Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem
In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, A...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 61; no. 2; pp. 340 - 354 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.01.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, AMP-MMV, is capable of exploiting temporal correlations in the amplitudes of non-zero coefficients, and provides soft estimates of the signal vectors as well as the underlying support. Central to the proposed approach is an extension of recently developed approximate message passing techniques to the amplitude-correlated MMV setting. Aided by these techniques, AMP-MMV offers a computational complexity that is linear in all problem dimensions. In order to allow for automatic parameter tuning, an expectation-maximization algorithm that complements AMP-MMV is described. Finally, a detailed numerical study demonstrates the power of the proposed approach and its particular suitability for application to high-dimensional problems. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2012.2222382 |