsule network is presented to optimize hierarchical convolution—the algorithm for identifying mental health conditions. To begin, two types of data processing are performed on the original vibration data: wavelet noise reduction and wavelet packet noise reduction; this retains more valuable information for mental health identification in the original signal; secondly, the CNN employs the concept of hierarchical convolution, and three distinct scaled convolution kernels are utilized to extract features from numerous angles; ultimately, the convolution kernel’s extracted features are fed into the pruning strategy’s capsule network for mental health diagnosis. The enhanced capsule network has the potential to significantly speed up mental health identification while maintaining accuracy. It is time to address the issue of the CNN structure being too complex and the recognition impact being inadequate. The experimental findings indicate that the suggested algorithm achieves a high level of recognition accuracy while consuming a small amount of time.
AbstractList To address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data processing technique is single. A modified capsule network is presented to optimize hierarchical convolution—the algorithm for identifying mental health conditions. To begin, two types of data processing are performed on the original vibration data: wavelet noise reduction and wavelet packet noise reduction; this retains more valuable information for mental health identification in the original signal; secondly, the CNN employs the concept of hierarchical convolution, and three distinct scaled convolution kernels are utilized to extract features from numerous angles; ultimately, the convolution kernel’s extracted features are fed into the pruning strategy’s capsule network for mental health diagnosis. The enhanced capsule network has the potential to significantly speed up mental health identification while maintaining accuracy. It is time to address the issue of the CNN structure being too complex and the recognition impact being inadequate. The experimental findings indicate that the suggested algorithm achieves a high level of recognition accuracy while consuming a small amount of time.
To address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data processing technique is single. A modified capsule network is presented to optimize hierarchical convolution-the algorithm for identifying mental health conditions. To begin, two types of data processing are performed on the original vibration data: wavelet noise reduction and wavelet packet noise reduction; this retains more valuable information for mental health identification in the original signal; secondly, the CNN employs the concept of hierarchical convolution, and three distinct scaled convolution kernels are utilized to extract features from numerous angles; ultimately, the convolution kernel's extracted features are fed into the pruning strategy's capsule network for mental health diagnosis. The enhanced capsule network has the potential to significantly speed up mental health identification while maintaining accuracy. It is time to address the issue of the CNN structure being too complex and the recognition impact being inadequate. The experimental findings indicate that the suggested algorithm achieves a high level of recognition accuracy while consuming a small amount of time.To address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data processing technique is single. A modified capsule network is presented to optimize hierarchical convolution-the algorithm for identifying mental health conditions. To begin, two types of data processing are performed on the original vibration data: wavelet noise reduction and wavelet packet noise reduction; this retains more valuable information for mental health identification in the original signal; secondly, the CNN employs the concept of hierarchical convolution, and three distinct scaled convolution kernels are utilized to extract features from numerous angles; ultimately, the convolution kernel's extracted features are fed into the pruning strategy's capsule network for mental health diagnosis. The enhanced capsule network has the potential to significantly speed up mental health identification while maintaining accuracy. It is time to address the issue of the CNN structure being too complex and the recognition impact being inadequate. The experimental findings indicate that the suggested algorithm achieves a high level of recognition accuracy while consuming a small amount of time.
Author Sahu, Deepti
Jyotsna
Bhusnurmath, Rohini A.
Babu, K. Suresh
Bhowmik, Tapas
Alqahtani, Abdullah
AuthorAffiliation 1 Canadian University of Bangladesh, Bangladesh
2 Department of Computer Science, Akkamahadevi Women's University, Vijayapura, Karnataka, India
3 Department of Computer Science and Engineering, Sharda University, Greater Noida, India
5 Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia
4 Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India
AuthorAffiliation_xml – name: 1 Canadian University of Bangladesh, Bangladesh
– name: 3 Department of Computer Science and Engineering, Sharda University, Greater Noida, India
– name: 4 Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India
– name: 5 Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia
– name: 2 Department of Computer Science, Akkamahadevi Women's University, Vijayapura, Karnataka, India
Author_xml – sequence: 1
  givenname: Tapas
  orcidid: 0000-0003-1152-5024
  surname: Bhowmik
  fullname: Bhowmik, Tapas
  organization: Canadian University of BangladeshBangladeshcub.edu.bd
– sequence: 2
  givenname: Rohini A.
  orcidid: 0000-0002-9908-5651
  surname: Bhusnurmath
  fullname: Bhusnurmath, Rohini A.
  organization: Department of Computer ScienceAkkamahadevi Women’s UniversityVijayapuraKarnatakaIndia
– sequence: 3
  givenname: Deepti
  orcidid: 0000-0001-9839-8210
  surname: Sahu
  fullname: Sahu, Deepti
  organization: Department of Computer Science and EngineeringSharda UniversityGreater NoidaIndiasharda.ac.in
– sequence: 4
  orcidid: 0000-0003-0972-9183
  surname: Jyotsna
  fullname: Jyotsna
  organization: Department of Computer Science and EngineeringSharda UniversityGreater NoidaIndiasharda.ac.in
– sequence: 5
  givenname: K. Suresh
  orcidid: 0000-0001-5183-8397
  surname: Babu
  fullname: Babu, K. Suresh
  organization: Department of BiochemistrySymbiosis Medical College for WomenSymbiosis International (Deemed University)PuneIndiassbs.edu.in
– sequence: 6
  givenname: Abdullah
  orcidid: 0000-0003-4291-8744
  surname: Alqahtani
  fullname: Alqahtani, Abdullah
  organization: Department of Computer ScienceCollege of Computer ScienceKing Khalid UniversityAbhaSaudi Arabiakku.edu.sa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35437446$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtrFDEUxoO02Iu--SzzKNhtk0xu8yKURd1Ca0EUfAvZXHaimWSazGyxf72z3e2igj6dA-d3vu9wvhNwEFO0ALxC8BwhSi8wxPiC1g0TBD4Dx4gTMWMciYN9D78dgZNSvkNIEafoOTiqKak5IewYuKuuz2ltTTVXfRmDrT7Z4T7lH9VtP_jOP6jBp1gtvM0q69ZrFap5iusUxsfBZVil7Ie2q1zK1Y2NwwQsrApDW322Oq2i33AvwKFTodiXu3oKvn54_2W-mF3ffryaX17PNMFwmBHSIGe4wJDXzCCmneKNWjJqhGCKQqiohsJBZiixy6V2kGtOLBPWOI6ZqU_Bu61uPy47a_R0T1ZB9tl3Kv-USXn55yT6Vq7SWjYQ1bgRk8CbnUBOd6Mtg-x80TYEFW0ai8SMYiowZ_WEvv7da2_y9NwJONsCOqdSsnV7BEG5yU5uspO77CYc_4VrPzy-f7rUh38tvd0utT4ade__b_ELLFOrKA
CitedBy_id crossref_primary_10_1155_2023_9893182
Cites_doi 10.1109/HORA49412.2020.9152917
10.2174/1573405617666210215143503
10.1016/j.cmpb.2021.106392
10.1109/TEVC.2021.3139263
10.1109/BigMM50055.2020.00044
10.1109/ACCESS.2020.2971950
10.1109/TVLSI.2021.3059518
10.1109/TBCAS.2016.2560800
10.1109/ICISCE50968.2020.00208
10.1109/ACCESS.2021.3066842
10.1109/ICAS49788.2021.9551176
10.1109/ICACCI.2018.8554604
10.1109/ICRITO51393.2021.9596330
10.1109/WCSP52459.2021.9613717
10.35833/MPCE.2021.000033
10.1109/HORA52670.2021.9461340
10.1109/IJCNN48605.2020.9207533
10.1155/2021/8387680
ContentType Journal Article
Copyright Copyright © 2022 Tapas Bhowmik et al.
Copyright © 2022 Tapas Bhowmik et al. 2022
Copyright_xml – notice: Copyright © 2022 Tapas Bhowmik et al.
– notice: Copyright © 2022 Tapas Bhowmik et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1155/2022/5396840
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Koundal, Deepika
Editor_xml – sequence: 1
  givenname: Deepika
  surname: Koundal
  fullname: Koundal, Deepika
EndPage 10
ExternalDocumentID PMC9013298
35437446
10_1155_2022_5396840
Genre Retracted Publication
Journal Article
GrantInformation_xml – fundername: King Khalid University
  grantid: RGP.1/85/42
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
PGMZT
3V.
7X7
88E
8FE
8FG
8FI
8FJ
ABJCF
ABUWG
AFKRA
AWYRJ
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
FYUFA
HCIFZ
HF~
HMCUK
IPNFZ
L6V
M1P
M7S
NPM
O5S
PQQKQ
PROAC
PSQYO
PTHSS
RIG
UKHRP
7X8
5PM
ID FETCH-LOGICAL-c420t-4491fd7820736d16cfa79ab65d886a500a5c08f06d54ebbcf07c74e68edf726d3
IEDL.DBID RHX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791248700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-670X
1748-6718
IngestDate Tue Nov 04 02:01:06 EST 2025
Thu Oct 02 11:00:07 EDT 2025
Wed Feb 19 02:05:40 EST 2025
Sat Nov 29 01:39:22 EST 2025
Tue Nov 18 21:25:52 EST 2025
Sun Jun 02 18:52:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Tapas Bhowmik et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-4491fd7820736d16cfa79ab65d886a500a5c08f06d54ebbcf07c74e68edf726d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Deepika Koundal
ORCID 0000-0003-1152-5024
0000-0001-5183-8397
0000-0003-0972-9183
0000-0003-4291-8744
0000-0001-9839-8210
0000-0002-9908-5651
OpenAccessLink https://dx.doi.org/10.1155/2022/5396840
PMID 35437446
PQID 2652582763
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9013298
proquest_miscellaneous_2652582763
pubmed_primary_35437446
crossref_primary_10_1155_2022_5396840
crossref_citationtrail_10_1155_2022_5396840
hindawi_primary_10_1155_2022_5396840
PublicationCentury 2000
PublicationDate 2022-04-09
PublicationDateYYYYMMDD 2022-04-09
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2022
Publisher Hindawi
Publisher_xml – name: Hindawi
References 11
12
13
14
15
G. Roland (16) 2021; 7
17
18
19
Z. Joseph (6)
A. Marchisio (5)
1
2
3
4
7
8
9
20
10
21
38124920 - Comput Math Methods Med. 2023 Dec 13;2023:9893182
References_xml – ident: 3
  doi: 10.1109/HORA49412.2020.9152917
– ident: 12
  doi: 10.2174/1573405617666210215143503
– ident: 13
  doi: 10.1016/j.cmpb.2021.106392
– ident: 7
  doi: 10.1109/TEVC.2021.3139263
– ident: 9
  doi: 10.1109/BigMM50055.2020.00044
– ident: 11
  doi: 10.1109/ACCESS.2020.2971950
– ident: 8
  doi: 10.1109/TVLSI.2021.3059518
– ident: 19
  doi: 10.1109/TBCAS.2016.2560800
– ident: 18
  doi: 10.1109/ICISCE50968.2020.00208
– ident: 10
  doi: 10.1109/ACCESS.2021.3066842
– volume: 7
  start-page: 7391
  issue: 6-1
  year: 2021
  ident: 16
  article-title: PCA (principal component analysis) approach towards identifying the factors determining the medication behavior of Indian patients: an empirical study
  publication-title: Tobacco Regulatory Science
– ident: 14
  doi: 10.1109/ICAS49788.2021.9551176
– ident: 15
  doi: 10.1109/ICACCI.2018.8554604
– ident: 20
  doi: 10.1109/ICRITO51393.2021.9596330
– ident: 17
  doi: 10.1109/WCSP52459.2021.9613717
– ident: 1
  doi: 10.35833/MPCE.2021.000033
– start-page: 1
  ident: 5
  article-title: NASCaps: a framework for neural architecture search to optimize the accuracy and hardware efficiency of convolutional capsule networks
– start-page: 1
  ident: 6
  article-title: Deepfake detection using a two-stream capsule network
– ident: 2
  doi: 10.1109/HORA52670.2021.9461340
– ident: 4
  doi: 10.1109/IJCNN48605.2020.9207533
– ident: 21
  doi: 10.1155/2021/8387680
– reference: 38124920 - Comput Math Methods Med. 2023 Dec 13;2023:9893182
SSID ssj0051751
Score 2.2379572
SecondaryResourceType retracted_publication
Snippet To address the shortcomings of standard convolutional neural networks (CNNs), the model structure is complex, the training period is lengthy, and the data...
SourceID pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Humans
Mental Health
Neural Networks, Computer
Title Improved Capsule Network Optimization Hierarchical Convolution Algorithm for Mental Health Recognition
URI https://dx.doi.org/10.1155/2022/5396840
https://www.ncbi.nlm.nih.gov/pubmed/35437446
https://www.proquest.com/docview/2652582763
https://pubmed.ncbi.nlm.nih.gov/PMC9013298
Volume 2022
WOSCitedRecordID wos000791248700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051751
  issn: 1748-670X
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-WsJW-jH20XbqtqNA9DVPH9unjsYSVvCwrpQO_GVmSG0NqjyRN__1KlhyWbmV7MRifjbmT73S-3_0O4CzjSumKiQilYT5BERLLCFOGlCWxjqXshk2w2YznubgKJEmrP0v4Ntq59Dw5x1Q4WpIBDDg65Nb1NO8dLtoIOPZ9jzyiLM57fPuTe3ciz6u5S3kf6r9tLJ_iI38LOJdv4HXYKZILb9q38MI072Dve6iFv4fK_w8wmkykTXUXhsw8pJv8sG7gLvRXkmntWoy7iScLMmmbTVhr5GJx2y7r9fyO2H0r8Vw-xHclkeseVtQ2B_Dz8tvNZBqFqQmRypJ4HWWZGFfa0eCxlOoxVZVkQpYUNefUzT-QqGJexVRjZspSVTFTLDOUG2uzhOr0EIZN25gPQATnOkY0iluJkpaCVUhFqo3WpaZMj-Brr9FCBUpxN9liUXSpBWLh9F8E_Y_gy1b6l6fSeEbuLBjnH2KnveUK-0m4OodsTHu_KhKKCfLEes4RHHlLbp-UYpYymwKPgO3YeCvg6LZ3rzT1vKPdFq4sJfjx_73eR9h3px3IR3yC4Xp5bz7DS7VZ16vlCQyS7MoeWc5PusX8CO0p7QU
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Capsule+Network+Optimization+Hierarchical+Convolution+Algorithm+for+Mental+Health+Recognition&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Bhowmik%2C+Tapas&rft.au=Bhusnurmath%2C+Rohini+A.&rft.au=Sahu%2C+Deepti&rft.au=Jyotsna&rft.date=2022-04-09&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2022&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1155%2F2022%2F5396840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_5396840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon