Multi-objective programming of pumped-hydro-thermal scheduling problem using normal boundary intersection and VIKOR
The issue of environmental emissions has forced the power systems to use cleaner energy sources such as renewable and hydroelectric technologies. However, during recent decades due to the limitations on the available water in many regions, the optimal water reservoir usage has been highlighted. In t...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 143; s. 854 - 866 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
15.01.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The issue of environmental emissions has forced the power systems to use cleaner energy sources such as renewable and hydroelectric technologies. However, during recent decades due to the limitations on the available water in many regions, the optimal water reservoir usage has been highlighted. In this regard, this paper proposes a multi-objective model for short-term hydrothermal scheduling problem in the presence of the pumped-storage technology. It is noted that the framework well models the cascaded configuration of hydro reservoirs. Besides, in order to more accurately model the mentioned problem, a Mixed-Integer Non-Linear Programming (MINLP) optimization framework is presented. In this respect, the valve-loading effects occurred in thermal power generation technologies have been taken into account which turns the existing convex optimization problem into a non-convex one. In order to solve the mentioned problem, the Normal Boundary Intersection (NBI) method has been used while the VIKOR decision maker is employed to choose the most compromise solution amongst the Pareto optimal solutions obtained by NBI method. Finally, the efficiency of the proposed model has been verified through implementing four case studies and comparing the obtained results with those obtained by different methods.
•Proposing a framework for hydrothermal scheduling including pumped-storage units.•Presenting an accurate MINLP model for the SHTS problem with pumped-storage unit.•Applying NBI method to solve the proposed problem in an effective way.•Using a reputable decision making tool to select the most compromise solution.•Modeling the load uncertainty using scenario-based optimization. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0360-5442 1873-6785 |
| DOI: | 10.1016/j.energy.2017.09.144 |