Consistently positive effect of species diversity on ecosystem, but not population, temporal stability

Despite much recent progress, our understanding of diversity–stability relationships across different study systems remains incomplete. In particular, recent theory clarified that within‐species population stability and among‐species asynchronous population dynamics combine to determine ecosystem te...

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters Vol. 24; no. 10; pp. 2256 - 2266
Main Authors: Xu, Qianna, Yang, Xian, Yan, Ying, Wang, Shaopeng, Loreau, Michel, Jiang, Lin, Chase, Jonathan
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.10.2021
Wiley
Series:ecology letters
Subjects:
ISSN:1461-023X, 1461-0248, 1461-0248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite much recent progress, our understanding of diversity–stability relationships across different study systems remains incomplete. In particular, recent theory clarified that within‐species population stability and among‐species asynchronous population dynamics combine to determine ecosystem temporal stability, but their relative importance in modulating diversity‐ecosystem temporal stability relationships in different ecosystems remains unclear. We addressed this issue with a meta‐analysis of empirical studies of ecosystem and population temporal stability in relation to species diversity across a range of taxa and ecosystems. We show that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchrony, which, in turn, contributed to increased ecosystem stability. The positive diversity–ecosystem stability relationship persisted even after accounting for the influences of environmental covariates (e.g., precipitation and nutrient input). By contrast, species diversity tended to reduce population temporal stability in terrestrial systems but increase population temporal stability in aquatic systems, suggesting that asynchronous dynamics among species are essential for stabilizing diverse terrestrial ecosystems. We conclude that there is compelling empirical evidence for a general positive relationship between species diversity and ecosystem‐level temporal stability, but the contrasting diversity–population temporal stability relationships between terrestrial and aquatic systems call for more investigations into their underlying mechanisms. Our meta‐analysis showed that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchronous dynamics among species, which, in turn, contributed to increased ecosystem stability. By contrast, species diversity tended to reduce population stability in terrestrial systems but increase population stability in aquatic systems, suggesting that asynchronous dynamics are particularly important for stabilizing diverse terrestrial ecosystems.
AbstractList Despite much recent progress, our understanding of diversity-stability relationships across different study systems remains incomplete. In particular, recent theory clarified that within-species population stability and among-species asynchronous population dynamics combine to determine ecosystem temporal stability, but their relative importance in modulating diversity-ecosystem temporal stability relationships in different ecosystems remains unclear. We addressed this issue with a meta-analysis of empirical studies of ecosystem and population temporal stability in relation to species diversity across a range of taxa and ecosystems. We show that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchrony, which, in turn, contributed to increased ecosystem stability. The positive diversity-ecosystem stability relationship persisted even after accounting for the influences of environmental covariates (e.g., precipitation and nutrient input). By contrast, species diversity tended to reduce population temporal stability in terrestrial systems but increase population temporal stability in aquatic systems, suggesting that asynchronous dynamics among species are essential for stabilizing diverse terrestrial ecosystems. We conclude that there is compelling empirical evidence for a general positive relationship between species diversity and ecosystem-level temporal stability, but the contrasting diversity-population temporal stability relationships between terrestrial and aquatic systems call for more investigations into their underlying mechanisms.Despite much recent progress, our understanding of diversity-stability relationships across different study systems remains incomplete. In particular, recent theory clarified that within-species population stability and among-species asynchronous population dynamics combine to determine ecosystem temporal stability, but their relative importance in modulating diversity-ecosystem temporal stability relationships in different ecosystems remains unclear. We addressed this issue with a meta-analysis of empirical studies of ecosystem and population temporal stability in relation to species diversity across a range of taxa and ecosystems. We show that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchrony, which, in turn, contributed to increased ecosystem stability. The positive diversity-ecosystem stability relationship persisted even after accounting for the influences of environmental covariates (e.g., precipitation and nutrient input). By contrast, species diversity tended to reduce population temporal stability in terrestrial systems but increase population temporal stability in aquatic systems, suggesting that asynchronous dynamics among species are essential for stabilizing diverse terrestrial ecosystems. We conclude that there is compelling empirical evidence for a general positive relationship between species diversity and ecosystem-level temporal stability, but the contrasting diversity-population temporal stability relationships between terrestrial and aquatic systems call for more investigations into their underlying mechanisms.
Despite much recent progress, our understanding of diversity–stability relationships across different study systems remains incomplete. In particular, recent theory clarified that within‐species population stability and among‐species asynchronous population dynamics combine to determine ecosystem temporal stability, but their relative importance in modulating diversity‐ecosystem temporal stability relationships in different ecosystems remains unclear. We addressed this issue with a meta‐analysis of empirical studies of ecosystem and population temporal stability in relation to species diversity across a range of taxa and ecosystems. We show that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchrony, which, in turn, contributed to increased ecosystem stability. The positive diversity–ecosystem stability relationship persisted even after accounting for the influences of environmental covariates (e.g., precipitation and nutrient input). By contrast, species diversity tended to reduce population temporal stability in terrestrial systems but increase population temporal stability in aquatic systems, suggesting that asynchronous dynamics among species are essential for stabilizing diverse terrestrial ecosystems. We conclude that there is compelling empirical evidence for a general positive relationship between species diversity and ecosystem‐level temporal stability, but the contrasting diversity–population temporal stability relationships between terrestrial and aquatic systems call for more investigations into their underlying mechanisms.
Despite much recent progress, our understanding of diversity–stability relationships across different study systems remains incomplete. In particular, recent theory clarified that within‐species population stability and among‐species asynchronous population dynamics combine to determine ecosystem temporal stability, but their relative importance in modulating diversity‐ecosystem temporal stability relationships in different ecosystems remains unclear. We addressed this issue with a meta‐analysis of empirical studies of ecosystem and population temporal stability in relation to species diversity across a range of taxa and ecosystems. We show that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchrony, which, in turn, contributed to increased ecosystem stability. The positive diversity–ecosystem stability relationship persisted even after accounting for the influences of environmental covariates (e.g., precipitation and nutrient input). By contrast, species diversity tended to reduce population temporal stability in terrestrial systems but increase population temporal stability in aquatic systems, suggesting that asynchronous dynamics among species are essential for stabilizing diverse terrestrial ecosystems. We conclude that there is compelling empirical evidence for a general positive relationship between species diversity and ecosystem‐level temporal stability, but the contrasting diversity–population temporal stability relationships between terrestrial and aquatic systems call for more investigations into their underlying mechanisms. Our meta‐analysis showed that ecosystem temporal stability tended to increase with species diversity, regardless of study systems. Increasing diversity promoted asynchronous dynamics among species, which, in turn, contributed to increased ecosystem stability. By contrast, species diversity tended to reduce population stability in terrestrial systems but increase population stability in aquatic systems, suggesting that asynchronous dynamics are particularly important for stabilizing diverse terrestrial ecosystems.
Author Wang, Shaopeng
Chase, Jonathan
Xu, Qianna
Yang, Xian
Loreau, Michel
Jiang, Lin
Yan, Ying
Author_xml – sequence: 1
  givenname: Qianna
  surname: Xu
  fullname: Xu, Qianna
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Xian
  orcidid: 0000-0002-1527-7673
  surname: Yang
  fullname: Yang, Xian
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Ying
  surname: Yan
  fullname: Yan, Ying
  organization: Peking University
– sequence: 4
  givenname: Shaopeng
  orcidid: 0000-0002-9430-8879
  surname: Wang
  fullname: Wang, Shaopeng
  organization: Peking University
– sequence: 5
  givenname: Michel
  surname: Loreau
  fullname: Loreau, Michel
  email: michel.loreau@sete.cnrs.fr
  organization: CNRS
– sequence: 6
  givenname: Lin
  orcidid: 0000-0002-7114-0794
  surname: Jiang
  fullname: Jiang, Lin
  email: lin.jiang@biology.gatech.edu
  organization: Georgia Institute of Technology
– sequence: 7
  givenname: Jonathan
  surname: Chase
  fullname: Chase, Jonathan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34002439$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03356577$$DView record in HAL
BookMark eNqNkV1rHCEUhqWkNB_tRf5AEHLTQjbxa3TmMizbprDQmxR6J46j1ODqRJ2U-fd1s8kWAg3x5sg5z3s4L-8xOAgxGABOMbrE9V0Zby4xFUK8A0eYcbxAhLUH-z_9dQiOc75DCJNO4A_gkDJUEdodAbuMIbtcTCh-hmPMrrgHA421RhcYLcyj0c5kONR2qtMZxgCNjnmuos0F7KcCQyxVOk5eFRfDBayDMSblYS6qd76KPoL3VvlsPj3VE_Dz6-p2ebNY__j2fXm9XmhGkFgQSwWzvCfUUqXaZqBc6-qQEEU61Fo8DIPoe0Z4pxhuOGMtE4wOg-1w32BLT8CX3d7fyssxuY1Ks4zKyZvrtdz2EKUNb4R4wJX9vGPHFO8nk4vcuKyN9yqYOGVJOOWcYiTegDakbTFHtK3o-Qv0Lk4pVNOVEog0mOAtdfZETf3GDPtTn4P5Z0SnmHMydo9gJLehyxq6fAy9slcvWO3KYxQlKedfU_xx3sz_Xy1X69VO8RfOKrul
CitedBy_id crossref_primary_10_1111_1365_2656_14190
crossref_primary_10_1016_j_scitotenv_2023_169122
crossref_primary_10_1111_csp2_12649
crossref_primary_10_1016_j_ecolind_2022_109002
crossref_primary_10_1111_gcb_17071
crossref_primary_10_1111_oik_08769
crossref_primary_10_3389_fmars_2023_1055634
crossref_primary_10_1016_j_fcr_2024_109361
crossref_primary_10_1111_1365_2435_14334
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1016_j_ecolind_2025_113588
crossref_primary_10_1002_ecs2_4872
crossref_primary_10_1038_s41467_022_35189_2
crossref_primary_10_3389_fmars_2023_1125705
crossref_primary_10_1111_cobi_14220
crossref_primary_10_1111_ele_13885
crossref_primary_10_1111_1365_2656_70063
crossref_primary_10_1038_s41559_024_02419_3
crossref_primary_10_1088_1748_9326_aca2be
crossref_primary_10_1111_gcb_70364
crossref_primary_10_3390_toxics12120902
crossref_primary_10_1111_jvs_13288
crossref_primary_10_1111_gcb_16090
crossref_primary_10_1093_rof_rfae010
crossref_primary_10_1111_oik_08517
crossref_primary_10_1016_j_ecolind_2022_109021
crossref_primary_10_3390_d14111002
crossref_primary_10_1111_gcb_16967
crossref_primary_10_3389_fpls_2022_1014049
crossref_primary_10_1093_aobpla_plae026
crossref_primary_10_1016_j_tree_2024_02_008
crossref_primary_10_1111_1365_2435_13949
crossref_primary_10_1111_1365_2656_14176
crossref_primary_10_3390_plants13131849
crossref_primary_10_1007_s10021_023_00842_4
crossref_primary_10_1111_1365_2745_14216
crossref_primary_10_1111_gcb_70097
crossref_primary_10_34133_ehs_0178
crossref_primary_10_1111_1365_2664_14423
crossref_primary_10_1007_s13593_025_01014_5
crossref_primary_10_1111_1365_2745_70054
crossref_primary_10_1111_1365_2435_14409
crossref_primary_10_1007_s11356_022_23696_0
crossref_primary_10_3389_fpls_2023_1296544
crossref_primary_10_1111_ele_70170
crossref_primary_10_1016_j_scitotenv_2023_165651
crossref_primary_10_1088_1755_1315_1490_1_012020
crossref_primary_10_1088_1748_9326_acc2d6
crossref_primary_10_1111_1365_2435_14401
crossref_primary_10_1111_gcb_17483
crossref_primary_10_1016_j_agee_2023_108343
crossref_primary_10_1002_ece3_10368
crossref_primary_10_1016_j_scitotenv_2024_175445
crossref_primary_10_1111_eva_13513
crossref_primary_10_1016_j_agee_2025_109712
crossref_primary_10_1111_ddi_13696
crossref_primary_10_1016_j_compag_2025_110205
crossref_primary_10_1002_ecs2_70345
crossref_primary_10_1002_ecy_4219
crossref_primary_10_1111_nph_70132
crossref_primary_10_1016_j_jenvman_2024_122704
crossref_primary_10_1111_ele_70103
crossref_primary_10_3389_fpls_2025_1567414
crossref_primary_10_1111_oik_10513
crossref_primary_10_1073_pnas_2405108121
crossref_primary_10_1016_j_apsoil_2024_105699
crossref_primary_10_1007_s11104_024_06945_8
crossref_primary_10_1038_s41467_023_38977_6
crossref_primary_10_1111_1365_2435_14264
crossref_primary_10_1111_1365_2745_14183
crossref_primary_10_1016_j_catena_2025_109088
crossref_primary_10_1093_insilicoplants_diab037
crossref_primary_10_1038_s41467_022_35514_9
crossref_primary_10_1016_j_scitotenv_2022_155419
crossref_primary_10_1038_s41559_025_02787_4
crossref_primary_10_3389_fmars_2023_1070548
crossref_primary_10_1111_1365_2745_70001
crossref_primary_10_1002_ece3_11637
crossref_primary_10_1038_s41559_024_02631_1
crossref_primary_10_1038_s41467_025_62691_0
crossref_primary_10_1029_2022JG006819
crossref_primary_10_1111_1365_2745_70007
crossref_primary_10_1016_j_geoderma_2024_117062
crossref_primary_10_59717_j_xinn_geo_2024_100064
crossref_primary_10_1007_s42974_023_00138_6
crossref_primary_10_1002_ece3_10022
crossref_primary_10_1038_s41467_025_57984_3
crossref_primary_10_1111_gcb_70056
crossref_primary_10_1111_ele_70001
crossref_primary_10_3389_fevo_2022_990835
crossref_primary_10_1002_ece3_70120
crossref_primary_10_1111_1365_2745_14133
crossref_primary_10_1111_gcb_70212
crossref_primary_10_3390_land14091815
crossref_primary_10_1111_geb_70013
crossref_primary_10_1002_ece3_9991
crossref_primary_10_1111_ele_14119
crossref_primary_10_1016_j_ecolind_2022_109758
crossref_primary_10_1038_s41559_022_01868_y
crossref_primary_10_1002_ecy_4288
crossref_primary_10_1111_1462_2920_70167
crossref_primary_10_1111_1365_2664_14871
Cites_doi 10.1890/12-1406.1
10.1038/ncomms15378
10.1038/nature23886
10.1038/nature13014
10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
10.1890/09-1162.1
10.2307/1936547
10.2307/1929601
10.1073/pnas.96.4.1463
10.1126/science.286.5439.542
10.1111/j.2006.0030-1299.14739.x
10.1086/284132
10.1046/j.1461-0248.2002.00381.x
10.1890/14-0170.1
10.1111/j.1600-0706.2010.18768.x
10.1126/science.aaa1788
10.1098/rspb.2009.0523
10.1890/11-0426.1
10.1098/rspb.2005.3377
10.1111/jvs.12399
10.1086/283181
10.1111/j.0030-1299.2006.13990.x
10.1002/9780470743386
10.1086/605961
10.1007/s00442-011-1916-1
10.1038/nclimate2617
10.1111/ele.12073
10.1016/S0065-2504(01)32013-5
10.1086/303402
10.1038/nature04742
10.18637/jss.v036.i03
10.1073/pnas.0603798104
10.1038/nature05749
10.1111/geb.12963
10.1073/pnas.1920405117
10.1038/nature11148
10.2307/3001666
10.1890/11-1753.1
10.1136/bmj.315.7109.629
10.1111/brv.12499
10.1890/13-0895.1
10.1038/s41559-020-1280-9
10.1093/jpe/rtt071
10.1890/14-1324.1
10.1038/ngeo230
10.1111/j.1365-2745.2011.01875.x
10.1073/pnas.0903682106
10.1002/ecy.1757
10.1146/annurev.ecolsys.39.110707.173349
10.1037/0033-2909.86.3.638
10.1111/jvs.12435
10.1111/ele.12019
10.1086/596540
10.1038/416389a
10.1007/s004420050180
10.1111/j.1442-9993.1992.tb00812.x
10.1146/annurev.ecolsys.36.091704.175535
10.1111/j.2007.0030-1299.16080.x
10.1002/ecy.2514
10.1371/journal.pmed.1000097
10.1086/282286
10.1098/rspb.2014.0633
10.1086/589746
10.1038/s41559-018-0647-7
10.1086/673915
10.1126/science.164.3877.262
10.1037/0003-066X.46.10.1086
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons Ltd/CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons Ltd/CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
1XC
DOI 10.1111/ele.13777
DatabaseName CrossRef
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed

AGRICOLA
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1461-0248
EndPage 2266
ExternalDocumentID oai:HAL:hal-03356577v1
34002439
10_1111_ele_13777
ELE13777
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation
  funderid: DEB‐1856318; CBET‐1833988
– fundername: National Natural Science Foundation of China
  funderid: 31988102
– fundername: Horizon 2020 Framework Programme
  funderid: 666971
– fundername: National Science Foundation
  grantid: CBET-1833988
– fundername: National Science Foundation
  grantid: DEB-1856318
– fundername: National Natural Science Foundation of China
  grantid: 31988102
– fundername: Horizon 2020 Framework Programme
  grantid: 666971
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c4207-2f374f6b23f3aa85d36cc11122a2908f1ddd7bb4269a41564484743ddf91b51f3
IEDL.DBID DRFUL
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651199400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1461-023X
1461-0248
IngestDate Sat Oct 25 06:47:59 EDT 2025
Fri Jul 11 18:33:52 EDT 2025
Fri Jul 11 09:02:32 EDT 2025
Mon Nov 10 03:03:55 EST 2025
Thu Apr 03 07:00:54 EDT 2025
Sat Nov 29 03:47:33 EST 2025
Tue Nov 18 22:14:15 EST 2025
Wed Jan 22 16:29:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords asynchrony
meta-analysis
ecosystem functions
biodiversity
stability
Language English
License 2021 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4207-2f374f6b23f3aa85d36cc11122a2908f1ddd7bb4269a41564484743ddf91b51f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9430-8879
0000-0002-7114-0794
0000-0002-1527-7673
0000-0002-0122-495X
PMID 34002439
PQID 2570251218
PQPubID 32390
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03356577v1
proquest_miscellaneous_2636631071
proquest_miscellaneous_2528816038
proquest_journals_2570251218
pubmed_primary_34002439
crossref_primary_10_1111_ele_13777
crossref_citationtrail_10_1111_ele_13777
wiley_primary_10_1111_ele_13777_ELE13777
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Paris
PublicationSeriesTitle ecology letters
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2007; 104
2017; 8
1997; 315
2009; 40
2012; 486
2019; 94
1997; 110
1999; 286
2009; 276
1974
2011; 99
2015; 348
2008; 1
1999; 80
1998; 395
2020; 4
2018; 2
2013; 16
1954; 10
2019; 28
2007; 7
1999; 96
2014; 281
2014; 95
2014; 7
2011; 166
2006; 441
2011; 120
2005; 36
2015; 5
2007; 446
1968; 49
2010; 36
2002; 5
2015; 96
2009
2006; 273
2009; 173
2009; 174
2002; 416
2000; 156
1991
1958
2006; 114
1969; 164
2012; 93
2017; 549
1955; 36
1963; 97
2014; 508
1983; 122
2007; 116
2017; 98
2018
2020; 117
2014; 183
2009; 6
1977; 111
1979; 86
2010; 91
2018; 99
2016; 27
2008; 172
2001; 32
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
Schwarzer G. (e_1_2_10_57_1) 2007; 7
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Plas F. (e_1_2_10_65_1) 2019; 94
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
R Development Core Team (e_1_2_10_50_1) 2018
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
May R.M. (e_1_2_10_39_1) 1974
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – year: 2009
– volume: 95
  start-page: 173
  year: 2014
  end-page: 184
  article-title: Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs
  publication-title: Ecology
– volume: 5
  start-page: 560
  year: 2015
  end-page: 564
  article-title: Anthropogenic contribution to global occurrence of heavy‐precipitation and high‐temperature extremes
  publication-title: Nature Climate Change
– volume: 99
  start-page: 1460
  year: 2011
  end-page: 1469
  article-title: Identifying population‐and community‐level mechanisms of diversity–stability relationships in experimental grasslands
  publication-title: Journal of Ecology
– volume: 98
  start-page: 971
  year: 2017
  end-page: 981
  article-title: Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands
  publication-title: Ecology
– volume: 94
  start-page: 1220
  year: 2019
  end-page: 1245
  article-title: Biodiversity and ecosystem functioning in naturally assembled communities
  publication-title: Biological Reviews
– volume: 120
  start-page: 399
  year: 2011
  end-page: 408
  article-title: Experimental design and the outcome and interpretation of diversity–stability relations
  publication-title: Oikos
– volume: 276
  start-page: 2923
  year: 2009
  end-page: 2929
  article-title: What drives community dynamics?
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 99
  start-page: 2592
  year: 2018
  end-page: 2604
  article-title: Negative relationships between species richness and temporal variability are common but weak in natural systems
  publication-title: Ecology
– volume: 173
  start-page: 389
  year: 2009
  end-page: 399
  article-title: Predation alters relationships between biodiversity and temporal stability
  publication-title: The American Naturalist
– volume: 7
  start-page: 176
  year: 2014
  end-page: 187
  article-title: Phylogenetic diversity stabilizes community biomass
  publication-title: Journal of Plant Ecology
– volume: 95
  start-page: 2680
  year: 2014
  article-title: The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands
  publication-title: Ecology
– volume: 114
  start-page: 291
  year: 2006
  end-page: 302
  article-title: Nutrient enrichment weakens the stabilizing effect of species richness
  publication-title: Oikos
– volume: 1
  start-page: 430
  year: 2008
  end-page: 437
  article-title: Global nitrogen deposition and carbon sinks
  publication-title: Nature Geoscience
– volume: 549
  start-page: 261
  year: 2017
  end-page: 264
  article-title: Biodiversity effects in the wild are common and as strong as key drivers of productivity
  publication-title: Nature
– volume: 8
  start-page: 1
  year: 2017
  end-page: 7
  article-title: Climate warming reduces the temporal stability of plant community biomass production
  publication-title: Nature Communications
– year: 2018
– volume: 441
  start-page: 629
  year: 2006
  end-page: 632
  article-title: Biodiversity and ecosystem stability in a decade‐long grassland experiment
  publication-title: Nature
– volume: 86
  start-page: 638
  year: 1979
  article-title: The file drawer problem and tolerance for null results
  publication-title: Psychological Bulletin
– volume: 10
  start-page: 101
  year: 1954
  end-page: 129
  article-title: The combination of estimates from different experiments
  publication-title: Biometrics
– volume: 93
  start-page: 891
  year: 2012
  end-page: 901
  article-title: Diversity and stability of herbivorous fishes on coral reefs
  publication-title: Ecology
– volume: 273
  start-page: 1
  year: 2006
  end-page: 9
  article-title: All wet or dried up? Real differences between aquatic and terrestrial food webs
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 446
  start-page: E6
  year: 2007
  end-page: E7
  article-title: Ecology: diversity and stability in plant communities
  publication-title: Nature
– volume: 286
  start-page: 542
  year: 1999
  end-page: 544
  article-title: Stability and variability in competitive communities
  publication-title: Science
– volume: 97
  start-page: 357
  year: 1963
  end-page: 374
  article-title: On certain unifying principles in ecology
  publication-title: The American Naturalist
– volume: 40
  start-page: 393
  year: 2009
  end-page: 414
  article-title: The causes and consequences of compensatory dynamics in ecological communities
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 27
  start-page: 646
  year: 2016
  end-page: 653
  article-title: Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?
  publication-title: Journal of Vegetation Science
– volume: 96
  start-page: 1340
  year: 2015
  end-page: 1350
  article-title: Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities
  publication-title: Ecology
– volume: 32
  start-page: 199
  year: 2001
  end-page: 247
  article-title: Meta‐analysis in ecology
  publication-title: Advances in Ecological Research
– start-page: 1086
  year: 1991
  end-page: 1087
  article-title: Effect sizes: Pearson's correlation, its display via the BESD, and alternative indices
  publication-title: American Psychchologist
– volume: 104
  start-page: 3273
  year: 2007
  end-page: 3277
  article-title: Compensatory dynamics are rare in natural ecological communities
  publication-title: Proceedings of the National Academy of Sciences
– volume: 117
  start-page: 24345
  year: 2020
  end-page: 24351
  article-title: Synchrony matters more than species richness in plant community stability at a global scale
  publication-title: Proceedings of the National Academy of Sciences
– volume: 486
  start-page: 59
  year: 2012
  end-page: 67
  article-title: Biodiversity loss and its impact on humanity
  publication-title: Nature
– volume: 16
  start-page: 140
  year: 2013
  end-page: 150
  article-title: Understanding diversity–stability relationships: Towards a unified model of portfolio effects
  publication-title: Ecology Letters
– volume: 164
  start-page: 262
  year: 1969
  end-page: 270
  article-title: The strategy of ecosystem development
  publication-title: Science
– volume: 91
  start-page: 2213
  year: 2010
  end-page: 2220
  article-title: General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding
  publication-title: Ecology
– year: 1958
– volume: 315
  start-page: 629
  year: 1997
  end-page: 634
  article-title: Bias in meta‐analysis detected by a simple, graphical test
  publication-title: BMJ
– volume: 106
  start-page: 13393
  year: 2009
  end-page: 13398
  article-title: Perturbations to trophic interactions and the stability of complex food webs
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  start-page: 785
  year: 2002
  end-page: 791
  article-title: A cross‐ecosystem comparison of the strength of trophic cascades
  publication-title: Ecology Letters
– volume: 27
  start-page: 1061
  year: 2016
  end-page: 1070
  article-title: Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems
  publication-title: Journal of Vegetation Science
– volume: 281
  start-page: 20140633
  year: 2014
  article-title: Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 96
  start-page: 1463
  year: 1999
  end-page: 1468
  article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis
  publication-title: Proceedings of the National Academy of Sciences
– volume: 28
  start-page: 1430
  year: 2019
  end-page: 1439
  article-title: Plant phylogenetic diversity stabilizes large‐scale ecosystem productivity
  publication-title: Global Ecology and Biogeography
– volume: 2
  start-page: 1579
  year: 2018
  end-page: 1587
  article-title: Multiple facets of biodiversity drive the diversity–stability relationship
  publication-title: Nature Ecology & evolution
– volume: 16
  start-page: 106
  year: 2013
  end-page: 115
  article-title: Biodiversity and ecosystem stability: A synthesis of underlying mechanisms
  publication-title: Ecology Letters
– volume: 122
  start-page: 229
  year: 1983
  end-page: 239
  article-title: Complexity, diversity, and stability: a reconciliation of theoretical and empirical results
  publication-title: The American Naturalist
– volume: 172
  start-page: E48
  year: 2008
  end-page: E66
  article-title: Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments
  publication-title: The American Naturalist
– volume: 156
  start-page: 534
  year: 2000
  end-page: 552
  article-title: Biodiversity, stability, and productivity in competitive communities
  publication-title: The American Naturalist
– volume: 7
  start-page: 40
  year: 2007
  end-page: 45
  article-title: meta: An R package for meta‐analysis
  publication-title: R News
– volume: 508
  start-page: 521
  year: 2014
  end-page: 525
  article-title: Eutrophication weakens stabilizing effects of diversity in natural grasslands
  publication-title: Nature
– volume: 116
  start-page: 2044
  year: 2007
  end-page: 2052
  article-title: Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie
  publication-title: Oikos
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  article-title: Conducting meta‐analyses in R with the metafor package
  publication-title: Journal of Statistical Software
– volume: 49
  start-page: 962
  year: 1968
  end-page: 972
  article-title: Structure and function in California grasslands
  publication-title: Ecology
– volume: 183
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments
  publication-title: The American Naturalist
– volume: 36
  start-page: 419
  year: 2005
  end-page: 444
  article-title: Measurement of interaction strength in nature
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 36
  start-page: 533
  year: 1955
  end-page: 536
  article-title: Fluctuations of animal populations and a measure of community stability
  publication-title: Ecology
– volume: 80
  start-page: 1142
  year: 1999
  end-page: 1149
  article-title: Statistical issues in ecological meta‐analyses
  publication-title: Ecology
– volume: 348
  start-page: 336
  year: 2015
  end-page: 340
  article-title: Anthropogenic environmental changes affect ecosystem stability via biodiversity
  publication-title: Science
– volume: 93
  start-page: S223
  year: 2012
  end-page: S233
  article-title: Phylogenetic diversity promotes ecosystem stability
  publication-title: Ecology
– volume: 4
  start-page: 1485
  year: 2020
  end-page: 1494
  article-title: The results of biodiversity–ecosystem functioning experiments are realistic
  publication-title: Nature Ecology & Evolution
– volume: 416
  start-page: 389
  year: 2002
  end-page: 395
  article-title: Ecological responses to recent climate change
  publication-title: Nature
– year: 1974
– volume: 111
  start-page: 515
  year: 1977
  end-page: 525
  article-title: Diversity and stability of ecological communities: a comment on the role of empiricism in ecology
  publication-title: The American Naturalist
– volume: 6
  year: 2009
  article-title: Preferred reporting items for systematic reviews and meta‐analyses: the PRISMA statement
  publication-title: PLoS Medicine
– volume: 166
  start-page: 761
  year: 2011
  end-page: 768
  article-title: Dominant species, rather than diversity, regulates temporal stability of plant communities
  publication-title: Oecologia
– volume: 110
  start-page: 449
  year: 1997
  end-page: 460
  article-title: Hidden treatments in ecological experiments: re‐evaluating the ecosystem function of biodiversity
  publication-title: Oecologia
– volume: 174
  start-page: 651
  year: 2009
  end-page: 659
  article-title: Different effects of species diversity on temporal stability in single‐trophic and multitrophic communities
  publication-title: The American Naturalist
– volume: 395
  start-page: 794
  year: 1998
  end-page: 798
  article-title: Weak trophic interactions and the balance of nature
  publication-title: Nature
– volume: 95
  start-page: 1693
  year: 2014
  end-page: 1700
  article-title: Biotic mechanisms of community stability shift along a precipitation gradient
  publication-title: Ecology
– ident: e_1_2_10_10_1
  doi: 10.1890/12-1406.1
– ident: e_1_2_10_36_1
  doi: 10.1038/ncomms15378
– ident: e_1_2_10_11_1
  doi: 10.1038/nature23886
– ident: e_1_2_10_21_1
  doi: 10.1038/nature13014
– ident: e_1_2_10_19_1
  doi: 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
– ident: e_1_2_10_23_1
  doi: 10.1890/09-1162.1
– ident: e_1_2_10_43_1
  doi: 10.2307/1936547
– ident: e_1_2_10_37_1
  doi: 10.2307/1929601
– ident: e_1_2_10_71_1
  doi: 10.1073/pnas.96.4.1463
– ident: e_1_2_10_27_1
  doi: 10.1126/science.286.5439.542
– ident: e_1_2_10_52_1
  doi: 10.1111/j.2006.0030-1299.14739.x
– ident: e_1_2_10_31_1
  doi: 10.1086/284132
– ident: e_1_2_10_58_1
  doi: 10.1046/j.1461-0248.2002.00381.x
– ident: e_1_2_10_32_1
  doi: 10.1890/14-0170.1
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1600-0706.2010.18768.x
– ident: e_1_2_10_22_1
  doi: 10.1126/science.aaa1788
– ident: e_1_2_10_45_1
  doi: 10.1098/rspb.2009.0523
– ident: e_1_2_10_4_1
  doi: 10.1890/11-0426.1
– ident: e_1_2_10_59_1
  doi: 10.1098/rspb.2005.3377
– ident: e_1_2_10_69_1
  doi: 10.1111/jvs.12399
– ident: e_1_2_10_42_1
  doi: 10.1086/283181
– ident: e_1_2_10_41_1
  doi: 10.1111/j.0030-1299.2006.13990.x
– ident: e_1_2_10_3_1
  doi: 10.1002/9780470743386
– ident: e_1_2_10_29_1
  doi: 10.1086/605961
– ident: e_1_2_10_56_1
  doi: 10.1007/s00442-011-1916-1
– ident: e_1_2_10_15_1
  doi: 10.1038/nclimate2617
– ident: e_1_2_10_35_1
  doi: 10.1111/ele.12073
– ident: e_1_2_10_18_1
  doi: 10.1016/S0065-2504(01)32013-5
– ident: e_1_2_10_33_1
  doi: 10.1086/303402
– ident: e_1_2_10_62_1
  doi: 10.1038/nature04742
– ident: e_1_2_10_67_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_10_24_1
  doi: 10.1073/pnas.0603798104
– ident: e_1_2_10_2_1
  doi: 10.1038/nature05749
– volume-title: Stability and complexity in model ecosystems
  year: 1974
  ident: e_1_2_10_39_1
– ident: e_1_2_10_40_1
  doi: 10.1111/geb.12963
– ident: e_1_2_10_64_1
  doi: 10.1073/pnas.1920405117
– ident: e_1_2_10_6_1
  doi: 10.1038/nature11148
– ident: e_1_2_10_8_1
  doi: 10.2307/3001666
– ident: e_1_2_10_61_1
  doi: 10.1890/11-1753.1
– ident: e_1_2_10_12_1
  doi: 10.1136/bmj.315.7109.629
– volume: 94
  start-page: 1220
  year: 2019
  ident: e_1_2_10_65_1
  article-title: Biodiversity and ecosystem functioning in naturally assembled communities
  publication-title: Biological Reviews
  doi: 10.1111/brv.12499
– ident: e_1_2_10_20_1
  doi: 10.1890/13-0895.1
– ident: e_1_2_10_30_1
  doi: 10.1038/s41559-020-1280-9
– ident: e_1_2_10_49_1
  doi: 10.1093/jpe/rtt071
– ident: e_1_2_10_7_1
  doi: 10.1890/14-1324.1
– ident: e_1_2_10_51_1
  doi: 10.1038/ngeo230
– ident: e_1_2_10_53_1
  doi: 10.1111/j.1365-2745.2011.01875.x
– ident: e_1_2_10_47_1
  doi: 10.1073/pnas.0903682106
– ident: e_1_2_10_63_1
  doi: 10.1002/ecy.1757
– ident: e_1_2_10_16_1
  doi: 10.1146/annurev.ecolsys.39.110707.173349
– ident: e_1_2_10_54_1
  doi: 10.1037/0033-2909.86.3.638
– ident: e_1_2_10_13_1
  doi: 10.1111/jvs.12435
– ident: e_1_2_10_60_1
  doi: 10.1111/ele.12019
– ident: e_1_2_10_28_1
  doi: 10.1086/596540
– ident: e_1_2_10_68_1
  doi: 10.1038/416389a
– ident: e_1_2_10_26_1
  doi: 10.1007/s004420050180
– volume: 7
  start-page: 40
  year: 2007
  ident: e_1_2_10_57_1
  article-title: meta: An R package for meta‐analysis
  publication-title: R News
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1442-9993.1992.tb00812.x
– ident: e_1_2_10_70_1
  doi: 10.1146/annurev.ecolsys.36.091704.175535
– ident: e_1_2_10_48_1
  doi: 10.1111/j.2007.0030-1299.16080.x
– ident: e_1_2_10_25_1
  doi: 10.1002/ecy.2514
– ident: e_1_2_10_44_1
  doi: 10.1371/journal.pmed.1000097
– ident: e_1_2_10_38_1
  doi: 10.1086/282286
– ident: e_1_2_10_66_1
  doi: 10.1098/rspb.2014.0633
– ident: e_1_2_10_34_1
  doi: 10.1086/589746
– volume-title: R: A language and environment for statistical computing
  year: 2018
  ident: e_1_2_10_50_1
– ident: e_1_2_10_9_1
  doi: 10.1038/s41559-018-0647-7
– ident: e_1_2_10_17_1
  doi: 10.1086/673915
– ident: e_1_2_10_46_1
  doi: 10.1126/science.164.3877.262
– ident: e_1_2_10_55_1
  doi: 10.1037/0003-066X.46.10.1086
SSID ssj0012971
Score 2.639153
SecondaryResourceType review_article
Snippet Despite much recent progress, our understanding of diversity–stability relationships across different study systems remains incomplete. In particular, recent...
Despite much recent progress, our understanding of diversity-stability relationships across different study systems remains incomplete. In particular, recent...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2256
SubjectTerms Aquatic environment
Aquatic populations
asynchrony
Biodiversity
Dynamic stability
ecological balance
ecosystem functions
Ecosystem stability
Ecosystem studies
Ecosystems
Empirical analysis
Environmental Sciences
Meta-analysis
Population
Population dynamics
Population stability
Population studies
Species diversity
stability
Stability analysis
Terrestrial ecosystems
Title Consistently positive effect of species diversity on ecosystem, but not population, temporal stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13777
https://www.ncbi.nlm.nih.gov/pubmed/34002439
https://www.proquest.com/docview/2570251218
https://www.proquest.com/docview/2528816038
https://www.proquest.com/docview/2636631071
https://hal.science/hal-03356577
Volume 24
WOSCitedRecordID wos000651199400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1461-0248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012971
  issn: 1461-023X
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6ymxZ6afrupmlQSw89xMWWbEump9DuksMSSmlgb0bWgxYWu2S9C_vvOyM_SGgbCr0Ze4wla8aazxp9H8C71DmPqAEjzfI8SnWhIiWMjnRmMqm1Jp3JIDYhLy_ValV8OYCPw16Yjh9i_OFGkRG-1xTgutrcCHL8Kn8gujw5gUOOfptO4fDz18XVclxE4EWHt9IcETMXq55YiAp5xptvTUeT71QM-XumeTtxDTPP4ui_2vwIHvYJJzvvPOQxHLj6CdzvJCj3eDQPtNX7p-CDdicOet2u96wr5to51hV8sMYz2pSJuJrZoZSDNTVD9NqRQZ-xatuyumnx1kET7Iz1zFdrhkloKMPdP4Orxfzbp4uoV2GITMpjGXEvZOrzigsvtFaZFbkx2B3ONS9i5RNrrawq2hKrCQ0i3ksxLbHWF0mVJV48h2nd1O4lMMuN49JlSug8jZXTsa0SbZSNK-9FZWbwfhiM0vQU5aSUsS4HqIIvsAwvcAZvR9OfHS_HH41wRMfrxKR9cb4s6VwsBC34yl0yg5NhwMs-fjclaftR5peoGbwZL2Pk0XKKrl2zJRuuFKl032WTC0zpEGLjY150zjQ2R6SBDrLAXgef-Xs_yvlyHg6O_930FTzgVH4T6g5PYNpeb91ruGd27Y_N9SlM5Eqd9gHzCzwyFwo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7szir64nVXR1eN4oMPW2mTXlLwZdEZRqyDyC7MW0lzwYWhld3OwPx7z0kvuHhB8C20JzRpctLzNSffB_A6ttYhakBPMzwNYpXLQAqtApXoJFNKkc6kF5vIlku5WuVf9uDdcBam44cYf7iRZ_j1mhycfkj_5OW4LL8lvrxsHw5inEbJBA4-fJ2fF-MuAs87wBWnCJm5WPXMQpTJM1a-9j3a_0bZkL-GmtcjV__pmd_9v0bfgzt9yMlOuzlyH_Zs_QBudiKUOyzNPHH17iE4r96Jw1636x3r0rm2lnUpH6xxjI5lIrJmZkjmYE3NEL92dNAnrNq0rG5arDqogp2wnvtqzTAM9Ym4u0M4n8_O3i-CXoch0DEPs4A7kcUurbhwQimZGJFqjd3hXPE8lC4yxmRVRYdiFeFBRHwxBibGuDyqksiJI5jUTW0fAzNcW57ZRAqVxqG0KjRVpLQ0YeWcqPQU3gyjUeqepJy0MtblAFbwBZb-BU7h1Wj6vWPm-K0RDul4n7i0F6dFSddCIWjLN9tGUzgeRrzsPfiqJHU_iv0iOYWX4230PdpQUbVtNmTDpSSd7r_ZpAKDOgTZ-JhH3WwamyNiTwiZY6_9pPlzP8pZMfOFJ_9u-gJuLc4-F2XxcfnpKdzmlIzjsxCPYdJebuwzuKG37cXV5fPeb34AVbgaEg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC72oYsX36ujq7biwcNGku5O0gEvizvDisOwiAtzC51-oDAky25mYP69VZ0HLj4QvIWkQrpTXen60tXfB_BWOucRNWCkWZ5FUhcqUsLoSKcmzbXWpDMZxCbyxUItl8X5DnwY9sJ0_BDjDzeKjPC9pgB3l9b_FOX4WX5PfHn5LuzLtMgwLPdPv8wu5uMqAi86wCUzhMxcLHtmIarkGW--MR_tfqNqyF9TzZuZa5h6Zvf-r9H34W6fcrKTbow8gB1XP4TbnQjlFo-mgbh6-wh8UO9Et9ftasu6cq6NY13JB2s8o22ZiKyZHYo5WFMzxK8dHfQxq9Ytq5sWbx1UwY5Zz321YpiGhkLc7WO4mE2_fjyLeh2GyEge5xH3Ipc-q7jwQmuVWpEZg93hXPMiVj6x1uZVRZtiNeFBRHwSExNrfZFUaeLFIezVTe2eArPcOJ67VAmdyVg5Hdsq0UbZuPJeVGYC7wZvlKYnKSetjFU5gBV8gWV4gRN4M5pedswcvzVCl47XiUv77GRe0rlYCFryzTfJBI4Gj5d9BF-XpO5HuV-iJvB6vIyxRwsqunbNmmy4UqTT_TebTGBShyAbH_OkG01jc4QMhJAF9joMmj_3o5zOp-Hg2b-bvoKD89NZOf-0-Pwc7nCqxQlFiEew116t3Qu4ZTbt9-url33Y_AC6nhmN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistently+positive+effect+of+species+diversity+on+ecosystem%2C+but+not+population%2C+temporal+stability&rft.jtitle=Ecology+letters&rft.au=Xu%2C+Qianna&rft.au=Yang%2C+Xian&rft.au=Yan%2C+Ying&rft.au=Wang%2C+Shaopeng&rft.date=2021-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=24&rft.issue=10&rft.spage=2256&rft.epage=2266&rft_id=info:doi/10.1111%2Fele.13777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon