Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem

In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 61; číslo 2; s. 340 - 354
Hlavní autoři: Ziniel, J., Schniter, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, AMP-MMV, is capable of exploiting temporal correlations in the amplitudes of non-zero coefficients, and provides soft estimates of the signal vectors as well as the underlying support. Central to the proposed approach is an extension of recently developed approximate message passing techniques to the amplitude-correlated MMV setting. Aided by these techniques, AMP-MMV offers a computational complexity that is linear in all problem dimensions. In order to allow for automatic parameter tuning, an expectation-maximization algorithm that complements AMP-MMV is described. Finally, a detailed numerical study demonstrates the power of the proposed approach and its particular suitability for application to high-dimensional problems.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2012.2222382