Skin‐Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings

Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels po...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced functional materials Ročník 29; číslo 31
Hlavní autoři: Zhao, Yue, Li, Zuhao, Song, Shanliang, Yang, Kerong, Liu, Hou, Yang, Zhe, Wang, Jincheng, Yang, Bai, Lin, Quan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.08.2019
Témata:
ISSN:1616-301X, 1616-3028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing. Inspired by the multiple functions of animal skin, a conductive hydrogel is fabricated based on a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness.
AbstractList Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing. Inspired by the multiple functions of animal skin, a conductive hydrogel is fabricated based on a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness.
Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.
Author Zhao, Yue
Liu, Hou
Wang, Jincheng
Yang, Kerong
Yang, Zhe
Song, Shanliang
Yang, Bai
Li, Zuhao
Lin, Quan
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: Jilin University
– sequence: 2
  givenname: Zuhao
  surname: Li
  fullname: Li, Zuhao
  organization: the Second Hospital of Jilin University
– sequence: 3
  givenname: Shanliang
  surname: Song
  fullname: Song, Shanliang
  organization: Jilin University
– sequence: 4
  givenname: Kerong
  surname: Yang
  fullname: Yang, Kerong
  organization: the Second Hospital of Jilin University
– sequence: 5
  givenname: Hou
  surname: Liu
  fullname: Liu, Hou
  organization: Jilin University
– sequence: 6
  givenname: Zhe
  surname: Yang
  fullname: Yang, Zhe
  organization: Jilin University
– sequence: 7
  givenname: Jincheng
  surname: Wang
  fullname: Wang, Jincheng
  email: wangjinc@jlu.edu.cn, jinchengwang@hotmail.com
  organization: the Second Hospital of Jilin University
– sequence: 8
  givenname: Bai
  surname: Yang
  fullname: Yang, Bai
  organization: Jilin University
– sequence: 9
  givenname: Quan
  orcidid: 0000-0001-9997-4240
  surname: Lin
  fullname: Lin, Quan
  email: linquan@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkMtKAzEUhoNUsK1uXQdcT81lOtMsSy-2UHFRRXdDJpeSOk1qklG68xF8Rp_EKZUKgrg6h8P_ncP5OqBlnVUAXGLUwwiRay71pkcQZgineXoC2jjDWUIRGbSOPX46A50Q1gjhPKdpG6yXz8Z-vn_MbdgaryQc2mhKLqLyhldw5KysRTSvCs520ruVqgLUzsPJ1kjlN01kqWxwPkBuJRwbXqpoBJw6F-Gjq_czr0IwdhXOwanmVVAX37ULHqaT-9EsWdzdzEfDRSJSgtJEE8oF5ZhrhRiRjArBhMKaozxFvM-Y0JTKUpZlXza_obJ5OReMDahOsyxTtAuuDnu33r3UKsRi7Wpvm5MFIVk_b1wNsiaVHlLCuxC80oUwkUfjbPTcVAVGxd5qsbdaHK02WO8XtvVmw_3ub4AdgDdTqd0_6WI4nt7-sF8GxY8G
CitedBy_id crossref_primary_10_1007_s10853_021_06242_0
crossref_primary_10_1016_j_colsurfa_2019_124402
crossref_primary_10_1039_D3MH00192J
crossref_primary_10_1016_j_cej_2023_145941
crossref_primary_10_1016_j_ijbiomac_2024_134424
crossref_primary_10_1016_j_cej_2021_134012
crossref_primary_10_1021_acsanm_4c07182
crossref_primary_10_1021_acsnano_5c01864
crossref_primary_10_1016_j_bioactmat_2022_05_009
crossref_primary_10_1177_08853282231151375
crossref_primary_10_1016_j_cej_2021_132635
crossref_primary_10_1016_j_ijbiomac_2023_128275
crossref_primary_10_1016_j_biomaterials_2024_122964
crossref_primary_10_1016_j_matdes_2024_113358
crossref_primary_10_1016_j_bioadv_2022_212815
crossref_primary_10_1016_j_mattod_2023_10_011
crossref_primary_10_1016_j_eurpolymj_2023_112211
crossref_primary_10_1016_j_mtchem_2025_102633
crossref_primary_10_1002_adfm_202208141
crossref_primary_10_1016_j_cej_2023_142543
crossref_primary_10_1007_s10853_023_09087_x
crossref_primary_10_1016_j_mtcomm_2021_102225
crossref_primary_10_1016_j_ijbiomac_2024_137374
crossref_primary_10_1002_bab_2051
crossref_primary_10_1016_j_cej_2022_140546
crossref_primary_10_1002_adfm_202010461
crossref_primary_10_1002_jbm_a_37951
crossref_primary_10_1039_D1RA04992E
crossref_primary_10_1016_j_nanoen_2023_109142
crossref_primary_10_1016_j_actbio_2021_10_008
crossref_primary_10_1016_j_matdes_2021_110104
crossref_primary_10_1002_jbm_a_37252
crossref_primary_10_1039_D3SC00145H
crossref_primary_10_1016_j_carbpol_2024_122348
crossref_primary_10_3390_ijms221910563
crossref_primary_10_34133_bmr_0066
crossref_primary_10_3390_gels9020138
crossref_primary_10_1016_j_ijbiomac_2024_130172
crossref_primary_10_1016_j_cis_2023_102920
crossref_primary_10_1016_j_cej_2022_135646
crossref_primary_10_1002_adhm_202100062
crossref_primary_10_1016_j_ijbiomac_2020_11_014
crossref_primary_10_1016_j_cej_2021_132779
crossref_primary_10_1002_admt_202200821
crossref_primary_10_1089_wound_2019_1094
crossref_primary_10_1002_adma_202108932
crossref_primary_10_1039_D2BM00602B
crossref_primary_10_1002_mabi_202000252
crossref_primary_10_1002_mabi_202500205
crossref_primary_10_1002_marc_202400960
crossref_primary_10_3390_ma18153568
crossref_primary_10_1016_j_carbpol_2024_122690
crossref_primary_10_1016_j_nantod_2024_102354
crossref_primary_10_3390_molecules25225296
crossref_primary_10_1007_s11431_020_1695_0
crossref_primary_10_1016_j_cej_2020_124855
crossref_primary_10_3389_fbioe_2022_846401
crossref_primary_10_1002_adfm_202112281
crossref_primary_10_1039_D5TC00805K
crossref_primary_10_3390_nano10081518
crossref_primary_10_1016_j_eurpolymj_2021_110977
crossref_primary_10_3390_nano12234167
crossref_primary_10_1002_adtp_202100075
crossref_primary_10_1016_j_reactfunctpolym_2025_106335
crossref_primary_10_1016_j_nanoen_2023_108989
crossref_primary_10_1016_j_ijbiomac_2021_09_019
crossref_primary_10_1016_j_cej_2021_129488
crossref_primary_10_1016_j_cej_2021_133859
crossref_primary_10_1016_j_cej_2021_130921
crossref_primary_10_1002_smll_202201620
crossref_primary_10_1016_j_ijbiomac_2022_10_263
crossref_primary_10_1007_s10853_024_09493_9
crossref_primary_10_1016_j_colsurfb_2022_112914
crossref_primary_10_1016_j_jcis_2025_137625
crossref_primary_10_1002_smtd_202401156
crossref_primary_10_1016_j_progpolymsci_2022_101573
crossref_primary_10_3390_life13010069
crossref_primary_10_1002_wnan_1745
crossref_primary_10_1016_j_cej_2022_137163
crossref_primary_10_1002_adhm_202404535
crossref_primary_10_1002_mabi_202200111
crossref_primary_10_1016_j_compositesa_2025_109038
crossref_primary_10_1039_D0BM01373K
crossref_primary_10_1111_wrr_13173
crossref_primary_10_1016_j_compositesa_2023_107892
crossref_primary_10_1016_j_polymer_2021_123450
crossref_primary_10_1016_j_biomaterials_2023_122251
crossref_primary_10_1088_1748_605X_ad0d85
crossref_primary_10_3390_bios12050301
crossref_primary_10_1002_adfm_202200908
crossref_primary_10_1007_s40820_021_00751_y
crossref_primary_10_1021_acsami_5c11437
crossref_primary_10_1016_j_actbio_2024_04_035
crossref_primary_10_1016_j_cis_2022_102749
crossref_primary_10_3390_polym15020468
crossref_primary_10_1016_j_cej_2024_149303
crossref_primary_10_1016_j_jddst_2022_103423
crossref_primary_10_1002_adhm_202202971
crossref_primary_10_1177_2041731420947242
crossref_primary_10_1016_j_progpolymsci_2023_101740
crossref_primary_10_1016_j_colsurfb_2022_112902
crossref_primary_10_1016_j_actbio_2025_06_036
crossref_primary_10_2147_IJN_S276001
crossref_primary_10_3390_gels10070448
crossref_primary_10_1016_j_cej_2024_150545
crossref_primary_10_1016_j_ijbiomac_2022_08_061
crossref_primary_10_1016_j_apmt_2022_101362
crossref_primary_10_1002_adfm_202009442
crossref_primary_10_1016_j_ijpharm_2021_120698
crossref_primary_10_1038_s41528_022_00228_x
crossref_primary_10_1093_burnst_tkaf038
crossref_primary_10_1002_chem_202304349
crossref_primary_10_1016_j_cej_2024_156871
crossref_primary_10_1002_admi_202101786
crossref_primary_10_1016_j_jcis_2021_10_097
crossref_primary_10_1016_j_actbio_2021_03_057
crossref_primary_10_1016_j_ijbiomac_2022_11_065
crossref_primary_10_1016_j_ijbiomac_2024_137209
crossref_primary_10_1016_j_nanoms_2025_05_003
crossref_primary_10_1016_j_actbio_2024_03_010
crossref_primary_10_1016_j_biomaterials_2025_123284
crossref_primary_10_1016_j_cej_2020_125994
crossref_primary_10_1016_j_coco_2024_102208
crossref_primary_10_1016_j_mtcomm_2025_112023
crossref_primary_10_1016_j_progpolymsci_2021_101472
crossref_primary_10_3389_fbioe_2023_1308184
crossref_primary_10_3390_ma16031215
crossref_primary_10_1002_wnan_1640
crossref_primary_10_1016_j_molliq_2022_119075
crossref_primary_10_1016_j_ijbiomac_2020_08_108
crossref_primary_10_1093_rb_rbab034
crossref_primary_10_1002_adhm_202100012
crossref_primary_10_1016_j_ijbiomac_2020_10_129
crossref_primary_10_1016_j_carbpol_2021_118357
crossref_primary_10_1016_j_ijbiomac_2022_03_015
crossref_primary_10_1016_j_pmatsci_2022_101045
crossref_primary_10_1007_s10570_021_03800_2
crossref_primary_10_34133_2022_9850743
crossref_primary_10_1016_j_ijbiomac_2022_08_149
crossref_primary_10_1016_j_cej_2022_141206
crossref_primary_10_1016_j_coco_2021_100739
crossref_primary_10_1186_s12951_023_02113_9
crossref_primary_10_1016_j_colcom_2022_100620
crossref_primary_10_1016_j_ijbiomac_2025_140448
crossref_primary_10_1002_adfm_202000398
crossref_primary_10_1002_adma_202100176
crossref_primary_10_1016_j_ijbiomac_2023_127441
crossref_primary_10_1039_D2BM02057B
crossref_primary_10_3390_biomimetics8010128
crossref_primary_10_1016_j_compositesb_2022_109921
crossref_primary_10_1002_adhm_202502497
crossref_primary_10_1002_advs_202206981
crossref_primary_10_1016_j_cej_2022_139491
crossref_primary_10_3390_polym13040613
crossref_primary_10_1016_j_apsusc_2024_160607
crossref_primary_10_1016_j_ijbiomac_2023_125029
crossref_primary_10_1088_1758_5090_acb6b8
crossref_primary_10_1002_adfm_202105264
crossref_primary_10_1016_j_cej_2021_134061
crossref_primary_10_1016_j_bprint_2025_e00392
crossref_primary_10_1002_adhm_202302059
crossref_primary_10_1002_adfm_201909954
crossref_primary_10_1002_adhm_202300431
crossref_primary_10_1073_pnas_2016268117
crossref_primary_10_1039_D5TB01130B
crossref_primary_10_3389_fbioe_2020_00083
crossref_primary_10_1002_adhm_202301885
crossref_primary_10_1016_j_actbio_2022_05_047
crossref_primary_10_1007_s00396_020_04608_5
crossref_primary_10_1016_j_biomaterials_2021_121026
crossref_primary_10_1021_jacs_1c08679
crossref_primary_10_1039_D2BM00891B
crossref_primary_10_1186_s12951_022_01516_4
crossref_primary_10_3389_fbioe_2021_765987
crossref_primary_10_1002_smmd_70016
crossref_primary_10_1007_s13233_022_0062_4
crossref_primary_10_1007_s42114_024_00847_0
crossref_primary_10_1002_adhm_202102535
crossref_primary_10_1089_ten_teb_2020_0339
crossref_primary_10_1016_j_cej_2023_142831
crossref_primary_10_1021_acscentsci_3c00994
crossref_primary_10_1089_wound_2022_0059
crossref_primary_10_1016_j_biopha_2021_111946
crossref_primary_10_1016_j_bioactmat_2022_04_032
crossref_primary_10_1063_5_0093261
crossref_primary_10_1016_j_addr_2023_114823
crossref_primary_10_1002_adhm_202401503
crossref_primary_10_1002_marc_202000441
crossref_primary_10_1002_app_54859
crossref_primary_10_1016_j_ijbiomac_2024_136568
crossref_primary_10_1002_marc_202000444
crossref_primary_10_3389_fendo_2023_1124027
crossref_primary_10_1016_j_jiec_2020_05_001
crossref_primary_10_1002_advs_202306784
crossref_primary_10_1016_j_cej_2023_143362
crossref_primary_10_1016_j_colsurfb_2020_111502
crossref_primary_10_1063_5_0218251
crossref_primary_10_1016_j_bioadv_2024_213869
crossref_primary_10_1016_j_matdes_2022_111452
crossref_primary_10_1002_admt_202000426
crossref_primary_10_1016_j_bioactmat_2021_09_022
crossref_primary_10_1016_j_molliq_2024_126117
crossref_primary_10_1002_advs_202004627
crossref_primary_10_1016_j_jcis_2021_10_057
crossref_primary_10_1016_j_cej_2024_154890
crossref_primary_10_1016_j_pmatsci_2023_101156
crossref_primary_10_1002_adhm_202001384
crossref_primary_10_1016_j_ijbiomac_2024_132080
crossref_primary_10_1016_j_jddst_2025_106848
crossref_primary_10_1002_aelm_202300436
crossref_primary_10_1016_j_cej_2022_134826
crossref_primary_10_1002_adfm_202103391
crossref_primary_10_1002_adfm_202302846
crossref_primary_10_1016_j_ijbiomac_2021_07_162
crossref_primary_10_1016_j_cej_2023_145891
crossref_primary_10_1002_adhm_202001821
crossref_primary_10_1002_adfm_202407934
crossref_primary_10_1016_j_jddst_2023_105062
crossref_primary_10_3390_jfb14110553
crossref_primary_10_1007_s40820_025_01834_w
crossref_primary_10_1093_burnst_tkaf025
crossref_primary_10_1002_smll_202303153
crossref_primary_10_1007_s12274_022_4192_y
crossref_primary_10_3390_ijms24010336
crossref_primary_10_1002_advs_202003627
crossref_primary_10_1016_j_biomaterials_2020_119936
crossref_primary_10_1016_j_cej_2024_155295
crossref_primary_10_1002_smll_202307070
crossref_primary_10_1002_admi_202102369
crossref_primary_10_1016_j_ijbiomac_2024_138964
crossref_primary_10_1016_j_nantod_2022_101402
crossref_primary_10_1016_j_ijbiomac_2023_123866
crossref_primary_10_1016_j_jcis_2022_07_030
crossref_primary_10_1016_j_jddst_2023_104654
crossref_primary_10_1002_adhm_202201501
crossref_primary_10_1016_j_sna_2025_116500
crossref_primary_10_1016_j_reactfunctpolym_2023_105738
crossref_primary_10_1002_adma_202307695
crossref_primary_10_1016_j_actbio_2021_04_027
crossref_primary_10_1016_j_cej_2020_125668
crossref_primary_10_1039_C9PY00953A
crossref_primary_10_1016_j_bioactmat_2021_06_015
crossref_primary_10_1016_j_jconrel_2023_01_049
crossref_primary_10_1039_D3MH00056G
crossref_primary_10_1016_j_actbio_2022_04_041
crossref_primary_10_1002_advs_202203308
crossref_primary_10_1016_j_cej_2024_153661
crossref_primary_10_1016_j_ijbiomac_2020_12_202
crossref_primary_10_1016_j_nantod_2022_101630
crossref_primary_10_1007_s00403_022_02408_1
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_3390_ma16124411
crossref_primary_10_1002_adhm_202001966
crossref_primary_10_1016_j_pmatsci_2021_100887
crossref_primary_10_1002_admt_202201527
crossref_primary_10_1002_slct_201904325
crossref_primary_10_1016_j_mtchem_2025_102936
crossref_primary_10_1002_admt_202000407
crossref_primary_10_1002_admt_202200798
crossref_primary_10_1002_app_56824
crossref_primary_10_1016_j_cej_2025_167411
crossref_primary_10_1016_j_ijbiomac_2024_131637
crossref_primary_10_1016_j_compositesb_2020_108187
crossref_primary_10_1038_s41528_022_00175_7
crossref_primary_10_1016_j_compositesa_2024_108065
crossref_primary_10_1002_btm2_10315
crossref_primary_10_1007_s11426_022_1322_5
crossref_primary_10_1002_adhm_202200837
crossref_primary_10_1016_j_cej_2021_131171
crossref_primary_10_1016_j_cej_2021_128564
crossref_primary_10_1016_j_bioadv_2022_212978
crossref_primary_10_1002_adhm_202301817
crossref_primary_10_1002_admt_202101680
crossref_primary_10_1002_aelm_202000040
crossref_primary_10_1002_mame_202200128
crossref_primary_10_1039_D0RA05692H
crossref_primary_10_1016_j_cej_2021_129668
crossref_primary_10_1007_s40843_021_1724_8
crossref_primary_10_1016_j_actbio_2022_08_048
crossref_primary_10_1016_j_carbpol_2023_121049
crossref_primary_10_1016_j_cej_2025_164834
crossref_primary_10_3390_ijms24087473
crossref_primary_10_1016_j_ijbiomac_2024_135786
crossref_primary_10_1002_adhm_202100784
crossref_primary_10_1039_C9BM01445D
crossref_primary_10_1016_j_cobme_2021_100327
crossref_primary_10_1002_macp_202500216
crossref_primary_10_3390_ph17070897
crossref_primary_10_1016_j_jcis_2021_10_131
crossref_primary_10_1016_j_cej_2024_154731
crossref_primary_10_1016_j_cej_2025_161207
crossref_primary_10_1002_pol_20210933
crossref_primary_10_1016_j_ijbiomac_2023_127151
crossref_primary_10_1016_j_ijbiomac_2025_143466
crossref_primary_10_1088_1361_6528_ac85f2
crossref_primary_10_1016_j_ijbiomac_2021_07_001
crossref_primary_10_1016_j_polymer_2020_123354
crossref_primary_10_1016_j_cej_2021_128903
crossref_primary_10_3390_ijms252111773
crossref_primary_10_1016_j_scitotenv_2021_147430
crossref_primary_10_1002_agt2_319
crossref_primary_10_1016_j_cej_2020_126204
crossref_primary_10_1021_acs_chemmater_4c02480
crossref_primary_10_1016_j_ijbiomac_2024_133361
crossref_primary_10_1038_s41467_022_29860_x
crossref_primary_10_1002_pol_20210249
crossref_primary_10_1016_j_carbpol_2025_123916
crossref_primary_10_1038_s41378_025_00912_8
crossref_primary_10_1016_j_jcis_2022_11_139
crossref_primary_10_3390_biomimetics9050278
crossref_primary_10_1177_15589250231166113
crossref_primary_10_3390_jof8060612
crossref_primary_10_1002_agt2_566
crossref_primary_10_1016_j_nanoen_2022_107393
crossref_primary_10_1016_j_jcis_2025_137455
crossref_primary_10_1016_j_msec_2021_112584
crossref_primary_10_1002_advs_202106015
crossref_primary_10_1016_j_cej_2021_131523
crossref_primary_10_3389_fphar_2021_779944
crossref_primary_10_1002_cbic_202400733
crossref_primary_10_1186_s12891_021_04617_7
crossref_primary_10_1002_flm2_31
crossref_primary_10_3390_ma17102268
crossref_primary_10_1016_j_colsurfa_2023_131361
crossref_primary_10_1016_j_ijbiomac_2024_130994
crossref_primary_10_1016_j_ijbiomac_2024_134677
crossref_primary_10_1088_1748_605X_adf67b
crossref_primary_10_1016_j_cej_2024_153063
crossref_primary_10_1038_s41528_021_00122_y
crossref_primary_10_1016_j_eurpolymj_2021_110779
crossref_primary_10_1038_s41587_022_01528_3
crossref_primary_10_1016_j_cej_2024_149493
crossref_primary_10_1016_j_carbpol_2021_117894
crossref_primary_10_1039_D5NR00406C
crossref_primary_10_48130_fia_0024_0032
crossref_primary_10_1002_smll_202104885
crossref_primary_10_1016_j_compscitech_2021_108894
crossref_primary_10_1016_j_carbpol_2022_119696
crossref_primary_10_1039_D5NR01248A
crossref_primary_10_1016_j_cej_2021_131999
crossref_primary_10_1039_D3MH00813D
crossref_primary_10_1016_j_carbpol_2022_119336
crossref_primary_10_3390_nano14030237
crossref_primary_10_1002_adfm_202415507
crossref_primary_10_1016_j_jcis_2021_01_091
Cites_doi 10.1056/NEJMcpc1701762
10.1002/adfm.201703852
10.1016/j.biomaterials.2017.01.011
10.1021/acsnano.6b05318
10.1021/acsami.7b09395
10.1021/acsnano.7b04898
10.1002/anie.201603417
10.1016/j.jcis.2011.01.054
10.1021/acs.accounts.7b00191
10.3389/frobt.2017.00048
10.1039/C5CS00362H
10.1002/adma.201800109
10.1021/acsnano.7b03513
10.1038/nature25494
10.1002/adma.201704235
10.1038/nmat4671
10.1002/adfm.201500006
10.1002/adfm.201806220
10.1016/j.molmed.2013.12.004
10.1002/adma.201700533
10.1038/s41467-018-05222-4
10.1021/acsnano.8b05067
10.1002/smll.201601916
10.1002/adma.201704640
10.1038/s41467-017-02685-9
10.1038/am.2017.33
10.1039/a807124a
10.1039/C7NR02128C
10.1002/adfm.201504197
10.1002/adma.201504244
10.1021/acs.chemmater.5b04879
10.1002/adma.201706887
10.1002/anie.201708614
10.1002/adma.201800598
10.1016/j.proghi.2007.06.001
10.1038/nature16521
10.1038/s41598-017-09828-4
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201901474
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201901474
ADFM201901474
Genre article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  funderid: 51861145311; 21174048
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4204-f23ac3a1afe092d93cc9ce1fa0740a599cf33dbdbb5d0280b2017c9983f4666e3
IEDL.DBID DRFUL
ISICitedReferencesCount 470
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477977100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Jul 13 03:09:52 EDT 2025
Sat Nov 29 07:19:18 EST 2025
Tue Nov 18 21:59:14 EST 2025
Wed Jan 22 16:39:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4204-f23ac3a1afe092d93cc9ce1fa0740a599cf33dbdbb5d0280b2017c9983f4666e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9997-4240
PQID 2265700286
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2265700286
crossref_citationtrail_10_1002_adfm_201901474
crossref_primary_10_1002_adfm_201901474
wiley_primary_10_1002_adfm_201901474_ADFM201901474
PublicationCentury 2000
PublicationDate August 1, 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 318
2011; 356
2017; 7
2000; 29
2017; 4
2017; 27
2019; 13
2016; 529
2017; 29
2017; 376
2016; 15
2017; 9
2014; 20
2016; 55
2017; 50
2018; 9
2015; 25
2017; 11
2015; 44
2018; 555
2017; 13
2017; 56
2019; 29
2018; 30
2017; 122
2007; 42
2016; 28
2005; 38
2016; 26
2014; 346
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lin W. (e_1_2_7_22_1) 2005; 38
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
Yasmine B. (e_1_2_7_21_1) 2014; 346
e_1_2_7_37_1
Theodore H. (e_1_2_7_36_1) 2017; 318
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 30
  start-page: 1800598
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 37563
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 4338
  year: 2016
  publication-title: Adv. Mater.
– volume: 38
  start-page: 320
  year: 2005
  publication-title: J. Microbiol. Immunol. Infect.
– volume: 56
  start-page: 14159
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 137
  year: 2014
  publication-title: Trends Mol. Med.
– volume: 44
  start-page: 6684
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 2466
  year: 2016
  publication-title: Chem. Mater.
– volume: 13
  start-page: 163
  year: 2019
  publication-title: ACS Nano
– volume: 11
  start-page: 9010
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 244
  year: 2018
  publication-title: Nat. Commun.
– volume: 25
  start-page: 3814
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 569
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 9196
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  start-page: 34
  year: 2017
  publication-title: Biomaterials
– volume: 29
  start-page: 1700533
  year: 2017
  publication-title: Adv. Mater.
– volume: 50
  start-page: 1734
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 1601916
  year: 2017
  publication-title: Small
– volume: 30
  start-page: 1706887
  year: 2018
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1704640
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2017
  publication-title: Front. Robot. AI
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 11
  start-page: 9614
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 7135
  year: 2017
  publication-title: Nanoscale
– volume: 9
  start-page: 2740
  year: 2018
  publication-title: Nat. Commun.
– volume: 29
  start-page: 283
  year: 2000
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 9480
  year: 2017
  publication-title: Sci. Rep.
– volume: 356
  start-page: 513
  year: 2011
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: e372
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 30
  start-page: 1704235
  year: 2018
  publication-title: Adv. Mater.
– volume: 346
  start-page: 6212
  year: 2014
  publication-title: Science
– volume: 11
  start-page: 2561
  year: 2017
  publication-title: ACS Nano
– volume: 30
  start-page: 1800109
  year: 2018
  publication-title: Adv. Mater.
– volume: 42
  start-page: 115
  year: 2007
  publication-title: Prog. Histochem. Cytochem.
– volume: 29
  start-page: 1806220
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 318
  start-page: 14
  year: 2017
  publication-title: JAMA Clin. Guidelines Synopsis
– volume: 376
  start-page: 2471
  year: 2017
  publication-title: N. Engl. J. Med.
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 27
  start-page: 1703852
  year: 2017
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_34_1
  doi: 10.1056/NEJMcpc1701762
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201703852
– ident: e_1_2_7_20_1
  doi: 10.1016/j.biomaterials.2017.01.011
– ident: e_1_2_7_29_1
  doi: 10.1021/acsnano.6b05318
– ident: e_1_2_7_35_1
  doi: 10.1021/acsami.7b09395
– ident: e_1_2_7_1_1
  doi: 10.1021/acsnano.7b04898
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201603417
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jcis.2011.01.054
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.accounts.7b00191
– volume: 318
  start-page: 14
  year: 2017
  ident: e_1_2_7_36_1
  publication-title: JAMA Clin. Guidelines Synopsis
– ident: e_1_2_7_25_1
  doi: 10.3389/frobt.2017.00048
– ident: e_1_2_7_9_1
  doi: 10.1039/C5CS00362H
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201800109
– ident: e_1_2_7_32_1
  doi: 10.1021/acsnano.7b03513
– ident: e_1_2_7_18_1
  doi: 10.1038/nature25494
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201704235
– ident: e_1_2_7_17_1
  doi: 10.1038/nmat4671
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201500006
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201806220
– ident: e_1_2_7_38_1
  doi: 10.1016/j.molmed.2013.12.004
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201700533
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-018-05222-4
– ident: e_1_2_7_12_1
  doi: 10.1021/acsnano.8b05067
– ident: e_1_2_7_28_1
  doi: 10.1002/smll.201601916
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201704640
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-017-02685-9
– volume: 346
  start-page: 6212
  year: 2014
  ident: e_1_2_7_21_1
  publication-title: Science
– volume: 38
  start-page: 320
  year: 2005
  ident: e_1_2_7_22_1
  publication-title: J. Microbiol. Immunol. Infect.
– ident: e_1_2_7_27_1
  doi: 10.1038/am.2017.33
– ident: e_1_2_7_8_1
  doi: 10.1039/a807124a
– ident: e_1_2_7_23_1
  doi: 10.1039/C7NR02128C
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.201504197
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemmater.5b04879
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201706887
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201708614
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201800598
– ident: e_1_2_7_39_1
  doi: 10.1016/j.proghi.2007.06.001
– ident: e_1_2_7_4_1
  doi: 10.1038/nature16521
– ident: e_1_2_7_37_1
  doi: 10.1038/s41598-017-09828-4
SSID ssj0017734
Score 2.7012472
Snippet Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial intelligence
Biomedical materials
Conductivity
Diabetes
Electrochemical analysis
Electronic materials
Electronic systems
flexible bio‐electronics
Foot diseases
Human tissues
Hydrogels
Materials science
mussel‐inspired
Nanoparticles
Polyanilines
Polyvinyl alcohol
self‐healing hydrogels
Sensors
Silver
silver nanoparticles
Skin
tissue adhesive
Wound healing
Title Skin‐Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901474
https://www.proquest.com/docview/2265700286
Volume 29
WOSCitedRecordID wos000477977100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtswDCa2dIf10HZ_WNqs0GHATkZsSbGtY5DE6IA0GLYFy82Q9RNkKOwhTgfs1kfoM_ZJKtqOkxyGAevNBkTBFkmRFKmPAB_jAQ9NyEJPZAPtcZopL-bW94LIcGMzYZiqQFyn0WwWLxbiy94t_hofoj1wQ82o9mtUcJmV_R1oqNQWb5KjQeMRfw5H1Akv78DR-Gsyn7aZhCiqM8thgDVewWIL3OjT_uEMh4Zp523u-6yV0UlOn_65Z3DSOJxkWEvIK3hm8tdwvAdD-AZ-Ygeuh7v7zzmm3Y0mw3yzymoYZ0c6KnIEhXXbIrn6o9fF0plT4nxdMsHusm5jvyHfXDBcrEsic03qGpuVIklRbMgPbNtExlW1bb4s38I8mXwfXXlNDwZPcepzz1ImFZOBtMYXVAumlFAmsNK5Hr4cCKEsYzrTmWM1Zmkz94uRcjEcs9xFRoa9g05e5OY9EMGR1FITauWCUCGldNGNi0-xY5bgvAvelgGpagDKsU_GTVpDK9MU1zBt17ALn9rxv2pojr-O7G35mTYqWqbO70RsfxqHXaAV5_4xSzocJ9ft2_n_EF3AS3yuCwh70Nmsb80HeKF-b1bl-rIR3UeDU_Bs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa6ZMC6Q7tX0fSx6TBgJyO2pNjWMWhqpGgaDG2K5WbIegQZArtIsgG77SfsN-6XTLQdtzkUBYodbYiCLZIiKVIfAT7HPR6akIWeyHra4zRTXsyt7wWR4cZmwjBVgriOovE4nk7F17qaEO_CVPgQzYEbaka5X6OC44F09x41VGqLV8nRovGIv4A2d7LUa0F7cJ3cjppUQhRVqeUwwCKvYLpBbvRpd3uGbct0724-dFpLq5Ps_4fvfQN7tctJ-pWMvIUdk7-D1w-ACN_Dd-zB9ff3n4scE-9Gk36-nmcVkLMjPStyhIV1GyMZ_tLLYuYMKnHeLjnH_rJua1-QGxcOF8sVkbkmVZXNXJGkKNbkGzZuIoOy3jafrT7AbXI-ORt6dRcGT3Hqc89SJhWTgbTGF1QLppRQJrDSOR--7AmhLGM605ljNuZpM_eLkXJRHLPcxUaGHUArL3JzCERwJLXUhFq5MFRIKV184yJU7JklOO-At-FAqmqIcuyUsUgrcGWa4hqmzRp24Esz_q4C53h05MmGoWmtpKvUeZ6I7k_jsAO0ZN0Ts6T9QXLVPB09h-gTvBpOrkbp6GJ8eQy7-L4qJzyB1nr5w5zCS_VzPV8tP9Zy_A_wMPRc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xWK3gAOwuaAsFfFhpTxGJ7Sb1saJEIEpV8dD2Fjl-oCKUoLa70t74CfxGfgmeJE3LASEhjok8VuLxvDzjbwB-tVs8NCELPZG2tMdpqrw2t74XRIYbmwrDVAHi2ov6_fZwKAZVNSHehSnxIeoDN5SMQl-jgJsHbY_mqKFSW7xKjhaNR3wZVnlLhE42V7uX8U2vTiVEUZlaDgMs8gqGM-RGnx69nuG1ZZq7m4tOa2F14s1P-N4t2KhcTtIp98g3WDLZd1hfACL8AXfYg-v58eksw8S70aSTTUdpCeTsSI_zDGFhnWIkp__1OL91BpU4b5ecYH9Zp9rvyZULh_PxhMhMk7LKZqRInOdT8gcbN5FuUW-b3U624SY-uT4-9aouDJ7i1OeepUwqJgNpjS-oFkwpoUxgpXM-fNkSQlnGdKpTx2zM06buFyPlojhmuYuNDNuBlSzPzE8ggiOppSbUyoWhQkrp4hsXoWLPLMF5A7wZBxJVQZRjp4z7pARXpgmuYVKvYQN-1-MfSnCON0c2ZwxNKiGdJM7zRHR_2g4bQAvWvTNL0unGF_XT7keIDuHroBsnvbP--R6s4euymrAJK9PxX7MPX9S_6WgyPqi28QuLnvPX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin%E2%80%90Inspired+Antibacterial+Conductive+Hydrogels+for+Epidermal+Sensors+and+Diabetic+Foot+Wound+Dressings&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Yue&rft.au=Li%2C+Zuhao&rft.au=Song%2C+Shanliang&rft.au=Yang%2C+Kerong&rft.date=2019-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadfm.201901474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201901474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon