Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume

Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical featu...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) Vol. 28; no. 5; p. 1656
Main Authors: Cui, Zaixu, Su, Mengmeng, Li, Liangjie, Shu, Hua, Gong, Gaolang
Format: Journal Article
Language:English
Published: United States 01.05.2018
Subjects:
ISSN:1460-2199, 1460-2199
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.
AbstractList Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.
Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.
Author Gong, Gaolang
Li, Liangjie
Shu, Hua
Cui, Zaixu
Su, Mengmeng
Author_xml – sequence: 1
  givenname: Zaixu
  surname: Cui
  fullname: Cui, Zaixu
  organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Mengmeng
  surname: Su
  fullname: Su, Mengmeng
  organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Liangjie
  surname: Li
  fullname: Li, Liangjie
  organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
– sequence: 4
  givenname: Hua
  surname: Shu
  fullname: Shu, Hua
  organization: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
– sequence: 5
  givenname: Gaolang
  surname: Gong
  fullname: Gong, Gaolang
  organization: Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28334252$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLw0AYxBep2IcevUqOXmL3kWyyx1JsLVQUtV7DPr7YlSRbdxOx_vWmWMHTDMyPgZkxGjSuAYQuCb4hWLCpBq-dn6rtF-bkBI1IwnFMiRCDf36IxiG8Y0wymtIzNKQ5Y0lvR-h51Rj7aU0nK_sNJnr0YKxurWsiV0ZPII1t3qK5q3cettCEQzBTtrLtPtqEQ7b0ch_dy7YFH726qqvhHJ2WsgpwcdQJ2ixuX-Z38fphuZrP1rFOKG5jJijmDOuSq7KEvMxzkeFEKcZzJVJOuOn30VITmdFMqp5KZKpTwTQ1KSFAJ-j6t3fn3UcHoS1qGzRUlWzAdaEgeU4oZ0SQHr06op2qwRQ7b2vp98XfEfQH-6lihg
CitedBy_id crossref_primary_10_1016_j_pnpbp_2020_110192
crossref_primary_10_1016_j_bpsc_2022_12_002
crossref_primary_10_1007_s11682_018_9960_7
crossref_primary_10_1007_s11682_021_00574_w
crossref_primary_10_1016_j_jad_2025_02_020
crossref_primary_10_3390_e21100995
crossref_primary_10_1016_j_neuroimage_2020_116966
crossref_primary_10_1016_j_bpsc_2023_05_002
crossref_primary_10_1007_s00429_018_1651_z
crossref_primary_10_1038_s41598_020_64720_y
crossref_primary_10_3389_fnins_2022_1038514
crossref_primary_10_3758_s13415_025_01312_1
crossref_primary_10_1002_hbm_25303
crossref_primary_10_1016_j_bbr_2020_112605
crossref_primary_10_1002_hbm_70191
crossref_primary_10_1093_cercor_bhae121
crossref_primary_10_1016_j_biopsych_2020_02_016
crossref_primary_10_1162_imag_a_00219
crossref_primary_10_1002_hbm_26753
crossref_primary_10_1109_JBHI_2021_3139701
crossref_primary_10_1109_TAFFC_2022_3181671
crossref_primary_10_1093_gigascience_giaf082
crossref_primary_10_1016_j_ynirp_2022_100127
crossref_primary_10_3389_fneur_2019_00668
crossref_primary_10_1016_j_neuroscience_2018_05_052
crossref_primary_10_1038_s41583_022_00584_7
crossref_primary_10_1016_j_neuroimage_2018_06_001
crossref_primary_10_1002_advs_202307540
crossref_primary_10_1002_hbm_25215
crossref_primary_10_1007_s11357_023_00934_y
crossref_primary_10_1093_cercor_bhac269
crossref_primary_10_1017_S0033291718002763
crossref_primary_10_1016_j_appet_2023_107069
crossref_primary_10_1038_s41598_023_49538_8
crossref_primary_10_1093_scan_nsz020
crossref_primary_10_1016_j_cortex_2022_06_019
crossref_primary_10_1002_jnr_24951
crossref_primary_10_1186_s12916_024_03784_3
crossref_primary_10_1016_j_ijchp_2024_100541
crossref_primary_10_1007_s11682_021_00457_0
crossref_primary_10_1109_MSP_2022_3155951
crossref_primary_10_1002_hbm_26218
crossref_primary_10_1016_j_bbr_2023_114283
crossref_primary_10_1016_j_neuroimage_2024_120804
crossref_primary_10_3389_fnins_2022_920150
crossref_primary_10_1016_j_nicl_2020_102439
crossref_primary_10_1016_j_neuroscience_2018_10_036
crossref_primary_10_1007_s00256_023_04301_y
crossref_primary_10_1109_TNSRE_2020_3007324
crossref_primary_10_1111_adb_12705
crossref_primary_10_1016_j_neuroimage_2023_119911
crossref_primary_10_1016_j_neuroscience_2023_08_017
crossref_primary_10_1007_s11682_024_00856_z
crossref_primary_10_1109_JBHI_2023_3240508
crossref_primary_10_7554_eLife_53060
crossref_primary_10_1109_JBHI_2023_3307578
crossref_primary_10_1109_TCDS_2021_3101643
crossref_primary_10_1016_j_neuroimage_2021_118224
crossref_primary_10_1038_s41598_023_33199_8
crossref_primary_10_1016_j_dcn_2022_101098
crossref_primary_10_1002_hbm_24503
crossref_primary_10_1016_j_bbr_2024_115144
crossref_primary_10_1093_cercor_bhac006
crossref_primary_10_1148_ryai_2021200171
crossref_primary_10_7554_eLife_82088
crossref_primary_10_1073_pnas_2110416119
crossref_primary_10_1016_j_neuron_2020_01_029
crossref_primary_10_1016_j_neuroimage_2019_116065
crossref_primary_10_1007_s11682_022_00656_3
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/cercor/bhx061
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2199
ExternalDocumentID 28334252
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIAAA NIH HHS
  grantid: U01 AA020912
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
1TH
29B
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
CDBKE
CGR
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
NU-
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCN
TEORI
TJX
TLC
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
7X8
ID FETCH-LOGICAL-c420t-3920630cf6bffe8f889704bb368b95616d0932fc1a727ab6bf4a5c593c2d511e2
IEDL.DBID 7X8
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431890800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2199
IngestDate Thu Oct 02 05:41:47 EDT 2025
Mon Jul 21 05:51:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-3920630cf6bffe8f889704bb368b95616d0932fc1a727ab6bf4a5c593c2d511e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/cercor/article-pdf/28/5/1656/29154107/bhx061.pdf
PMID 28334252
PQID 1881263191
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1881263191
pubmed_primary_28334252
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cerebral cortex (New York, N.Y. 1991)
PublicationTitleAlternate Cereb Cortex
PublicationYear 2018
SSID ssj0017252
Score 2.5311968
Snippet Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1656
SubjectTerms Comprehension - physiology
Connectome
Datasets as Topic - statistics & numerical data
Female
Gray Matter - diagnostic imaging
Gray Matter - physiology
Humans
Individuality
Magnetic Resonance Imaging
Male
Predictive Value of Tests
Reading
Sex Characteristics
Title Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume
URI https://www.ncbi.nlm.nih.gov/pubmed/28334252
https://www.proquest.com/docview/1881263191
Volume 28
WOSCitedRecordID wos000431890800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uinjx0fqoL1YQb6FJNo_NSYr4OrQUfNBb2CftwaSmVay_3tnN1p4EwUsum0CYnZn9ZuebGYQuWBxxLWPmZTqhpiRHe5xIMDwekISLSDKm7bCJtN-nw2E2cBduU0erXPhE66hlKcwdeSegcBQloDDB1eTNM1OjTHbVjdBYRQ0CUMZodTpcZhHS0E7cAWfge2CZmeuxCUF8R6gKorsOH336SfA7urSnzO32f_9vB205fIm7tULsohVVNFGrW0Bs_TrHl9gyPu1VehNt9FxivYUeH34Ks8ZfSuJBZZbMpuFSY8e0x8Z5VGpkOO-w0LW82jm2rAN8V7E57tlunfjFurw99Hx783R977l5C56IQn_mAVQyHbiETrjWimpKs9SPOCcJ5ab-NZEguVCLgAHoYRzeilgs4oyIUAJuU-E-WivKQh0iHApOshgkwiiPGI-4SmWiNIl0BiG3Vm10vpBiDvpskhSsUOX7NF_KsY0O6q3IJ3XjjRygEAEfEx794etjtAnYhtbcxBPU0GDN6hSti4_ZeFqdWUWBZ3_Q-wZ0A8pu
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individualized+Prediction+of+Reading+Comprehension+Ability+Using+Gray+Matter+Volume&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Cui%2C+Zaixu&rft.au=Su%2C+Mengmeng&rft.au=Li%2C+Liangjie&rft.au=Shu%2C+Hua&rft.date=2018-05-01&rft.issn=1460-2199&rft.eissn=1460-2199&rft.volume=28&rft.issue=5&rft.spage=1656&rft_id=info:doi/10.1093%2Fcercor%2Fbhx061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2199&client=summon