ODIASP: An Open‐Source Software for Automated SMI Determination—Application to an Inpatient Population

ABSTRACT Background The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar leve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of cachexia, sarcopenia and muscle Ročník 16; číslo 4; s. e70023 - n/a
Hlavní autori: Charrière, Katia, Ragusa, Antoine, Genoux, Béatrice, Vilotitch, Antoine, Artemova, Svetlana, Dumont, Charlène, Beaudoin, Paul‐Antoine, Madiot, Pierre‐Ephrem, Ferretti, Gilbert R., Bricault, Ivan, Fontaine, Eric, Bosson, Jean‐Luc, Moreau‐Gaudry, Alexandre, Giai, Joris, Bétry, Cécile
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.08.2025
Wiley
Predmet:
ISSN:2190-5991, 2190-6009, 2190-6009
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT Background The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar level (L3) as a first‐line approach. However, manual segmentation of muscle from CT images is often time‐consuming and infrequently performed in clinical practice. This study is aimed at developing and validating an open‐access, simple software tool called ODIASP for automated SMI determination. Methods Data were retrospectively collected from a clinical data warehouse at Grenoble Alpes University Hospital, including epidemiological and imaging data from CT scans. All consecutive adult patients admitted in 2018 to our tertiary centre who underwent at least one CT scan capturing images at the L3 vertebral level and had a recorded height were included. ODIASP combines two algorithms to automate L3 slice selection and skeletal muscle segmentation, ensuring a seamless process. Agreement between cross‐sectional muscle area (CSMA) values obtained using ODIASP and the reference methodology (i.e., manual determination) was evaluated using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also assessed. Results SMI was available for 2503 participants, 53.3% male, with a median age of 66 years (51–78) and a median BMI of 24.8 kg/m2 (21.7–28.7). In a validation subset of 674 scans, agreement between the reference method and ODIASP was substantial (ICC: 0.971; 95% CI: 0.825–0.989) and improved to excellent (ICC: 0.984; 95% CI: 0.982–0.986) after correcting for systematic overestimation (a 5.8 cm2 [5.4–6.3]) indicating excellent agreement. The prevalence of reduced SMI was 9.1% overall (11.0% in men and 6.6% in women). The ODIASP software is available as a downloadable executable to support its use in research settings. Conclusions This study demonstrates that ODIASP is a reliable tool for automated SMI at the L3 vertebra level from CT scans. The integration of validated AI algorithms into a simple, open‐source software enables scalable, standardised assessment of SMI in diverse patient populations and supports future integration into clinical workflows for improved nutritional assessment.
AbstractList The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar level (L3) as a first-line approach. However, manual segmentation of muscle from CT images is often time-consuming and infrequently performed in clinical practice. This study is aimed at developing and validating an open-access, simple software tool called ODIASP for automated SMI determination. Data were retrospectively collected from a clinical data warehouse at Grenoble Alpes University Hospital, including epidemiological and imaging data from CT scans. All consecutive adult patients admitted in 2018 to our tertiary centre who underwent at least one CT scan capturing images at the L3 vertebral level and had a recorded height were included. ODIASP combines two algorithms to automate L3 slice selection and skeletal muscle segmentation, ensuring a seamless process. Agreement between cross-sectional muscle area (CSMA) values obtained using ODIASP and the reference methodology (i.e., manual determination) was evaluated using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also assessed. SMI was available for 2503 participants, 53.3% male, with a median age of 66 years (51-78) and a median BMI of 24.8 kg/m (21.7-28.7). In a validation subset of 674 scans, agreement between the reference method and ODIASP was substantial (ICC: 0.971; 95% CI: 0.825-0.989) and improved to excellent (ICC: 0.984; 95% CI: 0.982-0.986) after correcting for systematic overestimation (a 5.8 cm [5.4-6.3]) indicating excellent agreement. The prevalence of reduced SMI was 9.1% overall (11.0% in men and 6.6% in women). The ODIASP software is available as a downloadable executable to support its use in research settings. This study demonstrates that ODIASP is a reliable tool for automated SMI at the L3 vertebra level from CT scans. The integration of validated AI algorithms into a simple, open-source software enables scalable, standardised assessment of SMI in diverse patient populations and supports future integration into clinical workflows for improved nutritional assessment.
ABSTRACT Background The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar level (L3) as a first‐line approach. However, manual segmentation of muscle from CT images is often time‐consuming and infrequently performed in clinical practice. This study is aimed at developing and validating an open‐access, simple software tool called ODIASP for automated SMI determination. Methods Data were retrospectively collected from a clinical data warehouse at Grenoble Alpes University Hospital, including epidemiological and imaging data from CT scans. All consecutive adult patients admitted in 2018 to our tertiary centre who underwent at least one CT scan capturing images at the L3 vertebral level and had a recorded height were included. ODIASP combines two algorithms to automate L3 slice selection and skeletal muscle segmentation, ensuring a seamless process. Agreement between cross‐sectional muscle area (CSMA) values obtained using ODIASP and the reference methodology (i.e., manual determination) was evaluated using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also assessed. Results SMI was available for 2503 participants, 53.3% male, with a median age of 66 years (51–78) and a median BMI of 24.8 kg/m2 (21.7–28.7). In a validation subset of 674 scans, agreement between the reference method and ODIASP was substantial (ICC: 0.971; 95% CI: 0.825–0.989) and improved to excellent (ICC: 0.984; 95% CI: 0.982–0.986) after correcting for systematic overestimation (a 5.8 cm2 [5.4–6.3]) indicating excellent agreement. The prevalence of reduced SMI was 9.1% overall (11.0% in men and 6.6% in women). The ODIASP software is available as a downloadable executable to support its use in research settings. Conclusions This study demonstrates that ODIASP is a reliable tool for automated SMI at the L3 vertebra level from CT scans. The integration of validated AI algorithms into a simple, open‐source software enables scalable, standardised assessment of SMI in diverse patient populations and supports future integration into clinical workflows for improved nutritional assessment.
ABSTRACT Background The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar level (L3) as a first‐line approach. However, manual segmentation of muscle from CT images is often time‐consuming and infrequently performed in clinical practice. This study is aimed at developing and validating an open‐access, simple software tool called ODIASP for automated SMI determination. Methods Data were retrospectively collected from a clinical data warehouse at Grenoble Alpes University Hospital, including epidemiological and imaging data from CT scans. All consecutive adult patients admitted in 2018 to our tertiary centre who underwent at least one CT scan capturing images at the L3 vertebral level and had a recorded height were included. ODIASP combines two algorithms to automate L3 slice selection and skeletal muscle segmentation, ensuring a seamless process. Agreement between cross‐sectional muscle area (CSMA) values obtained using ODIASP and the reference methodology (i.e., manual determination) was evaluated using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also assessed. Results SMI was available for 2503 participants, 53.3% male, with a median age of 66 years (51–78) and a median BMI of 24.8 kg/m2 (21.7–28.7). In a validation subset of 674 scans, agreement between the reference method and ODIASP was substantial (ICC: 0.971; 95% CI: 0.825–0.989) and improved to excellent (ICC: 0.984; 95% CI: 0.982–0.986) after correcting for systematic overestimation (a 5.8 cm2 [5.4–6.3]) indicating excellent agreement. The prevalence of reduced SMI was 9.1% overall (11.0% in men and 6.6% in women). The ODIASP software is available as a downloadable executable to support its use in research settings. Conclusions This study demonstrates that ODIASP is a reliable tool for automated SMI at the L3 vertebra level from CT scans. The integration of validated AI algorithms into a simple, open‐source software enables scalable, standardised assessment of SMI in diverse patient populations and supports future integration into clinical workflows for improved nutritional assessment.
The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar level (L3) as a first-line approach. However, manual segmentation of muscle from CT images is often time-consuming and infrequently performed in clinical practice. This study is aimed at developing and validating an open-access, simple software tool called ODIASP for automated SMI determination.BACKGROUNDThe diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement. The GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan at the third lumbar level (L3) as a first-line approach. However, manual segmentation of muscle from CT images is often time-consuming and infrequently performed in clinical practice. This study is aimed at developing and validating an open-access, simple software tool called ODIASP for automated SMI determination.Data were retrospectively collected from a clinical data warehouse at Grenoble Alpes University Hospital, including epidemiological and imaging data from CT scans. All consecutive adult patients admitted in 2018 to our tertiary centre who underwent at least one CT scan capturing images at the L3 vertebral level and had a recorded height were included. ODIASP combines two algorithms to automate L3 slice selection and skeletal muscle segmentation, ensuring a seamless process. Agreement between cross-sectional muscle area (CSMA) values obtained using ODIASP and the reference methodology (i.e., manual determination) was evaluated using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also assessed.METHODSData were retrospectively collected from a clinical data warehouse at Grenoble Alpes University Hospital, including epidemiological and imaging data from CT scans. All consecutive adult patients admitted in 2018 to our tertiary centre who underwent at least one CT scan capturing images at the L3 vertebral level and had a recorded height were included. ODIASP combines two algorithms to automate L3 slice selection and skeletal muscle segmentation, ensuring a seamless process. Agreement between cross-sectional muscle area (CSMA) values obtained using ODIASP and the reference methodology (i.e., manual determination) was evaluated using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also assessed.SMI was available for 2503 participants, 53.3% male, with a median age of 66 years (51-78) and a median BMI of 24.8 kg/m2 (21.7-28.7). In a validation subset of 674 scans, agreement between the reference method and ODIASP was substantial (ICC: 0.971; 95% CI: 0.825-0.989) and improved to excellent (ICC: 0.984; 95% CI: 0.982-0.986) after correcting for systematic overestimation (a 5.8 cm2 [5.4-6.3]) indicating excellent agreement. The prevalence of reduced SMI was 9.1% overall (11.0% in men and 6.6% in women). The ODIASP software is available as a downloadable executable to support its use in research settings.RESULTSSMI was available for 2503 participants, 53.3% male, with a median age of 66 years (51-78) and a median BMI of 24.8 kg/m2 (21.7-28.7). In a validation subset of 674 scans, agreement between the reference method and ODIASP was substantial (ICC: 0.971; 95% CI: 0.825-0.989) and improved to excellent (ICC: 0.984; 95% CI: 0.982-0.986) after correcting for systematic overestimation (a 5.8 cm2 [5.4-6.3]) indicating excellent agreement. The prevalence of reduced SMI was 9.1% overall (11.0% in men and 6.6% in women). The ODIASP software is available as a downloadable executable to support its use in research settings.This study demonstrates that ODIASP is a reliable tool for automated SMI at the L3 vertebra level from CT scans. The integration of validated AI algorithms into a simple, open-source software enables scalable, standardised assessment of SMI in diverse patient populations and supports future integration into clinical workflows for improved nutritional assessment.CONCLUSIONSThis study demonstrates that ODIASP is a reliable tool for automated SMI at the L3 vertebra level from CT scans. The integration of validated AI algorithms into a simple, open-source software enables scalable, standardised assessment of SMI in diverse patient populations and supports future integration into clinical workflows for improved nutritional assessment.
Author Charrière, Katia
Genoux, Béatrice
Artemova, Svetlana
Beaudoin, Paul‐Antoine
Bricault, Ivan
Fontaine, Eric
Ragusa, Antoine
Moreau‐Gaudry, Alexandre
Vilotitch, Antoine
Giai, Joris
Ferretti, Gilbert R.
Dumont, Charlène
Madiot, Pierre‐Ephrem
Bosson, Jean‐Luc
Bétry, Cécile
Author_xml – sequence: 1
  givenname: Katia
  surname: Charrière
  fullname: Charrière, Katia
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 2
  givenname: Antoine
  surname: Ragusa
  fullname: Ragusa, Antoine
  organization: Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC
– sequence: 3
  givenname: Béatrice
  surname: Genoux
  fullname: Genoux, Béatrice
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 4
  givenname: Antoine
  surname: Vilotitch
  fullname: Vilotitch, Antoine
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, Unité d'ingénierie des données, Pôle Santé Publique, Grenoble Alpes University Hospital
– sequence: 5
  givenname: Svetlana
  surname: Artemova
  fullname: Artemova, Svetlana
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 6
  givenname: Charlène
  surname: Dumont
  fullname: Dumont, Charlène
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 7
  givenname: Paul‐Antoine
  surname: Beaudoin
  fullname: Beaudoin, Paul‐Antoine
  organization: Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC
– sequence: 8
  givenname: Pierre‐Ephrem
  surname: Madiot
  fullname: Madiot, Pierre‐Ephrem
  organization: Univ. Grenoble Alpes, Direction des Services Numériques, Grenoble Alpes University Hospital
– sequence: 9
  givenname: Gilbert R.
  surname: Ferretti
  fullname: Ferretti, Gilbert R.
  organization: Univ. Grenoble Alpes, INSERM U1209, IAB, CHU Grenoble Alpes, Service de radiologie diagnostique et interventionnelle
– sequence: 10
  givenname: Ivan
  surname: Bricault
  fullname: Bricault, Ivan
  organization: Univ. Grenoble Alpes, INSERM U1209, IAB, CHU Grenoble Alpes, Service de radiologie diagnostique et interventionnelle
– sequence: 11
  givenname: Eric
  surname: Fontaine
  fullname: Fontaine, Eric
  organization: Univ. Grenoble Alpes, INSERM U1055, LBFA, CHU Grenoble Alpes
– sequence: 12
  givenname: Jean‐Luc
  surname: Bosson
  fullname: Bosson, Jean‐Luc
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 13
  givenname: Alexandre
  surname: Moreau‐Gaudry
  fullname: Moreau‐Gaudry, Alexandre
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 14
  givenname: Joris
  surname: Giai
  fullname: Giai, Joris
  organization: Univ. Grenoble Alpes, Méthodologie de l'information en Santé, Biostatistiques, Recherche clinique et Innovation Technologique, Pôle Santé Publique, CHU Grenoble Alpes
– sequence: 15
  givenname: Cécile
  orcidid: 0000-0001-6729-2704
  surname: Bétry
  fullname: Bétry, Cécile
  email: cecile.betry@univ‐grenoble‐alpes.fr
  organization: Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40716112$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi1UREvphgdAlthUSKf4FjtmF51ySdXqVAqsLcexUaLEDk6iqjsegQVPyJPgnhy6YFFvPDP-5teM_5fgyAdvAXiN0QVGiLzvzDRciBTRZ-CEYIk2HCF5dIgzKfExOJumDqXDOOYZegGOGRKYY0xOQLe7LIvq9gMsPNyN1v_5-asKSzQWVsHNdzpa6EKExTKHQc-2gdVNCS_tbOPQej23IXX8Lsaxb80-g3OA2sPSjym1foa3YVz6_dMr8NzpfrJnh_sUfPv08ev2y-Z697ncFtcbwwiiG0e1MRa5jDtMGeI5crXJibGkEVltTE5lbiS2NGOUY0c4R02tGypygaVzmp6CctVtgu7UGNtBx3sVdKv2hRC_Kx3n1vRWkZrZ2nHdZMwxV9OaMJfXRmYiz4gQKGmdr1pjDD8WO81qaCdj-157G5ZJUUIZRUxmMqFv_0O79JE-bZoohgUXQpBEvTlQSz3Y5nG8f44k4N0KmBimKVr3iGCkHhxXD46rveMJxit81_b2_glSXW2rm7XnL6w2rSc
Cites_doi 10.3390/nu16173035
10.1016/j.clnu.2022.02.001
10.1016/j.jcm.2016.02.012
10.1371/journal.pone.0222042
10.1016/S1470-2045(08)70153-0
10.1002/rco2.37
10.1148/ryai.230024
10.1007/s005860000140
10.1038/s41598-021-00161-5
10.1002/mp.16261
10.1016/j.clnu.2018.08.002
10.1016/j.clnu.2020.01.008
10.1002/jpen.1067
10.3389/fnume.2023.1292676
10.1002/mp.15932
10.1148/radiol.2020201640
10.1038/s41598-022-10266-0
10.1002/jcsm.13310
10.1007/978-3-030-01201-4_22
10.1002/jcsm.13446
10.1016/j.clnesp.2020.02.001
10.1016/j.clnu.2017.07.007
10.1038/s41746-024-01118-4
10.1016/j.nupar.2023.05.005
10.1016/j.nut.2021.111227
10.1016/j.crad.2022.01.036
10.1038/s41430-017-0034-5
10.21037/qims-22-330
10.1016/j.ajcnut.2024.06.009
10.1097/JS9.0000000000000989
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC.
2025 The Author(s). Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC.
– notice: 2025 The Author(s). Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.1002/jcsm.70023
DatabaseName Wiley Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2190-6009
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2b4ebf6ad54f4fb3b24f8bc957852770
40716112
10_1002_jcsm_70023
JCSM70023
Genre article
Journal Article
GrantInformation_xml – fundername: MIAI@Grenoble Alpes
  funderid: ANR‐19‐P3IA‐0003
– fundername: Regional Delegation for Clinical Research of the University Hospital Grenoble Alpes in 2019
– fundername: MIAI@Grenoble Alpes
  grantid: ANR-19-P3IA-0003
GroupedDBID ---
0R~
1OC
24P
2VQ
4.4
40G
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAKDD
AAMMB
AAZKR
ABUWG
ACCMX
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AENEX
AFKRA
AFPKN
AGXDD
AHBYD
AHSBF
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMKLP
AOIJS
AVUZU
AZFZN
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
M48
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
RSV
SMD
SOJ
U2A
UKHRP
WIN
ZOVNA
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c4203-f3acce0f56f1340680fbc82ce2d75bcc8398c91e354361f2660dbad378719ffa3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001560669900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-5991
2190-6009
IngestDate Tue Oct 14 18:09:42 EDT 2025
Thu Oct 02 22:15:48 EDT 2025
Tue Oct 07 07:03:46 EDT 2025
Thu Jul 31 01:53:38 EDT 2025
Sat Nov 29 07:38:31 EST 2025
Fri Aug 22 09:40:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords image processing
malnutrition
body composition
computer‐assisted
skeletal muscle
computational neural networks
sarcopenia
Language English
License Attribution
2025 The Author(s). Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4203-f3acce0f56f1340680fbc82ce2d75bcc8398c91e354361f2660dbad378719ffa3
Notes Funding
This work was supported by a grant from the Regional Delegation for Clinical Research of the University Hospital Grenoble Alpes in 2019 and MIAI@Grenoble Alpes (ANR‐19‐P3IA‐0003). The funding bodies did not have any involvement in the design/conduct of the research, in data analysis/interpretation or in writing/approval of the manuscript.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6729-2704
OpenAccessLink https://doaj.org/article/2b4ebf6ad54f4fb3b24f8bc957852770
PMID 40716112
PQID 3241767772
PQPubID 4370305
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2b4ebf6ad54f4fb3b24f8bc957852770
proquest_miscellaneous_3234304959
proquest_journals_3241767772
pubmed_primary_40716112
crossref_primary_10_1002_jcsm_70023
wiley_primary_10_1002_jcsm_70023_JCSM70023
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
2025-Aug
20250801
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Heidelberg
PublicationTitle Journal of cachexia, sarcopenia and muscle
PublicationTitleAlternate J Cachexia Sarcopenia Muscle
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 13
2021; 4
2023; 14
2021; 89
2022; 290
2023; 5
2023; 37
2000; 9
2019; 14
2008; 9
2020; 39
2019; 38
2024; 120
2020; 36
2022; 41
2024
2024; 15
2024; 16
2018; 42
2016; 15
2021; 11
2017; 37
2024; 7
2023; 110
2022; 12
2019
2018
2021; 298
2018; 72
2024; 3
2022; 77
2023; 50
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Charrière K. (e_1_2_9_12_1) 2022; 290
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 124
  year: 2024
  article-title: Shortcut Learning in Medical AI Hinders Generalization: Method for Estimating AI Model Generalization Without External Data
  publication-title: npj Digital Medicine
– volume: 12
  start-page: 6443
  year: 2022
  article-title: Prediction of Abdominal CT Body Composition Parameters by Thoracic Measurements as a New Approach to Detect Sarcopenia in a COVID‐19 Cohort
  publication-title: Scientific reports
– volume: 9
  start-page: 629
  year: 2008
  end-page: 635
  article-title: Prevalence and Clinical Implications of Sarcopenic Obesity in Patients With Solid Tumours of the Respiratory and Gastrointestinal Tracts: A Population‐Based Study
  publication-title: Lancet Oncology
– volume: 37
  start-page: 168
  year: 2023
  end-page: 175
  article-title: Modifications des recommandations de la Haute Autorité de santé concernant le diagnostic de la dénutrition: application par les professionnels de la nutrition en pratique clinique
  publication-title: Nutrition Clinique et Métabolisme
– volume: 4
  start-page: 103
  year: 2021
  end-page: 110
  article-title: Sarcopenia Diagnosis: Comparison of Automated With Manual Computed Tomography Segmentation in Clinical Routine
  publication-title: JCSM Rapid Communications
– volume: 13
  start-page: 1384
  year: 2023
  end-page: 1398
  article-title: A Deep Learning Model Based on the Attention Mechanism for Automatic Segmentation of Abdominal Muscle and Fat for Body Composition Assessment
  publication-title: Quant Imaging med Surg
– volume: 39
  start-page: 3049
  year: 2020
  end-page: 3055
  article-title: Automated Body Composition Analysis of Clinically Acquired Computed Tomography Scans Using Neural Networks
  publication-title: Clinical Nutrition
– year: 2024
– volume: 3
  start-page: 3
  year: 2024
  article-title: Automatic Deep Learning Method for Third Lumbar Selection and Body Composition Evaluation on CT Scans of Cancer Patients
  publication-title: Frontiers in Nuclear Medicine
– volume: 16
  year: 2024
  article-title: Evaluation of Muscle Mass and Malnutrition in Patients With Colorectal Cancer Using the Global Leadership Initiative on Malnutrition Criteria and Comparing Bioelectrical Impedance Analysis and Computed Tomography Measurements
  publication-title: Nutrients
– volume: 38
  start-page: 1
  year: 2019
  end-page: 9
  article-title: GLIM Criteria for the Diagnosis of Malnutrition ‐ A Consensus Report From the Global Clinical Nutrition Community
  publication-title: Clinical Nutrition
– volume: 50
  start-page: 178
  year: 2023
  end-page: 191
  article-title: Automated Segmentation of Five Different Body Tissues on Computed Tomography Using Deep Learning
  publication-title: Med Phys
– volume: 14
  start-page: 1973
  year: 2023
  end-page: 1986
  article-title: A Systematic Review of Automated Segmentation of 3D Computed‐Tomography Scans for Volumetric Body Composition Analysis
  publication-title: Journal of Cachexia, Sarcopenia and Muscle
– volume: 42
  start-page: 1148
  year: 2018
  end-page: 1155
  article-title: Influence of Contrast Administration on Computed Tomography‐Based Analysis of Visceral Adipose and Skeletal Muscle Tissue in Clear Cell Renal Cell Carcinoma
  publication-title: JPEN Journal of Parenteral and Enteral Nutrition
– volume: 11
  year: 2021
  article-title: Development of a Fully Automatic Deep Learning System for L3 Selection and Body Composition Assessment on Computed Tomography
  publication-title: Scientific reports
– volume: 5
  year: 2023
  article-title: TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images
  publication-title: Radiology: Artificial Intelligence
– volume: 15
  start-page: 1084
  year: 2024
  end-page: 1093
  article-title: Low Skeletal Muscle Mass and Treatment Outcomes Among Adults With Haematologic Malignancies: A Systematic Review and Meta‐Analysis
  publication-title: Journal of Cachexia, Sarcopenia and Muscle
– volume: 290
  start-page: 1068
  year: 2022
  end-page: 1069
  article-title: ODIASP: Clinically Contextualized Image Analysis Using the PREDIMED Clinical Data Warehouse, Towards a Better Diagnosis of Sarcopenia
  publication-title: Stud Health Technol Inform
– volume: 298
  start-page: 319
  year: 2021
  end-page: 329
  article-title: Population‐Scale CT‐Based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age‐, Sex‐, and Race‐Specific Reference Curves
  publication-title: Radiology
– volume: 77
  year: 2022
  article-title: Fully Automated Deep‐Learning Section‐Based Muscle Segmentation From CT Images for Sarcopenia Assessment
  publication-title: Clinical Radiology
– volume: 50
  start-page: 4973
  year: 2023
  end-page: 4980
  article-title: A Comparative Study of Two Automated Solutions for Cross‐Sectional Skeletal Muscle Measurement From Abdominal Computed Tomography Images
  publication-title: Medical Physics
– volume: 89
  year: 2021
  article-title: Use of Artificial Intelligence in the Imaging of Sarcopenia: A Narrative Review of Current Status and Perspectives
  publication-title: Nutrition
– volume: 14
  year: 2019
  article-title: Reliable and Robust Method for Abdominal Muscle Mass Quantification Using CT/MRI: An Explorative Study in Healthy Subjects
  publication-title: PLoS ONE
– volume: 110
  start-page: 6126
  year: 2023
  end-page: 6134
  article-title: Preoperative Low Skeletal Muscle Mass Index Assessed Using L3‐CT as a Prognostic Marker of Clinical Outcomes in Pancreatic Cancer Patients Undergoing Surgery: A Systematic Review and Meta‐Analysis
  publication-title: International Journal of Surgery
– volume: 36
  start-page: 157
  year: 2020
  end-page: 161
  article-title: How Frequently Are Patients Weighed in Hospital ? Results From a Five‐Year Cross‐Sectional Audit of Clinical Practice in Nine Hospitals
  publication-title: Clinical Nutrition ESPEN
– volume: 72
  start-page: 288
  issue: 2
  year: 2018
  end-page: 296
  article-title: Percentiles for Skeletal Muscle Index, Area and Radiation Attenuation Based on Computed Tomography Imaging in a Healthy Caucasian Population
  publication-title: European Journal of Clinical Nutrition
– volume: 41
  start-page: 1425
  year: 2022
  end-page: 1433
  article-title: Guidance for Assessment of the Muscle Mass Phenotypic Criterion for the Global Leadership Initiative on Malnutrition (GLIM) Diagnosis of Malnutrition
  publication-title: Clinical Nutrition
– volume: 120
  start-page: 696
  year: 2024
  end-page: 706
  article-title: Influence of Weight‐Adjusted Contrast Enhancement on Computed Tomography‐Derived Skeletal Muscle Measures: A Retrospective Proof‐of‐Concept Comparative Study Between Danish Females and Males
  publication-title: American Journal of Clinical Nutrition
– start-page: 204
  year: 2018
  end-page: 213
– year: 2019
– volume: 37
  start-page: 1707
  issue: 5
  year: 2017
  end-page: 1714
  article-title: Contrast‐Enhancement Influences Skeletal Muscle Density, but Not Skeletal Muscle Mass, Measurements on Computed Tomography
  publication-title: Clinical Nutrition
– volume: 15
  start-page: 155
  year: 2016
  end-page: 163
  article-title: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
  publication-title: Journal of chiropractic medicine
– volume: 9
  start-page: 242
  year: 2000
  end-page: 248
  article-title: Geometrical Dimensions of the Lower Lumbar Vertebrae – Analysis of Data From Digitised CT Images
  publication-title: European Spine Journal
– ident: e_1_2_9_28_1
  doi: 10.3390/nu16173035
– ident: e_1_2_9_4_1
  doi: 10.1016/j.clnu.2022.02.001
– ident: e_1_2_9_20_1
  doi: 10.1016/j.jcm.2016.02.012
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0222042
– ident: e_1_2_9_31_1
– ident: e_1_2_9_16_1
  doi: 10.1016/S1470-2045(08)70153-0
– ident: e_1_2_9_30_1
  doi: 10.1002/rco2.37
– ident: e_1_2_9_24_1
  doi: 10.1148/ryai.230024
– ident: e_1_2_9_25_1
  doi: 10.1007/s005860000140
– ident: e_1_2_9_9_1
  doi: 10.1038/s41598-021-00161-5
– ident: e_1_2_9_10_1
  doi: 10.1002/mp.16261
– ident: e_1_2_9_2_1
  doi: 10.1016/j.clnu.2018.08.002
– ident: e_1_2_9_19_1
  doi: 10.1016/j.clnu.2020.01.008
– volume: 290
  start-page: 1068
  year: 2022
  ident: e_1_2_9_12_1
  article-title: ODIASP: Clinically Contextualized Image Analysis Using the PREDIMED Clinical Data Warehouse, Towards a Better Diagnosis of Sarcopenia
  publication-title: Stud Health Technol Inform
– ident: e_1_2_9_13_1
  doi: 10.1002/jpen.1067
– ident: e_1_2_9_7_1
  doi: 10.3389/fnume.2023.1292676
– ident: e_1_2_9_23_1
  doi: 10.1002/mp.15932
– ident: e_1_2_9_18_1
  doi: 10.1148/radiol.2020201640
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-022-10266-0
– ident: e_1_2_9_34_1
  doi: 10.1002/jcsm.13310
– ident: e_1_2_9_17_1
  doi: 10.1007/978-3-030-01201-4_22
– ident: e_1_2_9_29_1
  doi: 10.1002/jcsm.13446
– ident: e_1_2_9_5_1
  doi: 10.1016/j.clnesp.2020.02.001
– ident: e_1_2_9_14_1
  doi: 10.1016/j.clnu.2017.07.007
– ident: e_1_2_9_32_1
  doi: 10.1038/s41746-024-01118-4
– ident: e_1_2_9_3_1
  doi: 10.1016/j.nupar.2023.05.005
– ident: e_1_2_9_6_1
  doi: 10.1016/j.nut.2021.111227
– ident: e_1_2_9_8_1
  doi: 10.1016/j.crad.2022.01.036
– ident: e_1_2_9_21_1
  doi: 10.1038/s41430-017-0034-5
– ident: e_1_2_9_11_1
– ident: e_1_2_9_22_1
  doi: 10.21037/qims-22-330
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ajcnut.2024.06.009
– ident: e_1_2_9_27_1
  doi: 10.1097/JS9.0000000000000989
SSID ssj0000461650
Score 2.3855653
Snippet ABSTRACT Background The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including...
The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including muscle mass measurement....
ABSTRACT Background The diagnosis of malnutrition has evolved with the GLIM recommendations, which advocate for integrating phenotypic criteria, including...
SourceID doaj
proquest
pubmed
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e70023
SubjectTerms Adult
Aged
Algorithms
Automation
body composition
Clinical medicine
computational neural networks
computer‐assisted
Ethics
Female
Hospitals
Humans
image processing
Inpatients
Male
Malnutrition
Medical imaging
Middle Aged
Muscle, Skeletal - diagnostic imaging
Musculoskeletal system
Retrospective Studies
sarcopenia
Sarcopenia - diagnosis
Sarcopenia - diagnostic imaging
skeletal muscle
Software
Tomography, X-Ray Computed
Values
Vertebrae
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiEulFchtCAjOCGFOo7z6gWlL7FIu6wISL1F8QtRiaTsA679CRz6C_tL8DjeVJVQL9ysxAdHM575PON8H8CbnBpqolyFRjQ0tClAh4JHOqRMqISaQmZpLzaRTaf5yUkx8wW3hb9WuY6JLlCrTmKNfNcm_ihLMwsG35_9DFE1CrurXkLjNmwgUxkfwcb-0XT2eaiyIJ146mRaGf4znVg0NHCUst1TufjxLsO0dS0rOfL-fyHO6wDWZaDjzf9d-wO477EnKXtneQi3dPsI7k58d_0xnH46HJfVbI-ULcGLJpfnfypX2yeVDda_m7kmFuKScrXsLM7VilSTMTlc36dBC1-eX5RXHXGy7EjTknHryVvJbFALewJfj4--HHwIvRZDKDmjcWjiRkpNTZKaKOYo2GGEzJnUTGWJkNLirFwWkY4THqeRsWmfKtGo2MaDqDCmibdg1HatfgbEYsRc2ZO30DnjaVoUkmplByJRqMaeBfB6bYv6rKfcqHtyZVajxWpnsQD20UzDDKTJdg-6-bfa77qaCa6FSRuVcMONiAXjJheyQIYflmU0gJ21wWq_dxf1lbUCeDW8trsOWylNq7sVzok5NiiTIoCnvXMMK8EjcmphbABvnbfc8BH1x4Nq4kbPb17JNtxjKDzsbh7uwGg5X-kXcEf-Wn5fzF96r_8Lra8KOA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Open Access Collection
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxUxFD7UKuLGt3W0SkRXwthMknkVN2Nr8Qq3XhiF7sLkJS04I_eh2_4EF_7C_pLmZObOpSCCuAszGcgk5-R8yUm-D-BVQR11SWFipxoa-xBgYyUSG1OmTEpdqfOsF5vIj4-Lk5NytgVv13dhen6IccMNPSPM1-jgjVrsbUhDz_Ti25scY841uJ4kvEDhBiZm4w4LUolnQaKV4X3p1COhkZ-U7W0-vxKRAnH_n9DmVfAaos_Rnf9r9124PaBOUvVmcg-2bHsfbk6HvPoDOPt0OKnq2T6pWoJHTC7Of9VhV5_Ufpr-2cwt8eCWVKtl5xGuNaSeTsjh-iQNju3F-e9qkwsny440LZm0A20rmY06YQ_hy9H7zwcf4kGFIdaCUR473mhtqUszl3CBUh1O6YJpy0yeKq09wip0mVieCp4lzgd8alRjuJ8JktK5hj-C7bZr7WMgHh0Wxq-5lS2YyLKy1NQaX1CpQR32PIKX65GQ33uyDdnTKjOJ3SZDt0XwDgdprIEE2eFBN_8qB3-TTAmrXNaYVDjhFFdMuELpErl9WJ7TCHbXQywHr11IDy6TPMv9giOCF-Nr72-YRGla262wDheYmkzLCHZ60xhbgovjzAPYCF4HC_jLT8iPB_U0lJ78S-WncIuhAHE4gbgL28v5yj6DG_rH8nQxfx7s_xKxLQeD
  priority: 102
  providerName: Wiley-Blackwell
Title ODIASP: An Open‐Source Software for Automated SMI Determination—Application to an Inpatient Population
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcsm.70023
https://www.ncbi.nlm.nih.gov/pubmed/40716112
https://www.proquest.com/docview/3241767772
https://www.proquest.com/docview/3234304959
https://doaj.org/article/2b4ebf6ad54f4fb3b24f8bc957852770
Volume 16
WOSCitedRecordID wos001560669900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: 7X7
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: BENPR
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: PIMPY
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: WIN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access Collection
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: 24P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQYgL4lkCZWUEJ6TQxHHshFv6EkHaJSIgllMUvyQqkUX7gGt_Agd-YX8JYycbWgnBhYvlJD7YM7Hnm8zkG4DnWWQjG2c6tLKNQjQBJpQsNmFEpU4jmyvB-2ITYjbL5vO8ulDqy-WE9fTAveD2qWRGWt7qlFlmZSIps5lUuSNpoUJ4bx1RzwVnyp_BjMfcl2el7l_pFFHQyE1K90_V6stL4czVJWvkSfv_hDQvA1dveU5uw60BMpKin-oduGK6u3BjOgTF78Hp26OyqKtXpOiIyw85P_tR-0_ypMYz9nu7NASRKSk26wXCU6NJPS3J0TYNxinm_Oxn8TuQTdYL0nak7AbOVVKNRb7uw4eT4_eHr8OhhEKoGI2S0CatUiayKbdxwlydDStVRpWhWqRSKYRHmcpjk6Qs4bFFax1p2eoEt3GcW9smD2CnW3TmIRCEdplGh1majDLO81xFRmNHptoVURcBPNuKsvnaM2U0PScybZzAGy_wAA6clMcRjt3a30CdN4POm3_pPIC9rY6aYcutGkSGseACvYUAno6PcbO4CEjbmcXGjUmYiyumeQC7vW7HmTjPliP6DOCFV_ZfFtG8OaynvvfofyznMdykrqqwTyvcg531cmOewHX1bf15tZzAVcoqbMVc-DabwLWD41n1buJfebyqymn1Ca8-lrNfzU0CTw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQEb3oVAASNgg5Q2cR5OkBAKHaqGdoaRpkizC_ELUYmkzIOKXT-BBd_BR_VL8HUeVSXUXRfsosSK7Pj43hPf63sAXiSe9rSfSFfz0nONC1AuD33lepTLyNOpYHEjNsFGo2Q6Tccr8Kc7C4NplZ1NtIZa1gL3yDeN4_dZzAwZfHv43UXVKIyudhIaDSx21c8j88s2f5MPzPy-pHT7_f7WjtuqCrgipF7g6qAUQnk6irUfhCg9oblIqFBUsogLYRhDIlJfBVEYxL42DsyTvJSBQbafal0G5r2X4LKx4wxTyNiU9Xs6WLw8tqKwFE9oR4Z79RVR6eaBmH_bYOgkz_hAKxXwL357li5bf7d983_7UrfgRsusSdYshduwoqo7cHXY5g7chYOPgzybjF-TrCKYRnNy_GtiIxdkYlzRUTlTxBB4ki0XtWHxSpLJMCeDLlsI8Xty_Ds7jfeTRU3KiuRVW5qWjHsttHvw6UJGugarVV2pB0AMA04kSxKuEhrGcZoKT0lzwSOJWvPMgefd3BeHTUGRoikdTQtESGER4sA7hEXfAouA2xv17EvR2pSC8lBxHZcyCnWoecBpqBMuUqxfRBnzHFjvAFK0lmlenKLDgWf9Y2NTMFBUVqpeYpsgxPBrlDpwvwFj3xPcAIgNSXfglUXnOYMoPmxNhvbq4fk9eQrXdvaHe8VePtp9BNcpSizbHMt1WF3MluoxXBE_Fl_nsyd2vRH4fNGw_QsQW2XY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLarY8H4EChgBG6QwiePECRJCocOIUGaIlCKVlYlfiEokZR5U7PoJLPgaPqdfgp1XVQl11wU7K7EiOzm-98T3-h6AJ7GnPe3H0tW89FzjApTLia9cD3MZejoRNGrFJuhsFu_tJfka_OnPwti0yt4mNoZa1sLukY-M4_dpRA0ZHOkuLSIfT14dfHetgpSNtPZyGi1EdtTPQ_P7tniZjc23forx5M3u9lu3UxhwBcFe4OqgFEJ5Ooy0HxArQ6G5iLFQWNKQC2HYQywSXwUhCSJfG2fmSV7KwKDcT7QuA_PcC7BhKDkxa2wjz6b5p2GHx5YyjxqJWGzPa4eGiQ31UfFoXyy-PafWZZ7yiI1wwL_Y7mny3Hi_yZX_-b1dhcsd50Zpu0iuwZqqrsPmtMsquAH7H8ZZWuQvUFohm2BzfPSraGIaqDBO6rCcK2SoPUpXy9rweyVRMc3QuM8jssg-PvqdnmQCoGWNygplVVe0FuWDStpN-HguM70F61VdqTuADDeOJY1jrmJMoihJhKekafBQWhV66sDjHgfsoC01wtqi0phZtLAGLQ68thAZetjy4M2Fev6FddaGYU4U11EpQ6KJ5gHHRMdcJLayEabUc2CrBwvrbNaCnSDFgUfDbWNtbAiprFS9sn0CYgOzYeLA7RaYw0js1kBk6LsDzxqknjEJ9m67mDatu2eP5CFsGrSy99ls5x5cwlZ7uUm-3IL15Xyl7sNF8WP5dTF_0C0-BJ_PG7d_AaqCcCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ODIASP%3A+An+Open-Source+Software+for+Automated+SMI+Determination-Application+to+an+Inpatient+Population&rft.jtitle=Journal+of+cachexia%2C+sarcopenia+and+muscle&rft.au=Charri%C3%A8re%2C+Katia&rft.au=Ragusa%2C+Antoine&rft.au=Genoux%2C+B%C3%A9atrice&rft.au=Vilotitch%2C+Antoine&rft.date=2025-08-01&rft.eissn=2190-6009&rft.volume=16&rft.issue=4&rft.spage=e70023&rft_id=info:doi/10.1002%2Fjcsm.70023&rft_id=info%3Apmid%2F40716112&rft.externalDocID=40716112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5991&client=summon