Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume
Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical featu...
Uložené v:
| Vydané v: | Cerebral cortex (New York, N.Y. 1991) Ročník 28; číslo 5; s. 1656 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.05.2018
|
| Predmet: | |
| ISSN: | 1460-2199, 1460-2199 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension. |
|---|---|
| AbstractList | Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension. Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension. |
| Author | Gong, Gaolang Li, Liangjie Shu, Hua Cui, Zaixu Su, Mengmeng |
| Author_xml | – sequence: 1 givenname: Zaixu surname: Cui fullname: Cui, Zaixu organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China – sequence: 2 givenname: Mengmeng surname: Su fullname: Su, Mengmeng organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China – sequence: 3 givenname: Liangjie surname: Li fullname: Li, Liangjie organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China – sequence: 4 givenname: Hua surname: Shu fullname: Shu, Hua organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China – sequence: 5 givenname: Gaolang surname: Gong fullname: Gong, Gaolang organization: Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28334252$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLw0AYxBep2IcevUqOXmL3kWyyx1JsLVQUtV7DPr7YlSRbdxOx_vWmWMHTDMyPgZkxGjSuAYQuCb4hWLCpBq-dn6rtF-bkBI1IwnFMiRCDf36IxiG8Y0wymtIzNKQ5Y0lvR-h51Rj7aU0nK_sNJnr0YKxurWsiV0ZPII1t3qK5q3cettCEQzBTtrLtPtqEQ7b0ch_dy7YFH726qqvhHJ2WsgpwcdQJ2ixuX-Z38fphuZrP1rFOKG5jJijmDOuSq7KEvMxzkeFEKcZzJVJOuOn30VITmdFMqp5KZKpTwTQ1KSFAJ-j6t3fn3UcHoS1qGzRUlWzAdaEgeU4oZ0SQHr06op2qwRQ7b2vp98XfEfQH-6lihg |
| CitedBy_id | crossref_primary_10_1016_j_pnpbp_2020_110192 crossref_primary_10_1016_j_bpsc_2022_12_002 crossref_primary_10_1007_s11682_018_9960_7 crossref_primary_10_1007_s11682_021_00574_w crossref_primary_10_1016_j_jad_2025_02_020 crossref_primary_10_3390_e21100995 crossref_primary_10_1016_j_neuroimage_2020_116966 crossref_primary_10_1016_j_bpsc_2023_05_002 crossref_primary_10_1007_s00429_018_1651_z crossref_primary_10_1038_s41598_020_64720_y crossref_primary_10_3389_fnins_2022_1038514 crossref_primary_10_3758_s13415_025_01312_1 crossref_primary_10_1002_hbm_25303 crossref_primary_10_1016_j_bbr_2020_112605 crossref_primary_10_1002_hbm_70191 crossref_primary_10_1093_cercor_bhae121 crossref_primary_10_1016_j_biopsych_2020_02_016 crossref_primary_10_1162_imag_a_00219 crossref_primary_10_1002_hbm_26753 crossref_primary_10_1109_JBHI_2021_3139701 crossref_primary_10_1109_TAFFC_2022_3181671 crossref_primary_10_1093_gigascience_giaf082 crossref_primary_10_1016_j_ynirp_2022_100127 crossref_primary_10_3389_fneur_2019_00668 crossref_primary_10_1016_j_neuroscience_2018_05_052 crossref_primary_10_1038_s41583_022_00584_7 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_1002_advs_202307540 crossref_primary_10_1002_hbm_25215 crossref_primary_10_1007_s11357_023_00934_y crossref_primary_10_1093_cercor_bhac269 crossref_primary_10_1017_S0033291718002763 crossref_primary_10_1016_j_appet_2023_107069 crossref_primary_10_1038_s41598_023_49538_8 crossref_primary_10_1093_scan_nsz020 crossref_primary_10_1016_j_cortex_2022_06_019 crossref_primary_10_1002_jnr_24951 crossref_primary_10_1186_s12916_024_03784_3 crossref_primary_10_1016_j_ijchp_2024_100541 crossref_primary_10_1007_s11682_021_00457_0 crossref_primary_10_1109_MSP_2022_3155951 crossref_primary_10_1002_hbm_26218 crossref_primary_10_1016_j_bbr_2023_114283 crossref_primary_10_1016_j_neuroimage_2024_120804 crossref_primary_10_3389_fnins_2022_920150 crossref_primary_10_1016_j_nicl_2020_102439 crossref_primary_10_1016_j_neuroscience_2018_10_036 crossref_primary_10_1007_s00256_023_04301_y crossref_primary_10_1109_TNSRE_2020_3007324 crossref_primary_10_1111_adb_12705 crossref_primary_10_1016_j_neuroimage_2023_119911 crossref_primary_10_1016_j_neuroscience_2023_08_017 crossref_primary_10_1007_s11682_024_00856_z crossref_primary_10_1109_JBHI_2023_3240508 crossref_primary_10_7554_eLife_53060 crossref_primary_10_1109_JBHI_2023_3307578 crossref_primary_10_1109_TCDS_2021_3101643 crossref_primary_10_1016_j_neuroimage_2021_118224 crossref_primary_10_1038_s41598_023_33199_8 crossref_primary_10_1016_j_dcn_2022_101098 crossref_primary_10_1002_hbm_24503 crossref_primary_10_1016_j_bbr_2024_115144 crossref_primary_10_1093_cercor_bhac006 crossref_primary_10_1148_ryai_2021200171 crossref_primary_10_7554_eLife_82088 crossref_primary_10_1073_pnas_2110416119 crossref_primary_10_1016_j_neuron_2020_01_029 crossref_primary_10_1016_j_neuroimage_2019_116065 crossref_primary_10_1007_s11682_022_00656_3 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/cercor/bhx061 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1460-2199 |
| ExternalDocumentID | 28334252 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIAAA NIH HHS grantid: U01 AA020912 |
| GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CDBKE CGR CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS ECM EE~ EIF EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NPM NU- O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCN TEORI TJX TLC TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 7X8 |
| ID | FETCH-LOGICAL-c420t-3920630cf6bffe8f889704bb368b95616d0932fc1a727ab6bf4a5c593c2d511e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431890800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-2199 |
| IngestDate | Thu Oct 02 05:41:47 EDT 2025 Mon Jul 21 05:51:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-3920630cf6bffe8f889704bb368b95616d0932fc1a727ab6bf4a5c593c2d511e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/cercor/article-pdf/28/5/1656/29154107/bhx061.pdf |
| PMID | 28334252 |
| PQID | 1881263191 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1881263191 pubmed_primary_28334252 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
| PublicationTitleAlternate | Cereb Cortex |
| PublicationYear | 2018 |
| SSID | ssj0017252 |
| Score | 2.5311968 |
| Snippet | Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1656 |
| SubjectTerms | Comprehension - physiology Connectome Datasets as Topic - statistics & numerical data Female Gray Matter - diagnostic imaging Gray Matter - physiology Humans Individuality Magnetic Resonance Imaging Male Predictive Value of Tests Reading Sex Characteristics |
| Title | Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28334252 https://www.proquest.com/docview/1881263191 |
| Volume | 28 |
| WOSCitedRecordID | wos000431890800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5qRby4tC51I4J4C53JLMmcpIhVwZaCC72VSSahPThTp1Wsv96XTGpPguBlLmEgvC3fy_vyHkIXQSIU14kgTNCQAL6VhGupiQRX8nTsqVRYTT-wXo8PBknfXbhNHa1yERNtoM4Kae7IWz6HoygGg_GvJm_ETI0y1VU3QmMV1QKAMsaq2WBZRWDUTtyBYOAR8MzE9diEJL4lVQnZXUuMPr3Y_x1d2lOms_3f_e2gLYcvcbsyiF20ovI6arRzyK1f5_gSW8anvUqvo42uK6w30OP9z8Os8ZfKcL80S0ZpuNDYMe2xCR6lGhnOOyy0La92ji3rAN-W6Rx3bbdO_GJD3h567tw8Xd8RN2-ByJB6MwJQyXTgkjoWWoMGOU-YFwoRxFyY969xBpKjWvopgB7QodBhGskoCSTNALcpuo_W8iJXhwjzQDMVMcivaRYymQg_ozQTQRZxMxlHNNH5QopDsGdTpEhzVbxPh0s5NtFBpYrhpGq8MQQoFECMoUd_-PsYbQK24RU38QTVNHizOkXr8mM2npZn1lDg2-t3vwGmNsnt |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individualized+Prediction+of+Reading+Comprehension+Ability+Using+Gray+Matter+Volume&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Cui%2C+Zaixu&rft.au=Su%2C+Mengmeng&rft.au=Li%2C+Liangjie&rft.au=Shu%2C+Hua&rft.date=2018-05-01&rft.eissn=1460-2199&rft.volume=28&rft.issue=5&rft.spage=1656&rft_id=info:doi/10.1093%2Fcercor%2Fbhx061&rft_id=info%3Apmid%2F28334252&rft_id=info%3Apmid%2F28334252&rft.externalDocID=28334252 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2199&client=summon |