Skin‐Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings
Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels po...
Uloženo v:
| Vydáno v: | Advanced functional materials Ročník 29; číslo 31 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.08.2019
|
| Témata: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.
Inspired by the multiple functions of animal skin, a conductive hydrogel is fabricated based on a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. |
|---|---|
| AbstractList | Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.
Inspired by the multiple functions of animal skin, a conductive hydrogel is fabricated based on a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing. |
| Author | Zhao, Yue Liu, Hou Wang, Jincheng Yang, Kerong Yang, Zhe Song, Shanliang Yang, Bai Li, Zuhao Lin, Quan |
| Author_xml | – sequence: 1 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: Jilin University – sequence: 2 givenname: Zuhao surname: Li fullname: Li, Zuhao organization: the Second Hospital of Jilin University – sequence: 3 givenname: Shanliang surname: Song fullname: Song, Shanliang organization: Jilin University – sequence: 4 givenname: Kerong surname: Yang fullname: Yang, Kerong organization: the Second Hospital of Jilin University – sequence: 5 givenname: Hou surname: Liu fullname: Liu, Hou organization: Jilin University – sequence: 6 givenname: Zhe surname: Yang fullname: Yang, Zhe organization: Jilin University – sequence: 7 givenname: Jincheng surname: Wang fullname: Wang, Jincheng email: wangjinc@jlu.edu.cn, jinchengwang@hotmail.com organization: the Second Hospital of Jilin University – sequence: 8 givenname: Bai surname: Yang fullname: Yang, Bai organization: Jilin University – sequence: 9 givenname: Quan orcidid: 0000-0001-9997-4240 surname: Lin fullname: Lin, Quan email: linquan@jlu.edu.cn organization: Jilin University |
| BookMark | eNqFkMtKAzEUhoNUsK1uXQdcT81lOtMsSy-2UHFRRXdDJpeSOk1qklG68xF8Rp_EKZUKgrg6h8P_ncP5OqBlnVUAXGLUwwiRay71pkcQZgineXoC2jjDWUIRGbSOPX46A50Q1gjhPKdpG6yXz8Z-vn_MbdgaryQc2mhKLqLyhldw5KysRTSvCs520ruVqgLUzsPJ1kjlN01kqWxwPkBuJRwbXqpoBJw6F-Gjq_czr0IwdhXOwanmVVAX37ULHqaT-9EsWdzdzEfDRSJSgtJEE8oF5ZhrhRiRjArBhMKaozxFvM-Y0JTKUpZlXza_obJ5OReMDahOsyxTtAuuDnu33r3UKsRi7Wpvm5MFIVk_b1wNsiaVHlLCuxC80oUwkUfjbPTcVAVGxd5qsbdaHK02WO8XtvVmw_3ub4AdgDdTqd0_6WI4nt7-sF8GxY8G |
| CitedBy_id | crossref_primary_10_1007_s10853_021_06242_0 crossref_primary_10_1016_j_colsurfa_2019_124402 crossref_primary_10_1039_D3MH00192J crossref_primary_10_1016_j_cej_2023_145941 crossref_primary_10_1016_j_ijbiomac_2024_134424 crossref_primary_10_1016_j_cej_2021_134012 crossref_primary_10_1021_acsanm_4c07182 crossref_primary_10_1021_acsnano_5c01864 crossref_primary_10_1016_j_bioactmat_2022_05_009 crossref_primary_10_1177_08853282231151375 crossref_primary_10_1016_j_cej_2021_132635 crossref_primary_10_1016_j_ijbiomac_2023_128275 crossref_primary_10_1016_j_biomaterials_2024_122964 crossref_primary_10_1016_j_matdes_2024_113358 crossref_primary_10_1016_j_bioadv_2022_212815 crossref_primary_10_1016_j_mattod_2023_10_011 crossref_primary_10_1016_j_eurpolymj_2023_112211 crossref_primary_10_1016_j_mtchem_2025_102633 crossref_primary_10_1002_adfm_202208141 crossref_primary_10_1016_j_cej_2023_142543 crossref_primary_10_1007_s10853_023_09087_x crossref_primary_10_1016_j_mtcomm_2021_102225 crossref_primary_10_1016_j_ijbiomac_2024_137374 crossref_primary_10_1002_bab_2051 crossref_primary_10_1016_j_cej_2022_140546 crossref_primary_10_1002_adfm_202010461 crossref_primary_10_1002_jbm_a_37951 crossref_primary_10_1039_D1RA04992E crossref_primary_10_1016_j_nanoen_2023_109142 crossref_primary_10_1016_j_actbio_2021_10_008 crossref_primary_10_1016_j_matdes_2021_110104 crossref_primary_10_1002_jbm_a_37252 crossref_primary_10_1039_D3SC00145H crossref_primary_10_1016_j_carbpol_2024_122348 crossref_primary_10_3390_ijms221910563 crossref_primary_10_34133_bmr_0066 crossref_primary_10_3390_gels9020138 crossref_primary_10_1016_j_ijbiomac_2024_130172 crossref_primary_10_1016_j_cis_2023_102920 crossref_primary_10_1016_j_cej_2022_135646 crossref_primary_10_1002_adhm_202100062 crossref_primary_10_1016_j_ijbiomac_2020_11_014 crossref_primary_10_1016_j_cej_2021_132779 crossref_primary_10_1002_admt_202200821 crossref_primary_10_1089_wound_2019_1094 crossref_primary_10_1002_adma_202108932 crossref_primary_10_1039_D2BM00602B crossref_primary_10_1002_mabi_202000252 crossref_primary_10_1002_mabi_202500205 crossref_primary_10_1002_marc_202400960 crossref_primary_10_3390_ma18153568 crossref_primary_10_1016_j_carbpol_2024_122690 crossref_primary_10_1016_j_nantod_2024_102354 crossref_primary_10_3390_molecules25225296 crossref_primary_10_1007_s11431_020_1695_0 crossref_primary_10_1016_j_cej_2020_124855 crossref_primary_10_3389_fbioe_2022_846401 crossref_primary_10_1002_adfm_202112281 crossref_primary_10_1039_D5TC00805K crossref_primary_10_3390_nano10081518 crossref_primary_10_1016_j_eurpolymj_2021_110977 crossref_primary_10_3390_nano12234167 crossref_primary_10_1002_adtp_202100075 crossref_primary_10_1016_j_reactfunctpolym_2025_106335 crossref_primary_10_1016_j_nanoen_2023_108989 crossref_primary_10_1016_j_ijbiomac_2021_09_019 crossref_primary_10_1016_j_cej_2021_129488 crossref_primary_10_1016_j_cej_2021_133859 crossref_primary_10_1016_j_cej_2021_130921 crossref_primary_10_1002_smll_202201620 crossref_primary_10_1016_j_ijbiomac_2022_10_263 crossref_primary_10_1007_s10853_024_09493_9 crossref_primary_10_1016_j_colsurfb_2022_112914 crossref_primary_10_1016_j_jcis_2025_137625 crossref_primary_10_1002_smtd_202401156 crossref_primary_10_1016_j_progpolymsci_2022_101573 crossref_primary_10_3390_life13010069 crossref_primary_10_1002_wnan_1745 crossref_primary_10_1016_j_cej_2022_137163 crossref_primary_10_1002_adhm_202404535 crossref_primary_10_1002_mabi_202200111 crossref_primary_10_1016_j_compositesa_2025_109038 crossref_primary_10_1039_D0BM01373K crossref_primary_10_1111_wrr_13173 crossref_primary_10_1016_j_compositesa_2023_107892 crossref_primary_10_1016_j_polymer_2021_123450 crossref_primary_10_1016_j_biomaterials_2023_122251 crossref_primary_10_1088_1748_605X_ad0d85 crossref_primary_10_3390_bios12050301 crossref_primary_10_1002_adfm_202200908 crossref_primary_10_1007_s40820_021_00751_y crossref_primary_10_1021_acsami_5c11437 crossref_primary_10_1016_j_actbio_2024_04_035 crossref_primary_10_1016_j_cis_2022_102749 crossref_primary_10_3390_polym15020468 crossref_primary_10_1016_j_cej_2024_149303 crossref_primary_10_1016_j_jddst_2022_103423 crossref_primary_10_1002_adhm_202202971 crossref_primary_10_1177_2041731420947242 crossref_primary_10_1016_j_progpolymsci_2023_101740 crossref_primary_10_1016_j_colsurfb_2022_112902 crossref_primary_10_1016_j_actbio_2025_06_036 crossref_primary_10_2147_IJN_S276001 crossref_primary_10_3390_gels10070448 crossref_primary_10_1016_j_cej_2024_150545 crossref_primary_10_1016_j_ijbiomac_2022_08_061 crossref_primary_10_1016_j_apmt_2022_101362 crossref_primary_10_1002_adfm_202009442 crossref_primary_10_1016_j_ijpharm_2021_120698 crossref_primary_10_1038_s41528_022_00228_x crossref_primary_10_1093_burnst_tkaf038 crossref_primary_10_1002_chem_202304349 crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1002_admi_202101786 crossref_primary_10_1016_j_jcis_2021_10_097 crossref_primary_10_1016_j_actbio_2021_03_057 crossref_primary_10_1016_j_ijbiomac_2022_11_065 crossref_primary_10_1016_j_ijbiomac_2024_137209 crossref_primary_10_1016_j_nanoms_2025_05_003 crossref_primary_10_1016_j_actbio_2024_03_010 crossref_primary_10_1016_j_biomaterials_2025_123284 crossref_primary_10_1016_j_cej_2020_125994 crossref_primary_10_1016_j_coco_2024_102208 crossref_primary_10_1016_j_mtcomm_2025_112023 crossref_primary_10_1016_j_progpolymsci_2021_101472 crossref_primary_10_3389_fbioe_2023_1308184 crossref_primary_10_3390_ma16031215 crossref_primary_10_1002_wnan_1640 crossref_primary_10_1016_j_molliq_2022_119075 crossref_primary_10_1016_j_ijbiomac_2020_08_108 crossref_primary_10_1093_rb_rbab034 crossref_primary_10_1002_adhm_202100012 crossref_primary_10_1016_j_ijbiomac_2020_10_129 crossref_primary_10_1016_j_carbpol_2021_118357 crossref_primary_10_1016_j_ijbiomac_2022_03_015 crossref_primary_10_1016_j_pmatsci_2022_101045 crossref_primary_10_1007_s10570_021_03800_2 crossref_primary_10_34133_2022_9850743 crossref_primary_10_1016_j_ijbiomac_2022_08_149 crossref_primary_10_1016_j_cej_2022_141206 crossref_primary_10_1016_j_coco_2021_100739 crossref_primary_10_1186_s12951_023_02113_9 crossref_primary_10_1016_j_colcom_2022_100620 crossref_primary_10_1016_j_ijbiomac_2025_140448 crossref_primary_10_1002_adfm_202000398 crossref_primary_10_1002_adma_202100176 crossref_primary_10_1016_j_ijbiomac_2023_127441 crossref_primary_10_1039_D2BM02057B crossref_primary_10_3390_biomimetics8010128 crossref_primary_10_1016_j_compositesb_2022_109921 crossref_primary_10_1002_adhm_202502497 crossref_primary_10_1002_advs_202206981 crossref_primary_10_1016_j_cej_2022_139491 crossref_primary_10_3390_polym13040613 crossref_primary_10_1016_j_apsusc_2024_160607 crossref_primary_10_1016_j_ijbiomac_2023_125029 crossref_primary_10_1088_1758_5090_acb6b8 crossref_primary_10_1002_adfm_202105264 crossref_primary_10_1016_j_cej_2021_134061 crossref_primary_10_1016_j_bprint_2025_e00392 crossref_primary_10_1002_adhm_202302059 crossref_primary_10_1002_adfm_201909954 crossref_primary_10_1002_adhm_202300431 crossref_primary_10_1073_pnas_2016268117 crossref_primary_10_1039_D5TB01130B crossref_primary_10_3389_fbioe_2020_00083 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_1016_j_actbio_2022_05_047 crossref_primary_10_1007_s00396_020_04608_5 crossref_primary_10_1016_j_biomaterials_2021_121026 crossref_primary_10_1021_jacs_1c08679 crossref_primary_10_1039_D2BM00891B crossref_primary_10_1186_s12951_022_01516_4 crossref_primary_10_3389_fbioe_2021_765987 crossref_primary_10_1002_smmd_70016 crossref_primary_10_1007_s13233_022_0062_4 crossref_primary_10_1007_s42114_024_00847_0 crossref_primary_10_1002_adhm_202102535 crossref_primary_10_1089_ten_teb_2020_0339 crossref_primary_10_1016_j_cej_2023_142831 crossref_primary_10_1021_acscentsci_3c00994 crossref_primary_10_1089_wound_2022_0059 crossref_primary_10_1016_j_biopha_2021_111946 crossref_primary_10_1016_j_bioactmat_2022_04_032 crossref_primary_10_1063_5_0093261 crossref_primary_10_1016_j_addr_2023_114823 crossref_primary_10_1002_adhm_202401503 crossref_primary_10_1002_marc_202000441 crossref_primary_10_1002_app_54859 crossref_primary_10_1016_j_ijbiomac_2024_136568 crossref_primary_10_1002_marc_202000444 crossref_primary_10_3389_fendo_2023_1124027 crossref_primary_10_1016_j_jiec_2020_05_001 crossref_primary_10_1002_advs_202306784 crossref_primary_10_1016_j_cej_2023_143362 crossref_primary_10_1016_j_colsurfb_2020_111502 crossref_primary_10_1063_5_0218251 crossref_primary_10_1016_j_bioadv_2024_213869 crossref_primary_10_1016_j_matdes_2022_111452 crossref_primary_10_1002_admt_202000426 crossref_primary_10_1016_j_bioactmat_2021_09_022 crossref_primary_10_1016_j_molliq_2024_126117 crossref_primary_10_1002_advs_202004627 crossref_primary_10_1016_j_jcis_2021_10_057 crossref_primary_10_1016_j_cej_2024_154890 crossref_primary_10_1016_j_pmatsci_2023_101156 crossref_primary_10_1002_adhm_202001384 crossref_primary_10_1016_j_ijbiomac_2024_132080 crossref_primary_10_1016_j_jddst_2025_106848 crossref_primary_10_1002_aelm_202300436 crossref_primary_10_1016_j_cej_2022_134826 crossref_primary_10_1002_adfm_202103391 crossref_primary_10_1002_adfm_202302846 crossref_primary_10_1016_j_ijbiomac_2021_07_162 crossref_primary_10_1016_j_cej_2023_145891 crossref_primary_10_1002_adhm_202001821 crossref_primary_10_1002_adfm_202407934 crossref_primary_10_1016_j_jddst_2023_105062 crossref_primary_10_3390_jfb14110553 crossref_primary_10_1007_s40820_025_01834_w crossref_primary_10_1093_burnst_tkaf025 crossref_primary_10_1002_smll_202303153 crossref_primary_10_1007_s12274_022_4192_y crossref_primary_10_3390_ijms24010336 crossref_primary_10_1002_advs_202003627 crossref_primary_10_1016_j_biomaterials_2020_119936 crossref_primary_10_1016_j_cej_2024_155295 crossref_primary_10_1002_smll_202307070 crossref_primary_10_1002_admi_202102369 crossref_primary_10_1016_j_ijbiomac_2024_138964 crossref_primary_10_1016_j_nantod_2022_101402 crossref_primary_10_1016_j_ijbiomac_2023_123866 crossref_primary_10_1016_j_jcis_2022_07_030 crossref_primary_10_1016_j_jddst_2023_104654 crossref_primary_10_1002_adhm_202201501 crossref_primary_10_1016_j_sna_2025_116500 crossref_primary_10_1016_j_reactfunctpolym_2023_105738 crossref_primary_10_1002_adma_202307695 crossref_primary_10_1016_j_actbio_2021_04_027 crossref_primary_10_1016_j_cej_2020_125668 crossref_primary_10_1039_C9PY00953A crossref_primary_10_1016_j_bioactmat_2021_06_015 crossref_primary_10_1016_j_jconrel_2023_01_049 crossref_primary_10_1039_D3MH00056G crossref_primary_10_1016_j_actbio_2022_04_041 crossref_primary_10_1002_advs_202203308 crossref_primary_10_1016_j_cej_2024_153661 crossref_primary_10_1016_j_ijbiomac_2020_12_202 crossref_primary_10_1016_j_nantod_2022_101630 crossref_primary_10_1007_s00403_022_02408_1 crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_3390_ma16124411 crossref_primary_10_1002_adhm_202001966 crossref_primary_10_1016_j_pmatsci_2021_100887 crossref_primary_10_1002_admt_202201527 crossref_primary_10_1002_slct_201904325 crossref_primary_10_1016_j_mtchem_2025_102936 crossref_primary_10_1002_admt_202000407 crossref_primary_10_1002_admt_202200798 crossref_primary_10_1002_app_56824 crossref_primary_10_1016_j_cej_2025_167411 crossref_primary_10_1016_j_ijbiomac_2024_131637 crossref_primary_10_1016_j_compositesb_2020_108187 crossref_primary_10_1038_s41528_022_00175_7 crossref_primary_10_1016_j_compositesa_2024_108065 crossref_primary_10_1002_btm2_10315 crossref_primary_10_1007_s11426_022_1322_5 crossref_primary_10_1002_adhm_202200837 crossref_primary_10_1016_j_cej_2021_131171 crossref_primary_10_1016_j_cej_2021_128564 crossref_primary_10_1016_j_bioadv_2022_212978 crossref_primary_10_1002_adhm_202301817 crossref_primary_10_1002_admt_202101680 crossref_primary_10_1002_aelm_202000040 crossref_primary_10_1002_mame_202200128 crossref_primary_10_1039_D0RA05692H crossref_primary_10_1016_j_cej_2021_129668 crossref_primary_10_1007_s40843_021_1724_8 crossref_primary_10_1016_j_actbio_2022_08_048 crossref_primary_10_1016_j_carbpol_2023_121049 crossref_primary_10_1016_j_cej_2025_164834 crossref_primary_10_3390_ijms24087473 crossref_primary_10_1016_j_ijbiomac_2024_135786 crossref_primary_10_1002_adhm_202100784 crossref_primary_10_1039_C9BM01445D crossref_primary_10_1016_j_cobme_2021_100327 crossref_primary_10_1002_macp_202500216 crossref_primary_10_3390_ph17070897 crossref_primary_10_1016_j_jcis_2021_10_131 crossref_primary_10_1016_j_cej_2024_154731 crossref_primary_10_1016_j_cej_2025_161207 crossref_primary_10_1002_pol_20210933 crossref_primary_10_1016_j_ijbiomac_2023_127151 crossref_primary_10_1016_j_ijbiomac_2025_143466 crossref_primary_10_1088_1361_6528_ac85f2 crossref_primary_10_1016_j_ijbiomac_2021_07_001 crossref_primary_10_1016_j_polymer_2020_123354 crossref_primary_10_1016_j_cej_2021_128903 crossref_primary_10_3390_ijms252111773 crossref_primary_10_1016_j_scitotenv_2021_147430 crossref_primary_10_1002_agt2_319 crossref_primary_10_1016_j_cej_2020_126204 crossref_primary_10_1021_acs_chemmater_4c02480 crossref_primary_10_1016_j_ijbiomac_2024_133361 crossref_primary_10_1038_s41467_022_29860_x crossref_primary_10_1002_pol_20210249 crossref_primary_10_1016_j_carbpol_2025_123916 crossref_primary_10_1038_s41378_025_00912_8 crossref_primary_10_1016_j_jcis_2022_11_139 crossref_primary_10_3390_biomimetics9050278 crossref_primary_10_1177_15589250231166113 crossref_primary_10_3390_jof8060612 crossref_primary_10_1002_agt2_566 crossref_primary_10_1016_j_nanoen_2022_107393 crossref_primary_10_1016_j_jcis_2025_137455 crossref_primary_10_1016_j_msec_2021_112584 crossref_primary_10_1002_advs_202106015 crossref_primary_10_1016_j_cej_2021_131523 crossref_primary_10_3389_fphar_2021_779944 crossref_primary_10_1002_cbic_202400733 crossref_primary_10_1186_s12891_021_04617_7 crossref_primary_10_1002_flm2_31 crossref_primary_10_3390_ma17102268 crossref_primary_10_1016_j_colsurfa_2023_131361 crossref_primary_10_1016_j_ijbiomac_2024_130994 crossref_primary_10_1016_j_ijbiomac_2024_134677 crossref_primary_10_1088_1748_605X_adf67b crossref_primary_10_1016_j_cej_2024_153063 crossref_primary_10_1038_s41528_021_00122_y crossref_primary_10_1016_j_eurpolymj_2021_110779 crossref_primary_10_1038_s41587_022_01528_3 crossref_primary_10_1016_j_cej_2024_149493 crossref_primary_10_1016_j_carbpol_2021_117894 crossref_primary_10_1039_D5NR00406C crossref_primary_10_48130_fia_0024_0032 crossref_primary_10_1002_smll_202104885 crossref_primary_10_1016_j_compscitech_2021_108894 crossref_primary_10_1016_j_carbpol_2022_119696 crossref_primary_10_1039_D5NR01248A crossref_primary_10_1016_j_cej_2021_131999 crossref_primary_10_1039_D3MH00813D crossref_primary_10_1016_j_carbpol_2022_119336 crossref_primary_10_3390_nano14030237 crossref_primary_10_1002_adfm_202415507 crossref_primary_10_1016_j_jcis_2021_01_091 |
| Cites_doi | 10.1056/NEJMcpc1701762 10.1002/adfm.201703852 10.1016/j.biomaterials.2017.01.011 10.1021/acsnano.6b05318 10.1021/acsami.7b09395 10.1021/acsnano.7b04898 10.1002/anie.201603417 10.1016/j.jcis.2011.01.054 10.1021/acs.accounts.7b00191 10.3389/frobt.2017.00048 10.1039/C5CS00362H 10.1002/adma.201800109 10.1021/acsnano.7b03513 10.1038/nature25494 10.1002/adma.201704235 10.1038/nmat4671 10.1002/adfm.201500006 10.1002/adfm.201806220 10.1016/j.molmed.2013.12.004 10.1002/adma.201700533 10.1038/s41467-018-05222-4 10.1021/acsnano.8b05067 10.1002/smll.201601916 10.1002/adma.201704640 10.1038/s41467-017-02685-9 10.1038/am.2017.33 10.1039/a807124a 10.1039/C7NR02128C 10.1002/adfm.201504197 10.1002/adma.201504244 10.1021/acs.chemmater.5b04879 10.1002/adma.201706887 10.1002/anie.201708614 10.1002/adma.201800598 10.1016/j.proghi.2007.06.001 10.1038/nature16521 10.1038/s41598-017-09828-4 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201901474 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201901474 ADFM201901474 |
| Genre | article |
| GrantInformation_xml | – fundername: National Nature Science Foundation of China funderid: 51861145311; 21174048 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4204-f23ac3a1afe092d93cc9ce1fa0740a599cf33dbdbb5d0280b2017c9983f4666e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 470 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477977100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Jul 13 03:09:52 EDT 2025 Sat Nov 29 07:19:18 EST 2025 Tue Nov 18 21:59:14 EST 2025 Wed Jan 22 16:39:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4204-f23ac3a1afe092d93cc9ce1fa0740a599cf33dbdbb5d0280b2017c9983f4666e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9997-4240 |
| PQID | 2265700286 |
| PQPubID | 2045204 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2265700286 crossref_citationtrail_10_1002_adfm_201901474 crossref_primary_10_1002_adfm_201901474 wiley_primary_10_1002_adfm_201901474_ADFM201901474 |
| PublicationCentury | 2000 |
| PublicationDate | August 1, 2019 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 1, 2019 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 318 2011; 356 2017; 7 2000; 29 2017; 4 2017; 27 2019; 13 2016; 529 2017; 29 2017; 376 2016; 15 2017; 9 2014; 20 2016; 55 2017; 50 2018; 9 2015; 25 2017; 11 2015; 44 2018; 555 2017; 13 2017; 56 2019; 29 2018; 30 2017; 122 2007; 42 2016; 28 2005; 38 2016; 26 2014; 346 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Lin W. (e_1_2_7_22_1) 2005; 38 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 Yasmine B. (e_1_2_7_21_1) 2014; 346 e_1_2_7_37_1 Theodore H. (e_1_2_7_36_1) 2017; 318 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 30 start-page: 1800598 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 37563 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 4338 year: 2016 publication-title: Adv. Mater. – volume: 38 start-page: 320 year: 2005 publication-title: J. Microbiol. Immunol. Infect. – volume: 56 start-page: 14159 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 20 start-page: 137 year: 2014 publication-title: Trends Mol. Med. – volume: 44 start-page: 6684 year: 2015 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 2466 year: 2016 publication-title: Chem. Mater. – volume: 13 start-page: 163 year: 2019 publication-title: ACS Nano – volume: 11 start-page: 9010 year: 2017 publication-title: ACS Nano – volume: 9 start-page: 244 year: 2018 publication-title: Nat. Commun. – volume: 25 start-page: 3814 year: 2015 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 569 year: 2016 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 9196 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 34 year: 2017 publication-title: Biomaterials – volume: 29 start-page: 1700533 year: 2017 publication-title: Adv. Mater. – volume: 50 start-page: 1734 year: 2017 publication-title: Acc. Chem. Res. – volume: 13 start-page: 1601916 year: 2017 publication-title: Small – volume: 30 start-page: 1706887 year: 2018 publication-title: Adv. Mater. – volume: 30 start-page: 1704640 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2017 publication-title: Front. Robot. AI – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 11 start-page: 9614 year: 2017 publication-title: ACS Nano – volume: 9 start-page: 7135 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 2740 year: 2018 publication-title: Nat. Commun. – volume: 29 start-page: 283 year: 2000 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 9480 year: 2017 publication-title: Sci. Rep. – volume: 356 start-page: 513 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 9 start-page: e372 year: 2017 publication-title: NPG Asia Mater. – volume: 30 start-page: 1704235 year: 2018 publication-title: Adv. Mater. – volume: 346 start-page: 6212 year: 2014 publication-title: Science – volume: 11 start-page: 2561 year: 2017 publication-title: ACS Nano – volume: 30 start-page: 1800109 year: 2018 publication-title: Adv. Mater. – volume: 42 start-page: 115 year: 2007 publication-title: Prog. Histochem. Cytochem. – volume: 29 start-page: 1806220 year: 2019 publication-title: Adv. Funct. Mater. – volume: 318 start-page: 14 year: 2017 publication-title: JAMA Clin. Guidelines Synopsis – volume: 376 start-page: 2471 year: 2017 publication-title: N. Engl. J. Med. – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 27 start-page: 1703852 year: 2017 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_34_1 doi: 10.1056/NEJMcpc1701762 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201703852 – ident: e_1_2_7_20_1 doi: 10.1016/j.biomaterials.2017.01.011 – ident: e_1_2_7_29_1 doi: 10.1021/acsnano.6b05318 – ident: e_1_2_7_35_1 doi: 10.1021/acsami.7b09395 – ident: e_1_2_7_1_1 doi: 10.1021/acsnano.7b04898 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201603417 – ident: e_1_2_7_24_1 doi: 10.1016/j.jcis.2011.01.054 – ident: e_1_2_7_11_1 doi: 10.1021/acs.accounts.7b00191 – volume: 318 start-page: 14 year: 2017 ident: e_1_2_7_36_1 publication-title: JAMA Clin. Guidelines Synopsis – ident: e_1_2_7_25_1 doi: 10.3389/frobt.2017.00048 – ident: e_1_2_7_9_1 doi: 10.1039/C5CS00362H – ident: e_1_2_7_16_1 doi: 10.1002/adma.201800109 – ident: e_1_2_7_32_1 doi: 10.1021/acsnano.7b03513 – ident: e_1_2_7_18_1 doi: 10.1038/nature25494 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201704235 – ident: e_1_2_7_17_1 doi: 10.1038/nmat4671 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201500006 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201806220 – ident: e_1_2_7_38_1 doi: 10.1016/j.molmed.2013.12.004 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201700533 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-018-05222-4 – ident: e_1_2_7_12_1 doi: 10.1021/acsnano.8b05067 – ident: e_1_2_7_28_1 doi: 10.1002/smll.201601916 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201704640 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-017-02685-9 – volume: 346 start-page: 6212 year: 2014 ident: e_1_2_7_21_1 publication-title: Science – volume: 38 start-page: 320 year: 2005 ident: e_1_2_7_22_1 publication-title: J. Microbiol. Immunol. Infect. – ident: e_1_2_7_27_1 doi: 10.1038/am.2017.33 – ident: e_1_2_7_8_1 doi: 10.1039/a807124a – ident: e_1_2_7_23_1 doi: 10.1039/C7NR02128C – ident: e_1_2_7_33_1 doi: 10.1002/adfm.201504197 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201504244 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemmater.5b04879 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201706887 – ident: e_1_2_7_26_1 doi: 10.1002/anie.201708614 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201800598 – ident: e_1_2_7_39_1 doi: 10.1016/j.proghi.2007.06.001 – ident: e_1_2_7_4_1 doi: 10.1038/nature16521 – ident: e_1_2_7_37_1 doi: 10.1038/s41598-017-09828-4 |
| SSID | ssj0017734 |
| Score | 2.7012472 |
| Snippet | Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Artificial intelligence Biomedical materials Conductivity Diabetes Electrochemical analysis Electronic materials Electronic systems flexible bio‐electronics Foot diseases Human tissues Hydrogels Materials science mussel‐inspired Nanoparticles Polyanilines Polyvinyl alcohol self‐healing hydrogels Sensors Silver silver nanoparticles Skin tissue adhesive Wound healing |
| Title | Skin‐Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901474 https://www.proquest.com/docview/2265700286 |
| Volume | 29 |
| WOSCitedRecordID | wos000477977100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtswDCa2dIf10HZ_WNqs0GHATkZsSbGtY5DE6IA0GLYFy82Q9RNkKOwhTgfs1kfoM_ZJKtqOkxyGAevNBkTBFkmRFKmPAB_jAQ9NyEJPZAPtcZopL-bW94LIcGMzYZiqQFyn0WwWLxbiy94t_hofoj1wQ82o9mtUcJmV_R1oqNQWb5KjQeMRfw5H1Akv78DR-Gsyn7aZhCiqM8thgDVewWIL3OjT_uEMh4Zp523u-6yV0UlOn_65Z3DSOJxkWEvIK3hm8tdwvAdD-AZ-Ygeuh7v7zzmm3Y0mw3yzymoYZ0c6KnIEhXXbIrn6o9fF0plT4nxdMsHusm5jvyHfXDBcrEsic03qGpuVIklRbMgPbNtExlW1bb4s38I8mXwfXXlNDwZPcepzz1ImFZOBtMYXVAumlFAmsNK5Hr4cCKEsYzrTmWM1Zmkz94uRcjEcs9xFRoa9g05e5OY9EMGR1FITauWCUCGldNGNi0-xY5bgvAvelgGpagDKsU_GTVpDK9MU1zBt17ALn9rxv2pojr-O7G35mTYqWqbO70RsfxqHXaAV5_4xSzocJ9ft2_n_EF3AS3yuCwh70Nmsb80HeKF-b1bl-rIR3UeDU_Bs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa6ZMC6Q7tX0fSx6TBgJyO2pNjWMWhqpGgaDG2K5WbIegQZArtIsgG77SfsN-6XTLQdtzkUBYodbYiCLZIiKVIfAT7HPR6akIWeyHra4zRTXsyt7wWR4cZmwjBVgriOovE4nk7F17qaEO_CVPgQzYEbaka5X6OC44F09x41VGqLV8nRovGIv4A2d7LUa0F7cJ3cjppUQhRVqeUwwCKvYLpBbvRpd3uGbct0724-dFpLq5Ps_4fvfQN7tctJ-pWMvIUdk7-D1w-ACN_Dd-zB9ff3n4scE-9Gk36-nmcVkLMjPStyhIV1GyMZ_tLLYuYMKnHeLjnH_rJua1-QGxcOF8sVkbkmVZXNXJGkKNbkGzZuIoOy3jafrT7AbXI-ORt6dRcGT3Hqc89SJhWTgbTGF1QLppRQJrDSOR--7AmhLGM605ljNuZpM_eLkXJRHLPcxUaGHUArL3JzCERwJLXUhFq5MFRIKV184yJU7JklOO-At-FAqmqIcuyUsUgrcGWa4hqmzRp24Esz_q4C53h05MmGoWmtpKvUeZ6I7k_jsAO0ZN0Ts6T9QXLVPB09h-gTvBpOrkbp6GJ8eQy7-L4qJzyB1nr5w5zCS_VzPV8tP9Zy_A_wMPRc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xWK3gAOwuaAsFfFhpTxGJ7Sb1saJEIEpV8dD2Fjl-oCKUoLa70t74CfxGfgmeJE3LASEhjok8VuLxvDzjbwB-tVs8NCELPZG2tMdpqrw2t74XRIYbmwrDVAHi2ov6_fZwKAZVNSHehSnxIeoDN5SMQl-jgJsHbY_mqKFSW7xKjhaNR3wZVnlLhE42V7uX8U2vTiVEUZlaDgMs8gqGM-RGnx69nuG1ZZq7m4tOa2F14s1P-N4t2KhcTtIp98g3WDLZd1hfACL8AXfYg-v58eksw8S70aSTTUdpCeTsSI_zDGFhnWIkp__1OL91BpU4b5ecYH9Zp9rvyZULh_PxhMhMk7LKZqRInOdT8gcbN5FuUW-b3U624SY-uT4-9aouDJ7i1OeepUwqJgNpjS-oFkwpoUxgpXM-fNkSQlnGdKpTx2zM06buFyPlojhmuYuNDNuBlSzPzE8ggiOppSbUyoWhQkrp4hsXoWLPLMF5A7wZBxJVQZRjp4z7pARXpgmuYVKvYQN-1-MfSnCON0c2ZwxNKiGdJM7zRHR_2g4bQAvWvTNL0unGF_XT7keIDuHroBsnvbP--R6s4euymrAJK9PxX7MPX9S_6WgyPqi28QuLnvPX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin%E2%80%90Inspired+Antibacterial+Conductive+Hydrogels+for+Epidermal+Sensors+and+Diabetic+Foot+Wound+Dressings&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Yue&rft.au=Li%2C+Zuhao&rft.au=Song%2C+Shanliang&rft.au=Yang%2C+Kerong&rft.date=2019-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadfm.201901474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201901474 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |