Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem

In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 61; H. 2; S. 340 - 354
Hauptverfasser: Ziniel, J., Schniter, P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, AMP-MMV, is capable of exploiting temporal correlations in the amplitudes of non-zero coefficients, and provides soft estimates of the signal vectors as well as the underlying support. Central to the proposed approach is an extension of recently developed approximate message passing techniques to the amplitude-correlated MMV setting. Aided by these techniques, AMP-MMV offers a computational complexity that is linear in all problem dimensions. In order to allow for automatic parameter tuning, an expectation-maximization algorithm that complements AMP-MMV is described. Finally, a detailed numerical study demonstrates the power of the proposed approach and its particular suitability for application to high-dimensional problems.
AbstractList In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, AMP-MMV, is capable of exploiting temporal correlations in the amplitudes of non-zero coefficients, and provides soft estimates of the signal vectors as well as the underlying support. Central to the proposed approach is an extension of recently developed approximate message passing techniques to the amplitude-correlated MMV setting. Aided by these techniques, AMP-MMV offers a computational complexity that is linear in all problem dimensions. In order to allow for automatic parameter tuning, an expectation-maximization algorithm that complements AMP-MMV is described. Finally, a detailed numerical study demonstrates the power of the proposed approach and its particular suitability for application to high-dimensional problems.
Author Schniter, P.
Ziniel, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Ziniel
  fullname: Ziniel, J.
  email: zinielj@ece.osu.edu
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
– sequence: 2
  givenname: P.
  surname: Schniter
  fullname: Schniter, P.
  email: schniter@ece.osu.edu
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26902333$$DView record in Pascal Francis
BookMark eNp9kUFr3DAQRkVJocm290IvhlLoxVuNLEvWsSRpE0hIoGnpzSjjcaMgy1tJPvTfV2aXHHLIXPQd3pMYfSfsKMyBGHsPfAvAzZe7H7dbwUFsRZmmE6_YMRgJNZdaHZXM26ZuO_37DTtJ6ZFzkNKoY3ZzPo4OHYVcXbg_D_WZmygkNwfrq8swUqSAVLlQ5Qeqrhef3c6XQDYtkaZV-0WY51jdxvne0_SWvR6tT_TucG7Yz2_nd6cX9dXN98vTr1c1SsFzDaPAeyVAKSxRWuzUiN0gjcQB1ICcCDQaIKFarTgMOGhhwWhqBytJNRv2eX_vLs5_F0q5n1xC8t4GmpfUg-ga1Tacr-jHZ-jjvMSy4Eq1GoQG0xbq04GyCa0fow3oUr-LbrLxXy-U4aIps2F8z2GcU4o0PiHA-7WJvjTRr030hyaKop4p6LLN5ZNztM6_JH7Yi46Int5RjeCam-Y_JBGWeQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_MSP_2018_2844952
crossref_primary_10_1109_COMST_2017_2664421
crossref_primary_10_1109_TWC_2021_3067903
crossref_primary_10_3390_rs10122066
crossref_primary_10_3389_fams_2023_1205959
crossref_primary_10_1109_TCOMM_2022_3153957
crossref_primary_10_1109_TSP_2014_2329272
crossref_primary_10_1109_TVT_2024_3386912
crossref_primary_10_1016_j_sigpro_2014_10_010
crossref_primary_10_3390_e21030247
crossref_primary_10_1109_TSP_2020_3007962
crossref_primary_10_1088_1742_5468_2016_06_063304
crossref_primary_10_1109_JSAC_2020_3018802
crossref_primary_10_1109_TSP_2015_2451071
crossref_primary_10_1109_TMI_2020_3013100
crossref_primary_10_1109_TWC_2022_3179600
crossref_primary_10_1109_TSP_2015_2403277
crossref_primary_10_1109_TWC_2019_2920823
crossref_primary_10_1088_1742_5468_2015_05_P05029
crossref_primary_10_1007_s11045_020_00743_y
crossref_primary_10_1109_LWC_2022_3200123
crossref_primary_10_1109_TSP_2021_3112931
crossref_primary_10_1109_JSAC_2021_3118348
crossref_primary_10_1109_TVT_2024_3377716
crossref_primary_10_1109_TWC_2024_3417612
crossref_primary_10_3390_s18072331
crossref_primary_10_1109_ACCESS_2017_2710179
crossref_primary_10_1109_TSP_2013_2273196
crossref_primary_10_1109_TSP_2023_3301137
crossref_primary_10_1109_TWC_2022_3192927
crossref_primary_10_1109_JSAC_2020_3019722
crossref_primary_10_1007_s11276_023_03366_w
crossref_primary_10_1109_TSP_2021_3137599
crossref_primary_10_1109_TSP_2016_2646663
crossref_primary_10_1016_j_sigpro_2014_01_002
crossref_primary_10_1109_TCOMM_2022_3175178
crossref_primary_10_1109_TSIPN_2016_2612120
crossref_primary_10_1109_TSP_2017_2764855
crossref_primary_10_1109_TSP_2018_2818082
crossref_primary_10_1109_TCOMM_2018_2866559
crossref_primary_10_1109_LGRS_2016_2537544
crossref_primary_10_1109_TCOMM_2022_3190904
crossref_primary_10_1109_TSP_2014_2318138
crossref_primary_10_1109_TWC_2023_3326952
crossref_primary_10_1016_j_image_2015_06_011
crossref_primary_10_1109_TSP_2021_3115938
crossref_primary_10_3390_s22010343
crossref_primary_10_1109_ACCESS_2019_2920861
crossref_primary_10_1109_TVT_2022_3198126
crossref_primary_10_1109_ACCESS_2018_2886471
crossref_primary_10_1109_TIM_2022_3197804
crossref_primary_10_1109_TWC_2021_3060451
crossref_primary_10_1109_TSP_2017_2713759
crossref_primary_10_1109_TSP_2017_2725220
crossref_primary_10_1186_1687_4153_2014_5
crossref_primary_10_1109_TWC_2024_3514210
crossref_primary_10_1016_j_dsp_2018_01_015
crossref_primary_10_1109_TNNLS_2022_3154108
crossref_primary_10_1016_j_sigpro_2019_04_001
crossref_primary_10_1109_TCOMM_2021_3062389
crossref_primary_10_1007_s12561_024_09428_7
crossref_primary_10_1109_TSP_2018_2795540
crossref_primary_10_1109_TSP_2023_3269151
crossref_primary_10_1155_2018_5965020
crossref_primary_10_3390_s20164609
crossref_primary_10_1016_j_sigpro_2015_04_009
crossref_primary_10_1109_ACCESS_2018_2890146
crossref_primary_10_1109_TSP_2018_2866844
crossref_primary_10_1109_LWC_2020_3042826
crossref_primary_10_1109_TWC_2021_3100500
crossref_primary_10_1109_JSTSP_2018_2850754
crossref_primary_10_1109_TSP_2021_3100305
crossref_primary_10_1186_s13639_016_0025_y
crossref_primary_10_1038_s41598_021_03323_7
crossref_primary_10_1109_TGRS_2015_2484619
crossref_primary_10_1109_TCOMM_2024_3475270
crossref_primary_10_1109_TVT_2020_3045448
crossref_primary_10_1109_LSP_2021_3089434
crossref_primary_10_1109_ACCESS_2019_2920724
crossref_primary_10_1109_LSP_2017_2789163
crossref_primary_10_1109_TITS_2021_3128632
crossref_primary_10_1109_TWC_2022_3209667
crossref_primary_10_1109_TWC_2021_3121066
crossref_primary_10_1109_TWC_2022_3149111
crossref_primary_10_1109_TWC_2024_3362933
Cites_doi 10.1109/TSP.2005.849172
10.1109/TIT.2010.2043876
10.1109/18.910572
10.1109/TIT.2005.862083
10.1109/ACSSC.2009.5470133
10.1109/ICIP.2008.4711899
10.1109/TSP.2007.894265
10.1109/79.543975
10.1109/ITWKSPS.2010.5503193
10.1023/A:1026501619075
10.1109/MSP.2007.914731
10.1073/pnas.0909892106
10.1109/LSP.2009.2028107
10.1109/TIT.2012.2189196
10.1109/JSTSP.2011.2159773
10.1002/nbm.1046
10.1109/ISIT.2011.6033942
10.1162/089976601750541769
10.1109/TIT.2010.2094817
10.1016/j.sigpro.2005.05.031
10.1109/ICASSP.2011.5947212
10.1016/j.sigpro.2005.05.030
10.1109/ICBBE.2009.5163167
10.1109/MSP.2010.938028
10.1111/j.2517-6161.1977.tb01600.x
10.1109/ICASSP.2011.5947237
10.1109/TSP.2010.2051150
10.1109/ACSSC.2010.5757677
10.1109/CISS.2010.5464768
10.1109/TIT.2009.2030471
10.1109/ICASSP.2010.5496269
10.1109/TIT.2006.871582
10.1109/TAC.1972.1100034
10.1109/CISS.2010.5464920
10.1109/TSP.2009.2027773
10.1109/JPROC.2010.2042415
10.1109/TIT.2009.2034789
10.1109/ICDSP.2009.5201168
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2012.2222382
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 354
ExternalDocumentID 2852075321
26902333
10_1109_TSP_2012_2222382
6320709
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
H~9
ICLAB
IFJZH
VH1
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c420t-1f2cb62166c1f24ac86fc8d494cd16dc0ee17c91e2657601dcd72a197e5da4e63
IEDL.DBID RIE
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314678900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sun Sep 28 08:59:24 EDT 2025
Mon Jun 30 10:11:24 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Tue Nov 18 22:11:34 EST 2025
Sat Nov 29 04:10:26 EST 2025
Tue Aug 26 16:46:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords joint sparsity
statistical signal processing
belief propagation
expectation-maximization algorithms
Kalman filter
Signal estimation
Time correlation
Computational complexity
Approximate message passing (AMP)
Credal approach
Message passing
Signal processing
multiple measurement vector problem
Automatic tuning
Kalman filters
EM algorithm
Compressed sensing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-1f2cb62166c1f24ac86fc8d494cd16dc0ee17c91e2657601dcd72a197e5da4e63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 1257127195
PQPubID 85478
PageCount 15
ParticipantIDs proquest_journals_1257127195
ieee_primary_6320709
proquest_miscellaneous_1283653006
pascalfrancis_primary_26902333
crossref_primary_10_1109_TSP_2012_2222382
crossref_citationtrail_10_1109_TSP_2012_2222382
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
pearl (ref33) 1988
ref12
ref37
ref15
ref14
ref30
ref11
donoho (ref27) 2011
ref32
ref2
ref1
ref39
ref17
ref38
ref19
ref18
ref46
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
kim (ref16) 2011
ref29
ref8
tropp (ref10) 2006; 86
ref7
bishop (ref45) 2006
ref9
dempster (ref43) 1977; 39
ref3
ref6
ref5
rao (ref4) 1998
eubank (ref31) 2006
mackay (ref36) 2003
ref40
frey (ref34) 1998
References_xml – ident: ref5
  doi: 10.1109/TSP.2005.849172
– ident: ref24
  doi: 10.1109/TIT.2010.2043876
– ident: ref32
  doi: 10.1109/18.910572
– year: 2011
  ident: ref27
  publication-title: Accurate Prediction of Phase Transitions in Compressed Sensing Via A Connection to Minimax Denoising
– ident: ref1
  doi: 10.1109/TIT.2005.862083
– ident: ref21
  doi: 10.1109/ACSSC.2009.5470133
– ident: ref19
  doi: 10.1109/ICIP.2008.4711899
– year: 2006
  ident: ref45
  publication-title: Pattern Recognition and Machine Learning
– ident: ref15
  doi: 10.1109/TSP.2007.894265
– ident: ref44
  doi: 10.1109/79.543975
– ident: ref26
  doi: 10.1109/ITWKSPS.2010.5503193
– ident: ref35
  doi: 10.1023/A:1026501619075
– ident: ref3
  doi: 10.1109/MSP.2007.914731
– ident: ref25
  doi: 10.1073/pnas.0909892106
– ident: ref11
  doi: 10.1109/LSP.2009.2028107
– ident: ref14
  doi: 10.1109/TIT.2012.2189196
– ident: ref18
  doi: 10.1109/JSTSP.2011.2159773
– ident: ref29
  doi: 10.1002/nbm.1046
– year: 2003
  ident: ref36
  publication-title: Information Theory Inference and Learning Algorithms
– ident: ref39
  doi: 10.1109/ISIT.2011.6033942
– ident: ref46
  doi: 10.1162/089976601750541769
– ident: ref40
  doi: 10.1109/TIT.2010.2094817
– volume: 86
  start-page: 589
  year: 2006
  ident: ref10
  article-title: Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2005.05.031
– ident: ref12
  doi: 10.1109/ICASSP.2011.5947212
– ident: ref13
  doi: 10.1016/j.sigpro.2005.05.030
– year: 2006
  ident: ref31
  publication-title: A Kalman Filter Primer
– start-page: 1
  year: 1998
  ident: ref4
  article-title: Sparse solutions to linear inverse problems with multiple measurement vectors
  publication-title: Proc IEEE Digital Signal Process Workshop
– ident: ref7
  doi: 10.1109/ICBBE.2009.5163167
– year: 2011
  ident: ref16
  publication-title: Belief Propagation for Joint Sparse Recovery
– ident: ref42
  doi: 10.1109/MSP.2010.938028
– year: 1988
  ident: ref33
  publication-title: Probabilistic Reasoning in Intelligent Systems
– volume: 39
  start-page: 1
  year: 1977
  ident: ref43
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref17
  doi: 10.1109/ICASSP.2011.5947237
– ident: ref22
  doi: 10.1109/TSP.2010.2051150
– ident: ref23
  doi: 10.1109/ACSSC.2010.5757677
– ident: ref38
  doi: 10.1109/CISS.2010.5464768
– ident: ref9
  doi: 10.1109/TIT.2009.2030471
– ident: ref6
  doi: 10.1109/ICASSP.2010.5496269
– ident: ref2
  doi: 10.1109/TIT.2006.871582
– ident: ref41
  doi: 10.1109/TAC.1972.1100034
– ident: ref30
  doi: 10.1109/CISS.2010.5464920
– year: 1998
  ident: ref34
  publication-title: Adv in Neural Inf Process Syst
– ident: ref37
  doi: 10.1109/TSP.2009.2027773
– ident: ref28
  doi: 10.1109/JPROC.2010.2042415
– ident: ref8
  doi: 10.1109/TIT.2009.2034789
– ident: ref20
  doi: 10.1109/ICDSP.2009.5201168
SSID ssj0014496
Score 2.4760637
Snippet In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 340
SubjectTerms Algorithms
Applied sciences
Approximate message passing (AMP)
Approximation
Approximation algorithms
Bayesian methods
belief propagation
Complexity theory
compressed sensing
Correlation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
expectation-maximization algorithms
Inference
Information, signal and communications theory
joint sparsity
Joints
Kalman filters
Mathematical analysis
Mathematical models
Message passing
multiple measurement vector problem
Noise measurement
Sampling, quantization
Signal and communications theory
Signal, noise
statistical signal processing
Studies
Telecommunications and information theory
Tuning
Vectors
Vectors (mathematics)
Title Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem
URI https://ieeexplore.ieee.org/document/6320709
https://www.proquest.com/docview/1257127195
https://www.proquest.com/docview/1283653006
Volume 61
WOSCitedRecordID wos000314678900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a4oM--FXF01oi-CKY3uY7eRRt0YfWA6vc25KdzUKh7Envzr_fSXZvtSiCb4EkJMxMMpOZyfwAXvvGklIPkfvoK64Ndjz4RvGu66zpjGlswAI24S4u_HIZFnvwdvoLk1IqyWfpJDdLLL9d4Ta7yuZWSZLQsA_7ztnhr9YUMdC6YHGRuaC48W65C0lWYX75ZZFzuOSJzMrQy1sqqGCq5IzIuCaidAOaxR8Xc9E2Zw_-b58P4f5oVbJ3gxg8gr3UP4Z7v9UaPITPp6VYBE1kObeDf8hl_YeSHOzT7tcfu-oZWYTsfEwzZOe_XIjsW3Hws8UAQfMEvp6dXr7_yEc0BY5aVhsuOonEGGEtUlNH9LZD3-qgsRW2xSol4TCIJK3JiTIttk5GEVwybdTJqqdw0K_69AyYFxkq1KXoRNSxJRsT6RnlG48qYINqBvMdgWscS41nxIvrujw5qlATS-rMknpkyQzeTDO-D2U2_jH2MJN8GjdSewbHt3g49ZMokmGiaFdHO6bW40Fd12TfOSGdCGYGr6ZuOmI5bhL7tNrmMV5Zo-h-ev73pV_AXVlQMrJn5ggONjfb9BLu4I_N1frmuMjpTxGt5SU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFdQHv6p4ttYIvgimt_lOHqW2tNg7Dzzl3pbsbBYKsie9O_9-k-ze1mIRfAskIWFmkpnMTOYH8M5WOip156n1tqBSYUOdrQRtmkarRqlKO8xgE2Y6tYuFm-3Ah-EvTAghJ5-Fo9TMsfx6iZvkKhtrwaOEujtwNyFn9b-1hpiBlBmNKxoMgiprFtugZOHG86-zlMXFj3hSh5bfUEIZVSXlRPpVJEvT4Vn8dTVnfXP6-P92-gQe9XYl-dgJwlPYCe0zePhHtcE9-HKSy0XEiSRld9BPqbB_V5SDnG___ZHLlkSbkEz6REMyuXYiku_ZxU9mHQjNc_h2ejI_PqM9ngJFyYs1ZQ3HyBqmNcam9Gh1g7aWTmLNdI1FCMygY4FrlVJlaqwN98yZoGovgxYvYLddtuElEMsSWKgJ3jAvfR2tTIwPKVtZFA4rFCMYbwlcYl9sPGFe_Cjzo6NwZWRJmVhS9iwZwfthxs-u0MY_xu4lkg_jemqP4PAGD4f-KIzRNBFxVwdbppb9UV2V0cIzjBvm1AjeDt3xkKXIiW_DcpPGWKGViDfUq9uXfgP3z-aTi_LifPp5Hx7wjJmR_DQHsLu-2oTXcA9_rS9XV4dZZn8DJ0bobg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+High-Dimensional+Inference+in+the+Multiple+Measurement+Vector+Problem&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=ZINIEL%2C+Justin&rft.au=SCHNITER%2C+Philip&rft.date=2013-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=61&rft.issue=1-4&rft.spage=340&rft.epage=354&rft_id=info:doi/10.1109%2Ftsp.2012.2222382&rft.externalDBID=n%2Fa&rft.externalDocID=26902333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon