Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data

Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and compet...

Full description

Saved in:
Bibliographic Details
Published in:Computational and mathematical methods in medicine Vol. 2022; pp. 1 - 12
Main Authors: Li, Shanpeng, Li, Ning, Wang, Hong, Zhou, Jin, Zhou, Hua, Li, Gang
Format: Journal Article
Language:English
Published: United States Hindawi 08.02.2022
Subjects:
ISSN:1748-670X, 1748-6718, 1748-6718
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from On2 or On3 to On in various steps including numerical integration, risk set calculation, and standard error estimation, where n is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when n>104, often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).
AbstractList Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from O(n 2) or O(n 3) to O(n) in various steps including numerical integration, risk set calculation, and standard error estimation, where n is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when n > 104, often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from O(n 2) or O(n 3) to O(n) in various steps including numerical integration, risk set calculation, and standard error estimation, where n is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when n > 104, often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).
Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from On2 or On3 to On in various steps including numerical integration, risk set calculation, and standard error estimation, where n is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when n>104, often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).
Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from ( ) or ( ) to ( ) in various steps including numerical integration, risk set calculation, and standard error estimation, where is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when > 10 , often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).
Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from O(n2) or O(n3) to O(n) in various steps including numerical integration, risk set calculation, and standard error estimation, where n is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when n > 104, often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).
Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive biobank data. This paper identifies and addresses some key computational barriers in a semiparametric joint model for longitudinal and competing risk survival data. By developing and implementing customized linear scan algorithms, we reduce the computational complexities from O n 2 or O n 3 to O n in various steps including numerical integration, risk set calculation, and standard error estimation, where n is the number of subjects. Using both simulated and real-world biobank data, we demonstrate that these linear scan algorithms can speed up the existing methods by a factor of up to hundreds of thousands when n > 1 0 4 , often reducing the runtime from days to minutes. We have developed an R package, FastJM, based on the proposed algorithms for joint modeling of longitudinal and competing risk time-to-event data and made it publicly available on the Comprehensive R Archive Network (CRAN).
Author Li, Shanpeng
Zhou, Jin
Li, Ning
Zhou, Hua
Li, Gang
Wang, Hong
AuthorAffiliation 3 Department of Computational Medicine, University of California at Los Angeles, Los Angeles, CA, USA
2 Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
1 Department of Biostatistics, University of California at Los Angeles, Los Angeles, CA, USA
4 School of Mathematics and Statistics, Central South University, Changsha, China
AuthorAffiliation_xml – name: 4 School of Mathematics and Statistics, Central South University, Changsha, China
– name: 3 Department of Computational Medicine, University of California at Los Angeles, Los Angeles, CA, USA
– name: 1 Department of Biostatistics, University of California at Los Angeles, Los Angeles, CA, USA
– name: 2 Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
Author_xml – sequence: 1
  givenname: Shanpeng
  orcidid: 0000-0002-0724-4564
  surname: Li
  fullname: Li, Shanpeng
  organization: Department of BiostatisticsUniversity of California at Los AngelesLos AngelesCAUSAucla.edu
– sequence: 2
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Department of MedicineUniversity of California at Los AngelesLos AngelesCAUSAucla.edu
– sequence: 3
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: School of Mathematics and StatisticsCentral South UniversityChangshaChinacsu.edu.cn
– sequence: 4
  givenname: Jin
  orcidid: 0000-0001-7983-0274
  surname: Zhou
  fullname: Zhou, Jin
  organization: Department of BiostatisticsUniversity of California at Los AngelesLos AngelesCAUSAucla.edu
– sequence: 5
  givenname: Hua
  orcidid: 0000-0003-1320-7118
  surname: Zhou
  fullname: Zhou, Hua
  organization: Department of BiostatisticsUniversity of California at Los AngelesLos AngelesCAUSAucla.edu
– sequence: 6
  givenname: Gang
  orcidid: 0000-0002-4753-9420
  surname: Li
  fullname: Li, Gang
  organization: Department of BiostatisticsUniversity of California at Los AngelesLos AngelesCAUSAucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35178111$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNU7IfeeS25FOzafMxMMl4I67ZqZYvgB3oXMplk92gmGSfZir_FP2va3RYV9CoHznOel_Aeor0Qg0XoISVPKa3rE0YYO6G8YS3ld9ABFZWcNYLKvduZfN5Hhyl9IaSmoqb30D4vg6SUHqCfZ86BARsynvtVnCCvh4R16PH5MHo7lIXOEAOODmv83g4w6kkPNk9g8JsI5e4i9tZjFye8jGEFedND0P7asYjDaDOEFX4H6Ss-1Vk_w59KBp6PowdzrU44R3yhU4JLi19A7HTYovfRXad9sg927xH6-PLsw-L1bPn21flivpyZipE8o52tXSN6zo1o64obrlnvmGOVFMzRphO2q0XliOyp0Mw601CpBXfEdNZIy4_Q86133HSD7U3586S9GicY9PRDRQ3qz02AtVrFSyVl1bRtUwSPd4IpftvYlNUAyVjvdbBxkxRrOGmpbEhb0Ee_Z92G3DRSALYFzBRTmqxTBrYVlGjwihJ1Vbu6ql3tai9Hx38d3Xj_gT_Z4msIvf4O_6d_AS1LvYc
CitedBy_id crossref_primary_10_15446_rce_v46n2_98005
Cites_doi 10.18637/jss.v078.i02
10.1016/S0140-6736(12)60404-8
10.2307/3318671
10.1111/j.1467-985X.2007.00514.x
10.1186/s12874-016-0272-6
10.18637/jss.v035.i09
10.1016/j.jclinepi.2015.09.016
10.1111/rssa.12348
10.1201/9781315374871
10.1164/ajrccm.152.1.7599868
10.1002/sim.7209
10.1111/j.0006-341X.2004.00173.x
10.1093/biostatistics/1.4.465
10.1111/j.0006-341X.2002.00742.x
10.1198/016214507000000400
10.1007/s10985-004-0381-0
10.1214/009053605000000480
10.1177/0962280217729573
10.1016/j.csda.2011.09.007
10.1111/j.1541-0420.2010.01546.x
10.1177/1536867X1301300112
10.1111/j.1541-0420.2007.00952.x
10.1201/b12208
10.1371/journal.pmed.1001779
10.1007/978-3-030-51455-6_20
ContentType Journal Article
Copyright Copyright © 2022 Shanpeng Li et al.
Copyright © 2022 Shanpeng Li et al. 2022
Copyright_xml – notice: Copyright © 2022 Shanpeng Li et al.
– notice: Copyright © 2022 Shanpeng Li et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1155/2022/1362913
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Maex, Reinoud
Editor_xml – sequence: 1
  givenname: Reinoud
  surname: Maex
  fullname: Maex, Reinoud
EndPage 12
ExternalDocumentID PMC8846996
35178111
10_1155_2022_1362913
Genre Journal Article
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  grantid: R21HL150374
– fundername: National Institutes of Health
  grantid: P01AT003960; UL1TR000124-02; P30 CA-16042
– fundername: National Human Genome Research Institute
  grantid: R01HG006139
– fundername: National Institute of General Medical Sciences
  grantid: R35GM141798
– fundername: National Institute of Diabetes and Digestive and Kidney Disease
  grantid: K01DK106116
– fundername: National Science Foundation
  grantid: DMS-2054253
– fundername: NHLBI NIH HHS
  grantid: R21 HL150374
– fundername: NIGMS NIH HHS
  grantid: R35 GM141798
– fundername: NCATS NIH HHS
  grantid: UL1 TR001881
– fundername: NCI NIH HHS
  grantid: P50 CA211015
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NCCIH NIH HHS
  grantid: P01 AT003960
– fundername: NCATS NIH HHS
  grantid: UL1 TR000124
– fundername: NIDDK NIH HHS
  grantid: K01 DK106116
– fundername: NHGRI NIH HHS
  grantid: R01 HG006139
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
PGMZT
7X7
88E
8FE
8FG
8FI
8FJ
ABJCF
ABUWG
AFKRA
AWYRJ
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
FYUFA
HCIFZ
HF~
HMCUK
IPNFZ
L6V
M1P
M7S
NPM
O5S
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
RIG
UKHRP
7X8
5PM
ID FETCH-LOGICAL-c420t-1be5f67d33c79543c3a2df2f24872f16b7eb574f08d17a2efc618a73f0cbec8e3
IEDL.DBID RHX
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774913900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-670X
1748-6718
IngestDate Tue Nov 04 01:38:53 EST 2025
Fri Sep 05 08:39:20 EDT 2025
Mon Jul 21 06:07:52 EDT 2025
Tue Nov 18 22:29:50 EST 2025
Sat Nov 29 01:39:21 EST 2025
Sun Jun 02 18:52:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Shanpeng Li et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-1be5f67d33c79543c3a2df2f24872f16b7eb574f08d17a2efc618a73f0cbec8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Reinoud Maex
ORCID 0000-0003-1320-7118
0000-0001-7983-0274
0000-0002-0724-4564
0000-0002-4753-9420
OpenAccessLink https://dx.doi.org/10.1155/2022/1362913
PMID 35178111
PQID 2630918609
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8846996
proquest_miscellaneous_2630918609
pubmed_primary_35178111
crossref_citationtrail_10_1155_2022_1362913
crossref_primary_10_1155_2022_1362913
hindawi_primary_10_1155_2022_1362913
PublicationCentury 2000
PublicationDate 2022-02-08
PublicationDateYYYYMMDD 2022-02-08
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2022
Publisher Hindawi
Publisher_xml – name: Hindawi
References M. Yu (14) 2008; 103
D. Zeng (24) 2005; 11
D. Bates (28) 2007; 2
C. Xu (33) 2020; 93
J. F. Bobb (36) 2021
D. Rizopoulos (2) 2010; 35
F. G. Garre (11) 2008; 171
A. Sattar (5) 2019; 28
M. Sudell (17) 2016; 16
A. B. Owen (34) 2013
D. Rizopoulos (13) 2011; 67
G. T. O'Connor (31) 1995; 152
X. Song (7) 2002; 58
10
R. Elashoff (22) 2016
35
R. M. Elashoff (1) 2017
C. Sudlow (19) 2015; 12
P. Philipson (29) 2018; 1
15
C. Proust-Lima (12)
18
S. Li (38)
D. Rizopoulos (27) 2012; 56
D. Rizopoulos (32)
H. Lin (23) 2004; 60
W. H. Press (26) 2007
D. Zeng (25) 2005; 33
A. M. Butler (21) 2021
D. Rizopoulos (16) 2012
M. J. Crowther (6) 2013; 13
A. Tsiatis (8) 2004; 14
D. P. Tashkin (30) 2012; 13
C. Y. Wang (9) 2006; 16
R. Henderson (4) 2000; 1
R. M. Elashoff (3) 2008; 64
20
S. Li (37) 2022; 1
References_xml – volume-title: Monte Carlo Theory, Methods and Examples
  year: 2013
  ident: 34
– ident: 12
  article-title: Estimation of extended mixed models using latent classes and latent processes: the r package lcmm
  doi: 10.18637/jss.v078.i02
– ident: 18
  doi: 10.1016/S0140-6736(12)60404-8
– ident: 35
  doi: 10.2307/3318671
– volume: 171
  start-page: 299
  issue: 1
  year: 2008
  ident: 11
  article-title: A joint latent class changepoint model to improve the prediction of time to graft failure
  publication-title: Journal of the Royal Statistical Society: Series A
  doi: 10.1111/j.1467-985X.2007.00514.x
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: 17
  article-title: Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-016-0272-6
– volume: 35
  start-page: 1
  issue: 9
  year: 2010
  ident: 2
  article-title: JM: an R package for the joint modelling of longitudinal and time-to-event data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v035.i09
– ident: 20
  doi: 10.1016/j.jclinepi.2015.09.016
– ident: 15
  doi: 10.1111/rssa.12348
– volume: 13
  start-page: 1
  issue: 1
  year: 2012
  ident: 30
  article-title: Comparison of the variability of the annual rates of change in FEV1 determined from serial measurements of the pre-versus post-bronchodilator FEV1 over 5 years in mild to moderate COPD: results of the lung health study
  publication-title: Respiratory Research
– volume: 1
  start-page: 5
  issue: 2
  year: 2018
  ident: 29
  article-title: joineR: joint modelling of repeated measurements and time-to-event data
  publication-title: R Package Version
– volume-title: Joint Modeling of Longitudinal and Time-to-Event Data
  year: 2016
  ident: 22
  doi: 10.1201/9781315374871
– volume: 152
  start-page: 87
  issue: 1
  year: 1995
  ident: 31
  article-title: A prospective longitudinal study of methacholine airway responsiveness as a predictor of pulmonary-function decline: the normative aging study
  publication-title: American Journal of Respiratory and Critical Care Medicine
  doi: 10.1164/ajrccm.152.1.7599868
– ident: 10
  doi: 10.1002/sim.7209
– volume: 60
  start-page: 295
  issue: 2
  year: 2004
  ident: 23
  article-title: Latent pattern mixture models for informative intermittent missing data in longitudinal studies
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00173.x
– volume: 1
  start-page: 465
  issue: 4
  year: 2000
  ident: 4
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/1.4.465
– volume: 58
  start-page: 742
  issue: 4
  year: 2002
  ident: 7
  article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00742.x
– volume: 103
  start-page: 178
  issue: 481
  year: 2008
  ident: 14
  article-title: Individual prediction in prostate cancer studies using a joint longitudinal survival–cure model
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000400
– volume: 14
  start-page: 809
  issue: 3
  year: 2004
  ident: 8
  article-title: Joint modeling of longitudinal and time-to-event data: an overview
  publication-title: Statistica Sinica
– volume: 11
  start-page: 151
  year: 2005
  ident: 24
  article-title: Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-004-0381-0
– volume: 33
  start-page: 2132
  issue: 5
  year: 2005
  ident: 25
  article-title: Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time
  publication-title: The Annals of Statistics
  doi: 10.1214/009053605000000480
– volume: 93
  issue: 2
  year: 2020
  ident: 33
  article-title: Semi-parametric joint modeling of survival and longitudinal data: the r package JSM
  publication-title: Journal of Statistical Software
– volume: 1
  start-page: 1
  year: 2022
  ident: 37
  article-title: FastJM: semi-parametric joint modeling of longitudinal and survival data
  publication-title: R Package Version
– volume: 28
  start-page: 486
  issue: 2
  year: 2019
  ident: 5
  article-title: Joint modeling of longitudinal and survival data with a covariate subject to a limit of detection
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280217729573
– volume: 56
  start-page: 491
  issue: 3
  year: 2012
  ident: 27
  article-title: Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2011.09.007
– volume: 67
  start-page: 819
  issue: 3
  year: 2011
  ident: 13
  article-title: Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01546.x
– volume: 13
  start-page: 165
  issue: 1
  year: 2013
  ident: 6
  article-title: Joint modeling of longitudinal and survival data
  publication-title: The Stata Journal
  doi: 10.1177/1536867X1301300112
– volume: 2
  start-page: 74
  issue: 1
  year: 2007
  ident: 28
  article-title: The lme 4 package
  publication-title: R Package Version
– ident: 32
  article-title: The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC
– volume-title: Numerical Recipes
  year: 2007
  ident: 26
– volume: 64
  start-page: 762
  issue: 3
  year: 2008
  ident: 3
  article-title: A joint model for longitudinal measurements and survival data in the presence of multiple failure types
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00952.x
– volume: 16
  start-page: 235
  issue: 1
  year: 2006
  ident: 9
  article-title: Corrected score estimator for joint modeling of longitudinal and failure time data
  publication-title: Statistica Sinica
– volume-title: Joint Modeling of Longitudinal and Time-to-Event Data, volume 151 of Monographs on Statistics and Applied Probability
  year: 2017
  ident: 1
– year: 2021
  ident: 36
  article-title: turboEM: a suite of convergence acceleration schemes for EM, MM and other fixed-point algorithms
– volume-title: Joint Models for Longitudinal and Time-to-Event Data: With Applications in R
  year: 2012
  ident: 16
  doi: 10.1201/b12208
– ident: 38
  article-title: Efficient algorithms and implementation of a semiparametric joint model for longitudinal and competing risks data: with applications to massive biobank data
– volume: 12
  issue: 3, article e1001779
  year: 2015
  ident: 19
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Medicine
  doi: 10.1371/journal.pmed.1001779
– start-page: 243
  volume-title: Databases for Pharmacoepidemiological Research
  year: 2021
  ident: 21
  article-title: IBM Marketscan research databases
  doi: 10.1007/978-3-030-51455-6_20
SSID ssj0051751
Score 2.272851
Snippet Semiparametric joint models of longitudinal and competing risk data are computationally costly, and their current implementations do not scale well to massive...
SourceID pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Biological Specimen Banks - statistics & numerical data
Bronchodilator Agents - therapeutic use
Computational Biology
Computer Simulation
Data Interpretation, Statistical
Disease Progression
Humans
Longitudinal Studies
Models, Statistical
Primary Health Care - statistics & numerical data
Pulmonary Disease, Chronic Obstructive - physiopathology
Pulmonary Disease, Chronic Obstructive - therapy
Risk Assessment
Smoking Cessation - statistics & numerical data
Software
Title Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data
URI https://dx.doi.org/10.1155/2022/1362913
https://www.ncbi.nlm.nih.gov/pubmed/35178111
https://www.proquest.com/docview/2630918609
https://pubmed.ncbi.nlm.nih.gov/PMC8846996
Volume 2022
WOSCitedRecordID wos000774913900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0051751
  issn: 1748-670X
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYA0aqXqk-6pUVTiZ6qqBs_YofbloJQBQjRV26R17HZiN2kItn2x_TPduxkVywtKpdIUWacKGN7vtGM5yNkl3NXGKdZRE1sIm4cjVJDGS68MaJdQR0PXATfjuXpqcqy9KxvktT8ncJHb-fDc_o-xo029ey060r4yq3zo2yx4Qr0gHF37lFFiRxmi_r2G7ornufexIe8v8p_Acub9ZHXHM7hI_KwR4ow6kz7mKzZ6gm5f9Lnwp-S3weh-wMqw2h6UWOQP5k1oKsCQsffWX-oqILagYbPdlb6Nt8zz6Bl4FNdop4nQpsCwlY4rj1v0bzwHFlhjP2Ap9GvwXnZXMJH3eo9-I7vgNG1lDe0NZwg_MYtEz6UuDVUnegz8vXw4Mv-UdRTLUQGjdFG8dgKl8iCMSNTwZlhmhaOOorxDHVxMpZ2LCR3Q1XEUlPrTBIrLZkbGpwEyrLnZKOqK_uCgFRcY5CkhGCc4y9MTZIUiqOKRXTF1YC8W5ghN30fck-HMc1DPCJE7o2W90YbkLdL6R9d_41b5HZ7i_5H7M3C3DmuI58c0ZWt501OE4bQSSXDdEC2OvMvR2I4xRQ6hQGRKxNjKeB7dK8-qcpJ6NWtEN9hSPnybp-3TR7421AVrl6RjfZqbl-TTfOzLZurHbJO-RleZaZ2wgr4AzcS_rM
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Algorithms+and+Implementation+of+a+Semiparametric+Joint+Model+for+Longitudinal+and+Competing+Risk+Data%3A+With+Applications+to+Massive+Biobank+Data&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Li%2C+Shanpeng&rft.au=Li%2C+Ning&rft.au=Wang%2C+Hong&rft.au=Zhou%2C+Jin&rft.date=2022-02-08&rft.eissn=1748-6718&rft.volume=2022&rft.spage=1362913&rft_id=info:doi/10.1155%2F2022%2F1362913&rft_id=info%3Apmid%2F35178111&rft.externalDocID=35178111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon