Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications

Engineered and natural systems often involve irregular and self-similar geometric forms, which is called fractal geometry. For instance, precision machining produces a visually flat surface, while which looks like a rough mountain in the nanometer scale under the microscope. Human heart consists of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The European physical journal. B, Condensed matter physics Ročník 89; číslo 8; s. 1 - 16
Hlavní autori: Chen, Yun, Yang, Hui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2016
Springer
Springer Nature B.V
Predmet:
ISSN:1434-6028, 1434-6036
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Engineered and natural systems often involve irregular and self-similar geometric forms, which is called fractal geometry. For instance, precision machining produces a visually flat surface, while which looks like a rough mountain in the nanometer scale under the microscope. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Cardiac electrical activity exhibits highly nonlinear and fractal behaviors. Although space-time dynamics occur on the fractal geometry, e.g., chemical etching on the surface of machined parts and electrical conduction in the heart, most of existing works modeled space-time dynamics (e.g., reaction, diffusion and propagation) on the Euclidean geometry (e.g., flat planes and rectangular volumes). This brings inaccurate approximation of real-world dynamics, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we developed novel methods and tools for the numerical simulation and pattern recognition of spatiotemporal dynamics on fractal surfaces of complex systems, which include (1) characterization and modeling of fractal geometry, (2) fractal-based simulation and modeling of spatiotemporal dynamics, (3) recognizing and quantifying spatiotemporal patterns. Experimental results show that the proposed methods outperform traditional modeling approaches based on the Euclidean geometry, and provide effective tools to model and characterize space-time dynamics on fractal surfaces of complex systems.
AbstractList Engineered and natural systems often involve irregular and self-similar geometric forms, which is called fractal geometry. For instance, precision machining produces a visually flat surface, while which looks like a rough mountain in the nanometer scale under the microscope. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Cardiac electrical activity exhibits highly nonlinear and fractal behaviors. Although space-time dynamics occur on the fractal geometry, e.g., chemical etching on the surface of machined parts and electrical conduction in the heart, most of existing works modeled space-time dynamics (e.g., reaction, diffusion and propagation) on the Euclidean geometry (e.g., flat planes and rectangular volumes). This brings inaccurate approximation of real-world dynamics, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we developed novel methods and tools for the numerical simulation and pattern recognition of spatiotemporal dynamics on fractal surfaces of complex systems, which include (1) characterization and modeling of fractal geometry, (2) fractal-based simulation and modeling of spatiotemporal dynamics, (3) recognizing and quantifying spatiotemporal patterns. Experimental results show that the proposed methods outperform traditional modeling approaches based on the Euclidean geometry, and provide effective tools to model and characterize space-time dynamics on fractal surfaces of complex systems.
Engineered and natural systems often involve irregular and self-similar geometric forms,which is called fractal geometry. For instance, precision machining produces a visuallyflat surface, while which looks like a rough mountain in the nanometer scale under themicroscope. Human heart consists of a fractal network of muscle cells, Purkinje fibers,arteries and veins. Cardiac electrical activity exhibits highly nonlinear and fractalbehaviors. Although space-time dynamics occur on the fractal geometry, e.g., chemicaletching on the surface of machined parts and electrical conduction in the heart, most ofexisting works modeled space-time dynamics (e.g., reaction, diffusion and propagation) onthe Euclidean geometry (e.g., flat planes and rectangular volumes). This brings inaccurateapproximation of real-world dynamics, due to sensitive dependence of nonlinear dynamicalsystems on initial conditions. In this paper, we developed novel methods and tools for thenumerical simulation and pattern recognition of spatiotemporal dynamics on fractalsurfaces of complex systems, which include (1) characterization and modeling of fractalgeometry, (2) fractal-based simulation and modeling of spatiotemporal dynamics, (3)recognizing and quantifying spatiotemporal patterns. Experimental results show that theproposed methods outperform traditional modeling approaches based on the Euclideangeometry, and provide effective tools to model and characterize space-time dynamics onfractal surfaces of complex systems.
ArticleNumber 181
Audience Academic
Author Chen, Yun
Yang, Hui
Author_xml – sequence: 1
  givenname: Yun
  surname: Chen
  fullname: Chen, Yun
  organization: School of Mechanical Engineering, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  email: huy25@psu.edu
  organization: Complex Systems Monitoring, Modeling and Control Laboratory, Pennsylvania State University
BookMark eNp9kktv1DAQgCNUJNrCH-BkiROHtHYejnOsKqCVKpB4nK2JM971KomD7QjK7-AHd7KLgEWAcvDr-2bsyZxlJ5OfMMueC34hRMUvcd51l1hwIXPJW8lz-Sg7FVVZ0bKUJz_nhXqSncW445xQUZ1m398uIwZnYGDRjcsAyfmJwdSzGVLCMDGzhQCGpu7b4dBbRtkHNyEEFud1M-E4-0Ax-vsJRmciI86u2hp3CRYMRmZ9YGmL7MvWD5hvSU9s9D1SqA2DeR7oGmuG-DR7bGGI-OzHeJ59ev3q4_VNfvfuze311V1uqoKnXHRtW6um46Y0dS9tBapRwgrVc66gg1Y2HZjG1kohdiBrtNC1BdhegIJClOfZi0PcOfjPC8akd34JE6XUQineNLIV_Be1gQG1m6xP9LLRRaOv6rKUbS3qiqiLv1D09UgFob9lHe0fCS-PBGISfk0bWGLUtx_eH7PqwJrgYwxotXFpXytK4gYtuF7bQK9toPdtoPdtoCWpxR_qHNwI4f7_UnmQIsHTBsNvhfm39QC_hMzc
CitedBy_id crossref_primary_10_1115_1_4037891
crossref_primary_10_1016_j_physa_2025_130899
crossref_primary_10_3390_geosciences13080243
crossref_primary_10_3390_molecules27196326
crossref_primary_10_1007_s11069_024_06651_9
crossref_primary_10_1016_j_ceramint_2025_06_105
crossref_primary_10_3390_jcs8070240
crossref_primary_10_1063_5_0261019
crossref_primary_10_1007_s10950_023_10183_3
crossref_primary_10_1016_j_precisioneng_2024_10_001
crossref_primary_10_1080_24725579_2021_1879322
crossref_primary_10_1515_geo_2022_0522
crossref_primary_10_3390_fractalfract8010035
crossref_primary_10_3390_math13172746
crossref_primary_10_26443_seismica_v4i1_1568
crossref_primary_10_1016_j_compbiomed_2022_105586
crossref_primary_10_1016_j_bpr_2025_100220
crossref_primary_10_1109_TASE_2024_3524132
crossref_primary_10_3390_coatings12081216
crossref_primary_10_1016_j_physd_2023_133892
Cites_doi 10.1002/9781118919408.ch3
10.1103/PhysRevE.49.1685
10.1109/10.310090
10.1007/978-3-642-97966-8
10.1016/j.physa.2007.06.007
10.1109/TASE.2015.2459068
10.1007/978-1-4612-3784-6_2
10.1109/10.979349
10.1103/PhysRevLett.86.1650
10.1161/01.RES.72.3.631
10.1016/j.cma.2005.02.016
10.1016/S0378-4371(01)00460-5
10.1109/JBHI.2013.2260864
10.1007/BF01386390
10.1214/11-AOAS473
10.1145/358523.358553
10.1109/CoASE.2015.7294243
10.1142/5859
10.1109/36.789638
10.1016/0378-4371(92)90434-R
10.1016/S0378-4371(02)01830-7
10.1126/science.290.5500.2319
10.1109/CoASE.2014.6899393
10.1016/j.ijmachtools.2008.09.005
10.1161/01.cir.0000441139.02102.80
10.1063/1.4829877
10.1109/TASE.2006.876610
10.1038/20924
10.1007/b96841
10.1038/scientificamerican0290-42
10.1559/152304002782064600
ContentType Journal Article
Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016
COPYRIGHT 2016 Springer
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016
– notice: COPYRIGHT 2016 Springer
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
ISR
DOI 10.1140/epjb/e2016-60960-6
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6036
EndPage 16
ExternalDocumentID A533695154
10_1140_epjb_e2016_60960_6
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
199
203
28-
29G
29Q
29~
2J2
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RIG
RNS
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c420t-1b99587b0c3c5d6f4a8781f18d008aba967bac7f588eeba65efab92afd1a8a213
IEDL.DBID RSV
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382151000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-6028
IngestDate Thu Sep 25 00:55:30 EDT 2025
Sat Nov 29 13:14:18 EST 2025
Sat Nov 29 10:12:58 EST 2025
Wed Nov 26 10:33:18 EST 2025
Tue Nov 18 21:41:22 EST 2025
Sat Nov 29 07:50:17 EST 2025
Fri Feb 21 02:29:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Statistical and Nonlinear Physics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-1b99587b0c3c5d6f4a8781f18d008aba967bac7f588eeba65efab92afd1a8a213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880776910
PQPubID 2043700
PageCount 16
ParticipantIDs proquest_journals_1880776910
gale_infotracmisc_A533695154
gale_infotracacademiconefile_A533695154
gale_incontextgauss_ISR_A533695154
crossref_citationtrail_10_1140_epjb_e2016_60960_6
crossref_primary_10_1140_epjb_e2016_60960_6
springer_journals_10_1140_epjb_e2016_60960_6
PublicationCentury 2000
PublicationDate 20160800
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 8
  year: 2016
  text: 20160800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Condensed Matter and Complex Systems
PublicationTitle The European physical journal. B, Condensed matter physics
PublicationTitleAbbrev Eur. Phys. J. B
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References LinD.C.HughsonR.L.Phys. Rev. Lett.20018616502001PhRvL..86.1650L10.1103/PhysRevLett.86.1650
T. Cox, M. Cox, Multidimensional Scaling (Chapman & Hall, London, 1994)
YangH.LiuG.Chaos2013230431162013Chaos..23d3116Y338974510.1063/1.4829877
American Heart Association Writing Group, Circulation 129, e28 (2014)
DierkingW.IEEE Trans. Geosci. Remote Sensing19993723971999ITGRS..37.2397D10.1109/36.789638
A.J. Pullan, M.L. Buist, L.K. Cheng, Mathematically modelling the electrical activity of the heart: from cell to body surface and back again (World Science, Singapore, 2005)
DingY.ElsayedE.A.KumaraS.LuJ.C.NiuF.ShiJ.IEEE Trans. Automat. Sci. Eng.2006334410.1109/TASE.2006.876610
B.B. Mandelbrot, The fractal Geometry of Nature (Freeman, New York, 1982)
PengC.K.BuldyrevS.V.HavlinS.SimonsM.StanleyH.E.GoldbergerA.L.Phys. Rev. E.19944916851994PhRvE..49.1685P10.1103/PhysRevE.49.1685
GoldbergerA.L.RigneyD.R.WestB.J.Scientific American19902624210.1038/scientificamerican0290-42
TurielA.Perez-VicenteC.J.Physica A20033226292003PhyA..322..629T198095710.1016/S0378-4371(02)01830-7
DuD.YangH.NorringS.BennettE.IEEE J. Biomed. Health Inform.201318205
I.T. Jolliffe, Principal Component Analysis (Springer-Verlag, New York, 1989)
T. Kohonen, Self-Organizing Maps (Springer, New York, 1997)
IvanovP.C.AmaralL.A.N.GoldbergerA.L.HavlinS.RosenblumM.G.StruzikZ.R.StanleyH.E.Nature19993994611999Natur.399..461I10.1038/20924
ChenY.YangH.IEEE Trans. Automat. Sci. Eng.20161321510.1109/TASE.2015.2459068
FournierA.FusselD.CarpenterL.Commun. ACM19822537110.1145/358523.358553
BlacherS.BrouersF.AnanthakrishnaG.Physica A1992185281992PhyA..185...28B10.1016/0378-4371(92)90434-R
LinD.C.HughsonR.L.IEEE Trans. Biomed. Eng.2002499710.1109/10.979349
TenenbaumT.B.de SilvaV.LangfordJ.C.Science200029023192000Sci...290.2319T10.1126/science.290.5500.2319
SerbanN.Ann. Appl. Stat.201151699288492010.1214/11-AOAS473
G. Liu, H. Yang, in IEEE International Conference on Automation Science and Engineering (CASE) (Gothenburg, Sweden, 2015), pp. 1084–1089
D. Saupe, Algorithms for random fractals, in The Science of Fractal Images, edited by H.O. Peitgen, D. Saupe (Spriger-Verlag, New York, 1988), pp. 71–136
YangX.NingX.WangJ.Physica A20073844132007PhyA..384..413Y10.1016/j.physa.2007.06.007
HaussdorffJ.M.AshkenazyY.PengC.-K.IvanovP.C.StanleyH.E.GoldbergerA.L.Physica A20013021382001PhyA..302..138H10.1016/S0378-4371(01)00460-5
ZhangY.BajajC.Comput. Methods Appl. Mech. Eng.20061959422006CMAME.195..942Z220399010.1016/j.cma.2005.02.016
PhatakU.BukkapatnamS.T.S.KongZ.KomanduriR.Int. J. Machine Tools Manufact.20094917110.1016/j.ijmachtools.2008.09.005
KenkelN.C.WalkerD.J.Coenoses19961177
D. Yu, D. Du, H. Yang, Y. Tu, in Proceedings of Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Chicago, IL, 2014, pp. 4315–4319
F.B. Sachse, Computational cardiology: modeling of anatomy, electrophysiology, and mechanics (Springer, Berlin, 2004)
DijkstraE.W.Numerische Mathematik1959126910760910.1007/BF01386390
LamN.S.QiuH.QuattrochiD.A.EmersonC.W.Cartography and Geograpghyic Information Science2002292510.1559/152304002782064600
RogersJ.M.McCullochA.D.IEEE Trans. Biomed. Eng.19944174310.1109/10.310090
PertsovA.M.DavidenkoJ.M.SalomonszR.BaxterW.T.JalifeJ.Circulation Res.19937263210.1161/01.RES.72.3.631
Y. Chen, G. Liu, H. Yang, in Proceedings of 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, pp. 626–631
H. Yang, Y. Chen, F. Leonelli, Characterization and Monitoring of Nonlinear Dynamics and Chaos in Complex Physiological Systems, in Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, edited by H. Yang, E.K. Lee (Wiley, New York, 2016)
A.M. Pertsov (2017_CR32) 1993; 72
S. Blacher (2017_CR17) 1992; 185
A. Turiel (2017_CR16) 2003; 322
C.K. Peng (2017_CR12) 1994; 49
T.B. Tenenbaum (2017_CR6) 2000; 290
N.C. Kenkel (2017_CR18) 1996; 11
2017_CR35
Y. Ding (2017_CR9) 2006; 3
2017_CR31
2017_CR11
2017_CR33
2017_CR34
J.M. Haussdorff (2017_CR13) 2001; 302
N. Serban (2017_CR10) 2011; 5
A. Fournier (2017_CR20) 1982; 25
H. Yang (2017_CR30) 2013; 23
A.L. Goldberger (2017_CR5) 1990; 262
U. Phatak (2017_CR1) 2009; 49
P.C. Ivanov (2017_CR4) 1999; 399
Y. Zhang (2017_CR36) 2006; 195
N.S. Lam (2017_CR19) 2002; 29
W. Dierking (2017_CR14) 1999; 37
D.C. Lin (2017_CR23) 2001; 86
2017_CR24
2017_CR25
2017_CR26
2017_CR27
E.W. Dijkstra (2017_CR28) 1959; 1
Y. Chen (2017_CR7) 2016; 13
X. Yang (2017_CR15) 2007; 384
2017_CR21
2017_CR8
J.M. Rogers (2017_CR29) 1994; 41
D.C. Lin (2017_CR22) 2002; 49
D. Du (2017_CR2) 2013; 18
2017_CR3
References_xml – reference: A.J. Pullan, M.L. Buist, L.K. Cheng, Mathematically modelling the electrical activity of the heart: from cell to body surface and back again (World Science, Singapore, 2005)
– reference: BlacherS.BrouersF.AnanthakrishnaG.Physica A1992185281992PhyA..185...28B10.1016/0378-4371(92)90434-R
– reference: FournierA.FusselD.CarpenterL.Commun. ACM19822537110.1145/358523.358553
– reference: TenenbaumT.B.de SilvaV.LangfordJ.C.Science200029023192000Sci...290.2319T10.1126/science.290.5500.2319
– reference: LinD.C.HughsonR.L.IEEE Trans. Biomed. Eng.2002499710.1109/10.979349
– reference: I.T. Jolliffe, Principal Component Analysis (Springer-Verlag, New York, 1989)
– reference: T. Kohonen, Self-Organizing Maps (Springer, New York, 1997)
– reference: HaussdorffJ.M.AshkenazyY.PengC.-K.IvanovP.C.StanleyH.E.GoldbergerA.L.Physica A20013021382001PhyA..302..138H10.1016/S0378-4371(01)00460-5
– reference: RogersJ.M.McCullochA.D.IEEE Trans. Biomed. Eng.19944174310.1109/10.310090
– reference: D. Yu, D. Du, H. Yang, Y. Tu, in Proceedings of Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Chicago, IL, 2014, pp. 4315–4319
– reference: PengC.K.BuldyrevS.V.HavlinS.SimonsM.StanleyH.E.GoldbergerA.L.Phys. Rev. E.19944916851994PhRvE..49.1685P10.1103/PhysRevE.49.1685
– reference: IvanovP.C.AmaralL.A.N.GoldbergerA.L.HavlinS.RosenblumM.G.StruzikZ.R.StanleyH.E.Nature19993994611999Natur.399..461I10.1038/20924
– reference: LamN.S.QiuH.QuattrochiD.A.EmersonC.W.Cartography and Geograpghyic Information Science2002292510.1559/152304002782064600
– reference: DijkstraE.W.Numerische Mathematik1959126910760910.1007/BF01386390
– reference: B.B. Mandelbrot, The fractal Geometry of Nature (Freeman, New York, 1982)
– reference: LinD.C.HughsonR.L.Phys. Rev. Lett.20018616502001PhRvL..86.1650L10.1103/PhysRevLett.86.1650
– reference: DuD.YangH.NorringS.BennettE.IEEE J. Biomed. Health Inform.201318205
– reference: ChenY.YangH.IEEE Trans. Automat. Sci. Eng.20161321510.1109/TASE.2015.2459068
– reference: PhatakU.BukkapatnamS.T.S.KongZ.KomanduriR.Int. J. Machine Tools Manufact.20094917110.1016/j.ijmachtools.2008.09.005
– reference: KenkelN.C.WalkerD.J.Coenoses19961177
– reference: Y. Chen, G. Liu, H. Yang, in Proceedings of 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, pp. 626–631
– reference: F.B. Sachse, Computational cardiology: modeling of anatomy, electrophysiology, and mechanics (Springer, Berlin, 2004)
– reference: American Heart Association Writing Group, Circulation 129, e28 (2014)
– reference: H. Yang, Y. Chen, F. Leonelli, Characterization and Monitoring of Nonlinear Dynamics and Chaos in Complex Physiological Systems, in Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, edited by H. Yang, E.K. Lee (Wiley, New York, 2016)
– reference: T. Cox, M. Cox, Multidimensional Scaling (Chapman & Hall, London, 1994)
– reference: DierkingW.IEEE Trans. Geosci. Remote Sensing19993723971999ITGRS..37.2397D10.1109/36.789638
– reference: YangH.LiuG.Chaos2013230431162013Chaos..23d3116Y338974510.1063/1.4829877
– reference: ZhangY.BajajC.Comput. Methods Appl. Mech. Eng.20061959422006CMAME.195..942Z220399010.1016/j.cma.2005.02.016
– reference: GoldbergerA.L.RigneyD.R.WestB.J.Scientific American19902624210.1038/scientificamerican0290-42
– reference: YangX.NingX.WangJ.Physica A20073844132007PhyA..384..413Y10.1016/j.physa.2007.06.007
– reference: TurielA.Perez-VicenteC.J.Physica A20033226292003PhyA..322..629T198095710.1016/S0378-4371(02)01830-7
– reference: SerbanN.Ann. Appl. Stat.201151699288492010.1214/11-AOAS473
– reference: DingY.ElsayedE.A.KumaraS.LuJ.C.NiuF.ShiJ.IEEE Trans. Automat. Sci. Eng.2006334410.1109/TASE.2006.876610
– reference: PertsovA.M.DavidenkoJ.M.SalomonszR.BaxterW.T.JalifeJ.Circulation Res.19937263210.1161/01.RES.72.3.631
– reference: D. Saupe, Algorithms for random fractals, in The Science of Fractal Images, edited by H.O. Peitgen, D. Saupe (Spriger-Verlag, New York, 1988), pp. 71–136
– reference: G. Liu, H. Yang, in IEEE International Conference on Automation Science and Engineering (CASE) (Gothenburg, Sweden, 2015), pp. 1084–1089
– ident: 2017_CR27
  doi: 10.1002/9781118919408.ch3
– volume: 49
  start-page: 1685
  year: 1994
  ident: 2017_CR12
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.49.1685
– volume: 41
  start-page: 743
  year: 1994
  ident: 2017_CR29
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.310090
– ident: 2017_CR26
  doi: 10.1007/978-3-642-97966-8
– volume: 384
  start-page: 413
  year: 2007
  ident: 2017_CR15
  publication-title: Physica A
  doi: 10.1016/j.physa.2007.06.007
– ident: 2017_CR11
– volume: 13
  start-page: 215
  year: 2016
  ident: 2017_CR7
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2015.2459068
– ident: 2017_CR21
  doi: 10.1007/978-1-4612-3784-6_2
– volume: 49
  start-page: 97
  year: 2002
  ident: 2017_CR22
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.979349
– volume: 86
  start-page: 1650
  year: 2001
  ident: 2017_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.1650
– volume: 72
  start-page: 632
  year: 1993
  ident: 2017_CR32
  publication-title: Circulation Res.
  doi: 10.1161/01.RES.72.3.631
– volume: 195
  start-page: 942
  year: 2006
  ident: 2017_CR36
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.02.016
– volume: 302
  start-page: 138
  year: 2001
  ident: 2017_CR13
  publication-title: Physica A
  doi: 10.1016/S0378-4371(01)00460-5
– volume: 18
  start-page: 205
  year: 2013
  ident: 2017_CR2
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2260864
– volume: 11
  start-page: 77
  year: 1996
  ident: 2017_CR18
  publication-title: Coenoses
– ident: 2017_CR25
– volume: 1
  start-page: 269
  year: 1959
  ident: 2017_CR28
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386390
– volume: 5
  start-page: 1699
  year: 2011
  ident: 2017_CR10
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS473
– volume: 25
  start-page: 371
  year: 1982
  ident: 2017_CR20
  publication-title: Commun. ACM
  doi: 10.1145/358523.358553
– ident: 2017_CR35
– ident: 2017_CR31
  doi: 10.1109/CoASE.2015.7294243
– ident: 2017_CR33
  doi: 10.1142/5859
– volume: 37
  start-page: 2397
  year: 1999
  ident: 2017_CR14
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/36.789638
– volume: 185
  start-page: 28
  year: 1992
  ident: 2017_CR17
  publication-title: Physica A
  doi: 10.1016/0378-4371(92)90434-R
– volume: 322
  start-page: 629
  year: 2003
  ident: 2017_CR16
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)01830-7
– volume: 290
  start-page: 2319
  year: 2000
  ident: 2017_CR6
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: 2017_CR8
  doi: 10.1109/CoASE.2014.6899393
– volume: 49
  start-page: 171
  year: 2009
  ident: 2017_CR1
  publication-title: Int. J. Machine Tools Manufact.
  doi: 10.1016/j.ijmachtools.2008.09.005
– ident: 2017_CR3
  doi: 10.1161/01.cir.0000441139.02102.80
– volume: 23
  start-page: 043116
  year: 2013
  ident: 2017_CR30
  publication-title: Chaos
  doi: 10.1063/1.4829877
– volume: 3
  start-page: 344
  year: 2006
  ident: 2017_CR9
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2006.876610
– volume: 399
  start-page: 461
  year: 1999
  ident: 2017_CR4
  publication-title: Nature
  doi: 10.1038/20924
– ident: 2017_CR24
– ident: 2017_CR34
  doi: 10.1007/b96841
– volume: 262
  start-page: 42
  year: 1990
  ident: 2017_CR5
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0290-42
– volume: 29
  start-page: 25
  year: 2002
  ident: 2017_CR19
  publication-title: Cartography and Geograpghyic Information Science
  doi: 10.1559/152304002782064600
SSID ssj0001614
Score 2.2973654
Snippet Engineered and natural systems often involve irregular and self-similar geometric forms, which is called fractal geometry. For instance, precision machining...
Engineered and natural systems often involve irregular and self-similar geometric forms,which is called fractal geometry. For instance, precision machining...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cardiology
Complex Systems
Condensed Matter Physics
Electric properties
Electrical conduction
Euclidean geometry
Fluid- and Aerodynamics
Fractal geometry
Initial conditions
Modelling
Nonlinear dynamics
Numerical analysis
Pattern recognition
Physics
Physics and Astronomy
Precision machining
Regular Article
Self-similarity
Solid State Physics
Title Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications
URI https://link.springer.com/article/10.1140/epjb/e2016-60960-6
https://www.proquest.com/docview/1880776910
Volume 89
WOSCitedRecordID wos000382151000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-6036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001614
  issn: 1434-6028
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UVsEXrTdcrSWI4IMOnUtu81jEYl-W0ov0LSSZRCrrdNns6h_xB3uSySxdb6DPOZPJPV8453wfwCvZeFbrOAOyNPhAsVXR4gOucLYRzHBDaauT2ISYTuXlZXuSk8LCGO0-uiTTST3w2ZYHbv7ZHDi8r3jBI-4u-C3YwetOxEC-07OP6_MXMUzyJdOGomUtx1SZ39axcR39fCj_4h1Nl87R_f9r7i7cyyCTHA6r4gFsuf4h3EnBnjY8gu_T1eCnmZFw9SXrdxHdd2Se2DZ7Ytc0zkOWJrn2pB9INfSChBSFnUmtZqQbRO0DQTsfP4v1rhY-BnsRxMQEMSb5FnV4iyifvSRJfQf7Qm56zx_DxdH783cfiqzOUFhal8uiMm3LpDClbSzruKdaCln5SnYIK7TRLRdGW-GZlM4ZzZnz2rS19l2lpa6r5glsY8vdUyCso1H1HJFE52hNhfYlM6KNbIau9sJOoBonSdlMXR4VNGZqSKsuVRxtlUZbpdFWfAJv1t_MB-KOv1q_jHOvIiNGH0NuPulVCOr47FQdIiDmiEMZncDrbOSv8fdW5wwG7EQk0dqw3NuwxC1rN4vHJabykRFUJMYTgiN8m8DbcUndKP5j25_9m_lzuJtWZQpi3IPt5WLlXsBt-3V5FRb7aSv9AFvuHw0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD5oVfTFu7haNYjggw6dS27zWMTSYl3EVulbSDKJVNbpstnVP-IP9iSTWbreQJ9zJpN7vnDO-T6AZ7LxrNZxBmRp8IFiq6LFB1zhbCOY4YbSViexCTGdypOT9l1OCgtjtPvokkwn9cBnW-64-Wez4_C-4gWPuLvgF-ESrRHhxzf60cf1-YsYJvmSaUPRspZjqsxv69i4jn4-lH_xjqZLZ-_G_zX3JlzPIJPsDqviFlxw_W24koI9bbgD36erwU8zI-H0S9bvIrrvyDyxbfbErmmchyxNcuZJP5Bq6AUJKQo7k1rNSDeI2geCdj5-FutdLXwM9iKIiQliTPIt6vAWUT57SZL6DvaFnPee34UPe6-PX-0XWZ2hsLQul0Vl2pZJYUrbWNZxT7UUsvKV7BBWaKNbLoy2wjMpnTOaM-e1aWvtu0pLXVfNPdjClrv7QFhHo-o5IonO0ZoK7UtmRBvZDF3thZ1ANU6Sspm6PCpozNSQVl2qONoqjbZKo634BF6sv5kPxB1_tX4a515FRow-htx80qsQ1MHRe7WLgJgjDmV0As-zkT_D31udMxiwE5FEa8Nye8MSt6zdLB6XmMpHRlCRGE8IjvBtAi_HJXWu-I9tf_Bv5k_g6v7x20N1eDB98xCupRWaAhq3YWu5WLlHcNl-XZ6GxeO0rX4A1HQh8Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwEB7BcogXbkRhAQsh8QBRc_jK4wqoWIGqFQto3yzbsdGikq2aFP4IPxiP41Qtl4R49iTxMbE_a2a-D-CJrDwrNa6AzE24oNgiq8MFLnO2EsxwQ2mto9iEmM_lyUl9tFXFH7Pdx5DkUNOALE1tP102PnHb5lO3_GymLpxdPOOIwTN-Hi5QTJfD-_rxx81eHPBMjCvTigbLUo5lM799x87R9PMG_UukNB5As2v_3_XrcDWBT3IweMsNOOfam3ApJoHa7hZ8n6-H-M2CdKdfkq4X0W1DlpGFsyV2Q-88VG-SM0_agWxDr0gXs7MT2dWCNIPYfUeCncfH8L3rlcckMBKwMgnYk3xDfd4MZbV7ElV5wrjIdlT9NnyYvXr_4nWWVBsyS8u8zwpT10wKk9vKsoZ7qqWQhS9kE-CGNrrmwmgrPJPSOaM5c16butS-KbTUZVHdgb3Qc3cXCGsoqqEHhNE4WlKhfc6MqJHl0JVe2AkU44IpmyjNUVljoYZy61zhbKs42yrOtuITeLZ5ZjkQevzV-jH6gUKmjBZTcT7pddepw-N36iAAZR7wKaMTeJqM_Fn4vNWpsiEMAsm1diz3dyzDr2x3m0d3U2kr6RQS5gnBA6ybwPPRvbaa_9j3e_9m_gguH72cqbeH8zf34Up00JjnuA97_WrtHsBF-7U_7VYP4x_2AzxPKsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+and+pattern+characterization+of+nonlinear+spatiotemporal+dynamics+on+fractal+surfaces+for+the+whole-heart+modeling+applications&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=Chen%2C+Yun&rft.au=Yang%2C+Hui&rft.date=2016-08-01&rft.issn=1434-6028&rft.eissn=1434-6036&rft.volume=89&rft.issue=8&rft_id=info:doi/10.1140%2Fepjb%2Fe2016-60960-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjb_e2016_60960_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon