A next-generation IoT-based collaborative framework for electronics assembly

In today’s dynamic manufacturing environments, the adoption of virtual reality (VR)-based simulation technologies to help in product and process design activities is becoming more widespread. With the onset of the next IT-oriented revolution involving global cyber manufacturing practices, the recent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced manufacturing technology Ročník 96; číslo 1-4; s. 39 - 52
Hlavní autoři: Krishnamurthy, Rajesh, Cecil, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.04.2018
Springer Nature B.V
Témata:
ISSN:0268-3768, 1433-3015
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In today’s dynamic manufacturing environments, the adoption of virtual reality (VR)-based simulation technologies to help in product and process design activities is becoming more widespread. With the onset of the next IT-oriented revolution involving global cyber manufacturing practices, the recent emergence of Internet of things (IoT)-related technologies holds significant promise in ushering an era of seamless information exchange which will provide a robust foundation for the next generation of smart manufacturing frameworks dependent on cyber physical system (CPS)-based principles, approaches, and technologies. In this paper, we present a broad framework for IoT-based collaborations involving the adoption of VR-based analysis environments networked with other cyber physical components. The process context for this VR-centered approach is electronics assembly, which involves the assembly of printed circuit boards. In such manufacturing contexts, it is essential to have a seamless flow of data/information among the various cyber physical components to ensure an agile collaborative strategy which can accommodate changing customer needs. VR-based simulation environments play a key role in this framework which supports multiple users collaborating using haptic interfaces and next-generation network technologies. The simulation outcomes and production data from physical shop floors can be compared and analyzed using this IoT framework and approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-017-1561-x